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Cloud computing has emerged as a long-dreamt vision of the utility computing paradigm that provides
reliable and resilient infrastructure for users to remotely store data and use on-demand applications and
services. Currently, many individuals and organizations mitigate the burden of local data storage and
reduce the maintenance cost by outsourcing data to the cloud. However, the outsourced data is not always
trustworthy due to the loss of physical control and possession over the data. As a result, many scholars have
concentrated on relieving the security threats of the outsourced data by designing the Remote Data Auditing
(RDA) technique as a new concept to enable public auditability for the stored data in the cloud. The RDA is
a useful technique to check the reliability and integrity of data outsourced to a single or distributed servers.
This is because all of the RDA techniques for single cloud servers are unable to support data recovery; such
techniques are complemented with redundant storage mechanisms. The article also reviews techniques of
remote data auditing more comprehensively in the domain of the distributed clouds in conjunction with the
presentation of classifying ongoing developments within this specified area. The thematic taxonomy of the
distributed storage auditing is presented based on significant parameters, such as scheme nature, security
pattern, objective functions, auditing mode, update mode, cryptography model, and dynamic data structure.
The more recent remote auditing approaches, which have not gained considerable attention in distributed
cloud environments, are also critically analyzed and further categorized into three different classes, namely,
replication based, erasure coding based, and network coding based, to present a taxonomy. This survey also
aims to investigate similarities and differences of such a framework on the basis of the thematic taxonomy
to diagnose significant and explore major outstanding issues.
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1. INTRODUCTION

Cloud computing (CC) is a significant information technology (IT) shift and a new model
of computing over shared computing resources, such as bandwidth, storage, servers,
processing power, services, and applications [Armbrust et al. 2010, 2011]. Today, this
new paradigm has become popular and is receiving a lot of attention from researchers
in the academic and industrial communities. A recent survey indicates that more than
79% of organizations attempt to utilize data outsourcing because it relieves the burden
of maintenance cost as well as the overhead of storing data locally [Buyya et al. 2009].
Moreover, the users are able to access information from anywhere and at any time
instead of having to use dedicated machines [Wang et al. 2009; Xie et al. 2007].

Although CC offers several advantages for users, there are some security concerns
that prevent a full adoption of the new technology [Zhibin and Dijiang 2012]. When
users outsource data files in a distant server, the physical access to the file is actually
lost and the administration of files is delegated to a cloud provider as an unreliable
third party [Wang et al. 2010; Wei et al. 2014]. Although the cloud’s infrastructure is
much more robust and reliable as compared to the client’s hardware, the data in the
cloud space is still susceptible to various kinds of inside and outside threats that might
risk the integrity, confidentiality, and availability of data [Wang et al. 2009; Zhifeng and
Yang 2013]. Recently, various companies reported data corruption in servers with ma-
jor cloud infrastructure providers and many events of cloud service outages, such as the
Amazon S3 breakdown [Gohring 2008], Gmail mass deletion [Arrington 2006], sidekick
cloud disaster, and Amazon EC2 services outage [Whittaker 2012; Miller 2010]. More-
over, the Privacy Rights Clearinghouse (PRC) reports more than 535 data breaches
during 2013, namely, breaching of cloud-based email service provider in Epsilon [Storm
2011]; compromising of Sony Online Entertainment, Sony PlayStation Network, and
Sony Pictures; stealing of customers’ information on EMC’s RSA; and stealing of 3.3
million patients’ medical data of Sutter Physicians Services [Schwartz 2012].

After outsourcing the data to the remote clouds, the cloud users must ensure that
the data remains intact. However, the conventional integrity verification methods, for
example, hash functions and signatures, are inapplicable in CC because of the lack of
a local data copy [Ateniese et al. 2008]. On the other hand, downloading of possibly
a large-size file is impractical. The aforementioned situation worsens when users
are accessing data using mobile devices. The cloud users are responsible for devising
a suitable audit mechanism that can remotely verify the intactness of distant data
[Ateniese et al. 2008; Chen 2013].

The remote data auditing service comprises a set of protocols designed to prove the
intactness of the remote data that resides in cloud storage more reliably and efficiently,
devoid of downloading the entire data. Moreover, the outsourced data is also subject
to administration by unreliable third-party cloud providers [Ateniese et al. 2011]. The
RDA frameworks use a spot-checking technique to validate the outsourced data, in
which only a small fragment of the whole data is required to be accessed by the auditor.
This technique provides either a probabilistic or deterministic assurance for the data
intactness [Chen et al. 2010]. In the design and implementation of the RDA technique,
the following significant properties need to be considered: (1) efficiency: to audit
the data with the least possible computational complexity; (2) public verifiability: to
allow for delegating the auditing process to a trustworthy Third Party Auditor (TPA)
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instead of the client; the goal of this property is to reduce the computational burden
on the client’s side; (3) frequency: to allow the verification process to be repeated as
frequently as possible with different challenge messages; (4) detection probability: the
probability of a potential data corruption detection; (5) recovery: the ability to restore
corrupted data to the original state; and (6) dynamic update: to still be able to audit
data while the cloud user is allowed to perform delete, modify, and append operations
on his or her outsourced file without requiring retrieval of the entire uploaded data
[Wang et al. 2010; Yang and Jia 2012].

The RDA methods are applicable for the single and distributed cloud servers [Chen
et al. 2010]. In the single cloud server, such algorithms are only responsible for pre-
venting unauthorized parties from altering the outsourced data. In other words, the
auditor must check the data integrity through an RDA algorithm to detect data corrup-
tion [Erway et al. 2009; Cash et al. 2012; Wang et al. 2011; Ateniese et al. 2007; Wang
2012]. However, when data corruption is detected, a majority of the single-server RDA
techniques do not have the necessary capabilities to recover data. Therefore, an RDA
technique is complemented with data storage redundancy because the Data Owner
(DO) is able to restore the corrupted data by using the remaining healthy servers
[Chen et al. 2010].

This article delineates an extensive survey of the RDA techniques within the dis-
tributed cloud server domain and presents a basis for classifying the present and future
developments within this area. The thematic taxonomy of distributed storage audit-
ing is presented based on important factors such as security level, security measures,
security requirements, update mode, and auditing mode.

The core contributions of the survey are (1) the review of the most recent RDA
techniques in distributed servers that have not been sufficiently covered in previous
works and (2) analysis and classification of the current RDA approaches into three
different categories on the basis of the data redundancy feature, namely, replication
based, erasure coding based, and network coding based. This survey also aims to
investigate the similarities and differences of such schemes based on the thematic
taxonomy to diagnose the significant and outstanding issues for further studies.

The complete organization of the remainder of the article is as follows. The principal
concepts of distributed storage systems and cloud computing are described in Section 2.
Section 3 discusses the concept of RDA and the different architectures for distributed
storage systems. It also compares distributed data auditing with the single-server
RDA. Section 4 shows an extensive review of the most recent RDA techniques for dis-
tributed storage systems. The strengths and weaknesses of the current RDA meth-
ods are also investigated in this section. Section 5 presents the thematic taxon-
omy of the current RDA approaches for distributed storage systems. The section
primarily presents a comparison of the current RDA techniques by using the simi-
larities and differences within the important parameters included in the taxonomy.
Section 6 addresses the challenges and issues within the contemporary RDA ap-
proaches. Finally, Section 7 concludes the article and presents some future research
directions.

2. BACKGROUND

This segment of the article describes the concepts of cloud computing and distributed
storage systems. We also explain the mechanism of the RDA.

2.1. Cloud Computing

CC has emerged as the latest utility-oriented distributed computing model and has
been envisioned as a significant shift of IT, with the aim of augmenting abilities of the
client devices by providing access to a shared pool of rented platforms, applications, and
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infrastructures without having to actually own them. The different service models of
the cloud offer on-demand, affordable, rapid elasticity, ubiquitous resource access and
measured service [Whaiduzzaman et al. 2014; Hüfer and Karagiannis 2011]. The cloud
systems have the capability of conveniently adjusting the virtual allocated resources
on the basis of the current requirements with a minimal managerial effort and service
interruption. Such elastic characteristics reduce the wastage of resources in case of
overprovisioning [Rong et al. 2013; Aceto et al. 2013].

The cloud service models rely on a pricing model of pay as you go that charges the
clients on the basis of the amount of usage and some service metrics [Zhifeng and Yang
2013]. For example, the Dropbox service can be measured as gigabytes per year. The
CC also has led to the appearance of a new type of collaboration and communication
service by creating social networks and online communities, which facilitates scientists’
constructing research communities by sharing data and analysis tools [Barga et al.
2011]. The virtualization of resources is the core technology of cloud computing to
inculcate a vision of infinite resources to the clients [Fernando et al. 2013].

From the perspective of deployment, the CC is classified into four modes: public, pri-
vate, hybrid, and community clouds, which are detailed next [Zissis and Lekkas 2012].
(1) Public cloud: In the public cloud, service providers deliver different applications as
service and facilitate clients by providing access to more computing resources through
centralized cloud servers over the Internet, such as Amazon Web Services, Google App
Engine, Microsoft Azure platform, Salesforce, and Aneka [Fox et al. 2009]. Amazon
Web Services allow users to store data in Simple Storage Services (S3) [Kristensen
2009], the Google App Engine offers deployment platforms and hosts web applications
in Google’s data centers [wesley 2011], the Microsoft Azure platform provides a pow-
erful platform for building and deploying web applications in Microsoft data centers,
and Aneka is used as a platform to build applications and deploy them on private or
public clouds [Calheiros et al. 2012]. (2) Private cloud: The services and infrastructure
are used and managed entirely by a solo organization. (3) Community cloud: The ser-
vices and infrastructure are shared by a set of organizations with common interests
or objectives that are managed either internally or by a trusted third party. (4) Hybrid
cloud: It simply denotes the combination of clouds having different providers [Zhang
et al. 2010].

Cloud service providers offer three forms of service models: Software as Service
(SaaS), Infrastructure as Service (IaaS), and Platform as Service (PaaS) [Vaquero et al.
2011]. Users of the SaaS layer are allowed to use any type of software from their
corresponding mobile devices remotely. For instance, Microsoft Live Mesh offers file and
folder sharing among various computing devices. The PaaS model provides developers
with a runtime environment according to their specific requirements [Gonçalves and
Ballon 2011]. The PaaS also provides a programming framework, libraries, and toolkits
for developers to enable them to develop, deploy, and maintain applications. Some of the
well-known PaaS services like Amazon Elastic MapReduce (EMR), Google App Engine,
and Microsoft Azure are available in the market. The IaaS offers computation, storage,
and networking in the form of a flexible Virtual Machine (VM) to business users. For
instance, S3 (Simple Storage Service) and EC2 (Elastic Cloud Computing) are two
noticeable samples of such services [Jing et al. 2013; Subashini and Kavitha 2011].

2.2. Distributed Storage Systems

Distributed storage systems are created by combining networking and storage to allow
users to remotely store data and provide novelty services, such as archiving, publish-
ing, federation, and anonymity. The advances in networking technology have directly
caused the emergence of new distributed storage systems. For example, a new gen-
eration of distributed system reappeared by evolving the networks from the private
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Local Area Networks (LANs) to public global Wide Area Networks (WANs), such as the
Internet [Horn 2001; Himmel and Grossman 2014].

Distributed storage systems are classified into the following groups based on the
application’s functional requirements: (1) Archival: The archival system is introduced
as a nonvolatile storage, in which the users are able to store, retrieve, and back up files.
The stored data in such systems rarely needs to make updates and has write-once and
read-many workloads. Examples of archival storage include a large-scale peer-to-peer
persistent storage utility (PAST) [Druschel and Rowstron 2001] and Cooperative File
System (CFS) [Dabek et al. 2001]. (2) Filesystem: The systems that fall in this category
offer persistent nonvolatile storage with a file system for the users and permit the
applications to use storage without having to modify the rebuild, such as the SUN
Network File System (NFS) [Sandberg et al. 1985]; Coda [Mahadev 1990]; serverless
network file system (xFS) [Anderson et al. 1996]; Federated, Available, and Reliable
Storage for an Incompletely Trusted Environment (Farsite) [Adya et al. 2002]; and
read/write peer-to-peer file system (Ivy) [Muthitacharoen et al. 2002]. (3) Publish and
Share: The main aim of such a service is to support the share and publish purpose.
Contrary to the previous two models, where the objectives of the storage service are
persistent, the publish and share model is unstable and reliant on the reputation
of the shared or published file. Systems that fall into this class include Haven
[Dingledine et al. 2001], Freenet [Clarke et al. 2001], Publius [Waldman et al. 2001],
Gnutella [Oram 2001], and BitTorrent [Hasan et al. 2005]. (4) Performance: The appli-
cations that need a high level of performance belong to this category, and most of them
are categorized as Parallel File Systems (PFSs). Such systems operate within the nodes
that are interconnected by a high-bandwidth and low-latency network [Venugopal
et al. 2006]. Example systems that fall into this category are the Portable Parallel
File System (PPFS) [Huber Jr et al. 1995], Zebra [Hartman and Ousterhout 1993],
Parallel Virtual File System (PVFS) [Ross and Thakur 2000], General Parallel File
System (GPFS) [Schmuck and Haskin 2002], and Frangipani [Thekkath et al. 1997].
(5) Federation Middleware: This system enables organizations to integrate a large
number of storage systems through the Internet. The federation middleware is
responsible for offering a homogeneous interface, processing of data, and managing
of replicas [Venugopal et al. 2006]. (6) Hybrid: In the last group, a new storage system
is created by combining the previous system categories. Examples include Google File
System (GFS) [Ghemawat et al. 2003] and OceanStore [Kubiatowicz et al. 2000].

The architecture of a distributed storage system can mainly be classified into two
groups: client server and peer to peer. In the client-server architecture, each entity
has to be the property of either a client or a server, and the server is in charge of
authentication, replication, backup, and servicing requests to clients. Such an archi-
tecture is used widely by distributed storage systems [Sandberg et al. 1985; Mahadev
1990; Thekkath et al. 1997; Vazhkudai et al. 2005]. On the contrary, in a peer-to-peer
architecture, every participant has the capability to behave as a server and a client.
FastTrack [Hasan et al. 2005; Ding et al. 2005], Clippee [Albrecht et al. 2003], and
eDonkey [Tutschku 2004] are examples of such an architecture.

3. REMOTE DATA AUDITING

Today, most individuals and organizations are motivated to reduce the cost and time
involved in procurement and maintenance of local data storage infrastructure by out-
sourcing the data to the cloud. In cloud computing, the Cloud Service Provider (CSP)
is in charge of managing the cloud storage services. As a result, the DOs are unable
to maintain their possession and direct control over the uploaded data and instead the
data is exclusively managed by an untrustworthy third party. On the other hand, the
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Fig. 1. Multiserver audit architecture.

CSP or any insider adversary is able to maliciously manipulate data content without
user consent or knowledge [Chen et al. 2010].

The RDA technique attempts to sample data on the cloud and analyze it with sev-
eral criteria such as integrity, correctness, and validity as benchmarks to ensure the
reliability and trustworthiness of cloud service providers [Wang et al. 2010]. This sec-
tion details the architecture of the RDA for the distributed servers and compares the
distributed data auditing with the single-server RDA.

3.1. Architecture of Remote Data Auditing for Distributed Servers

The RDA schemes for distributed cloud servers often consist of four main entities:
(1) Data Owner: the person who uploads his or her data to the cloud space and later
might perform delete, insert, and append operations on the outsourced data. (2) Cloud
Service Provider: Has a tremendous amount of computing resources and stores and
manages the DO’s data. The CSP is also responsible for managing cloud servers.
(3) Third Party Auditor: In order to alleviate the computation burden on the DO’s
side, the auditing process is often assigned to a TPA with adequate skills and capabili-
ties to accomplish the auditing task on behalf of the DO. The TPA’s role is particularly
important when DOs possess relatively poor computing devices in terms of processing
power, storage space, and bandwidth. While the TPA is regarded as a trustful and
reliable entity, it might be inquisitive at the same time. Consequently, one significant
countermeasure during data auditing is to prevent the TPA from obtaining knowledge
of the DO’s data content and to protect privacy of data. (4) User (individual or enter-
prise): Is enrolled and authenticated by the DO and permitted to have a predetermined
type of access to the outsourced data [Koo et al. 2013; Sood 2012; Yu et al. 2012]. The
RDA architecture for distributed storage systems is classified into three categories:
multiserver, single cloud and multiserver, and multicloud and multiserver, which we
detail next.

(1) Multiserver model: In this model, the DO distributes multiple copies of the data
among several servers and separately checks each of them. Figure 1 shows the
architecture of the multiserver data auditing model.

(2) Single cloud and multiserver: In this model, all of the servers are distributed within
a single cloud where the CSP is in charge of managing the servers. As is shown in
Figure 2, the DO and the TPA are directly connected to the CSP rather than all of
the servers.

(3) Multicloud and multiserver: Instead of a single cloud, the DO outsources the data
among multiple clouds. Similar to the previous model, one of the CSPs, namely, the
organizer, is responsible for managing all of the servers and the other CSPs. As
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Fig. 2. Single cloud and multiserver audit architecture.

Fig. 3. Multicloud and multiserver audit architecture.

shown in Figure 3, the organizer that is directly connected to the owner receives
data and a challenge from the DO to distribute among the clouds and the servers.
Moreover, the organizer aggregates the received proofs from the servers and sends
them to the DO.

A typical RDA service works according to the following essential response-challenge
procedure: First, the DO performs a preliminary process on his or her file to generate
some metadata to be passed to the TPA. Hereafter, the DO does not need to be engaged
in the rest of the auditing process. In order to verify the integrity and correctness of the
remote data residing on the cloud, the TPA selects a random index of the outsourced
data as a challenge message and directs that message to either the organizer or the
CSP (in case the TPA is not supported by auditing service architecture, the DO him-
or herself must generate the challenge). When the organizer or the CSP receives the
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challenge, it is distributed among the servers, and then the organizer computes the
corresponding response by aggregating the received messages from the servers. After
receiving a response from the organizer or the CSP, the verification is carried out by
the auditor to ensure the reliable placement of the file in the cloud storage. It is worth
mentioning here that to lessen the computational cost of the auditing process, only a
minor portion of the entire data is inquired about [Xiao et al. 2012].

3.2. Single Server Versus Multiservers

In a single server, the RDA techniques are classified into three groups: integrity based,
recovery based, and deduplication based [Sookhak et al. 2014b]. The first category of
RDA methods in the single servers is called the integrity-based schemes, in which the
auditor is only permitted to validate the correctness of the outsourced data directly
or by using a third party. Examples of such schemes include Provable Data Posses-
sion (PDP) [Ateniese et al. 2007], Proxy PDP [Wang 2012], Scalable PDP [Ateniese
et al. 2008], Dynamic PDP [Erway et al. 2009], Efficient PDP [Hanser and Slamanig
2013], Robust PDP [Curtmola et al. 2008a], Efficient and Secure PDP [Yang and Jia
2012], and DRDA [Sookhak et al. 2014a]. The second category of RDA schemes is the
recovery-based models that are capable of verifying the data integrity and recovering
the corrupted data when an error is detected. In other words, aside from verifying
data integrity, such models support forward error-correcting codes (FECs) by using
the Reed-Solomon erasure-correcting code [Plank 2005]. The core difference between
the recovery-founded and integrity-based approaches is that in the recovery-based
approaches, the all of the client’s data must be placed on the server. However, the
integrity-based approaches are only responsible for ensuring that most parts of the
outsourced data are in the remote server. Therefore, a minor fragment of data might be
missed [Cash et al. 2012]. Furthermore, recovery-based methods save a redundant en-
coded form of the client’s data on the server [Küpçü 2010]. Examples of recovery-based
methods include Proof of Retrievability (POR) [Juels and Kaliski 2007], compact POR
[Shacham and Waters 2008], public POR [Yuan and Yu 2013a], scalable POR [Stefanov
et al. 2012], practical dynamic POR [Shi et al. 2013], and fair dynamic POR [Zheng and
Xu 2011]. Deduplication-based approaches are the last group of RDA that facilitate the
integrity and efficiency of data in a single server by removing data redundancy and in-
creasing data storage optimization. Examples of deduplication-based methods include
Proof of Storage with Deduplication (POSD) [Zheng and Xu 2012], Improved POSD
[Shin et al. 2012], and Public Auditing with Deduplication (PAD) [Yuan and Yu 2013b].

Currently, individuals and organizations prefer to store data on distributed servers,
because the single-server setting has no capability to recovery the data properly when
data corruption is detected. For instance, in deep archival applications that use peer-to-
peer storage systems [Maniatis et al. 2005], the third party is responsible for managing
the data. Therefore, DOs need RDA to verify the integrity and correctness of the large
archival datasets, which makes the single-server auditing methods prohibitive. This is
because most of the aforementioned RDA approaches are inapplicable to such systems
or incur huge computation and communication overhead on the client and server. The
RDA must be supplemented by storing data redundantly on multiple servers [Chen
et al. 2010].

4. STATE-OF-THE-ART RDA SCHEMES FOR DISTRIBUTED CLOUD SERVERS

The RDA schemes employ various techniques to protect the integrity of the outsourced
data for distributed storage systems. This section comprehensively surveys the state-
of-the-art RDA methods for distributed storage systems. We classify the survey of RDA
algorithms based on the data redundancy feature and critically analyze the surveyed
techniques to investigate the strengths and weaknesses of such methods.

ACM Computing Surveys, Vol. 47, No. 4, Article 65, Publication date: May 2015.



Remote Data Auditing in Cloud Computing Environments 65:9

4.1. Replication-Based Remote Data Auditing

When DOs store data in an unreliable storage system, as is the case in the cloud and
mobile cloud computing paradigms, redundancy plays a fundamental role in improving
the reliability against data failures. The simplest and most common way to achieve
the aforementioned goal is to use a replication technique in which multiple copies of
data are outsourced within the distributed storage systems [Ying and Vlassov 2013].
Whenever a data corruption is detected, the client can use an intact copy of the file with
size | f | from any of the r unaffected servers. The main disadvantage of the replication
method is that the storage cost is r| f |. This is because during the repair phase, the
client must retrieve a replica of size | f | , and the communication overhead of replication
in the recovery mode is equal to one [Agrawal and Jalote 1995].

Although the implementation of this method is relatively straightforward, there is
no strong evidence to prove that the cloud actually stores multiple copies of the data
files [Chen et al. 2010]. In other words, the replication-based storage systems are
vulnerable to collusion attacks in which the servers only store a single copy of the file
while appearing to store multiple copies of the file [Curtmola et al. 2008b]. For example,
in peer-to-peer networks, servers perform a freeloading attack with the aim of using
disproportionately more of the system’s resources without contributing a proportionate
quantity of resources back to peers [Osipkov et al. 2006]. As a result, the DOs encounter
a decline in the durability and availability of the file and the CSP has more storage
space to sell to the users [Curtmola et al. 2008b].

The naive way to overcome the collusion attack is to apply a single PDP method
[Ateniese et al. 2007] t times for t different servers. However, as an identical copy of
the file is stored on all of the t servers, the servers can collude and pretend that t
copies of files are stored while only a single copy is stored in reality. Moreover, the
computational cost on the client for the preprocessing of the file is t times greater
than the computational burden when the single PDP method is used. Therefore, such
a method is inapplicable for distributed storage systems, particularly for larger values
of t. The remainder of this section critically analyzes several replication-based data
auditing techniques.

Curtmola et al. [2008b] were the first to address the collude attack in the replication-
based schemes by introducing a provably secure scheme, called Multiple Replica Prov-
able Data Possession (MR-PDP), to store a large number of copies of files. The integrity
of the copies was verified through a challenge-response protocol. The MR-PDP is an
extension of a previous work (single-replica PDP scheme [Ateniese et al. 2007]) for use
in the multiserver environment.

In the MR-PDP scheme, the client generates t unique replicas (Rs) by encrypting the
original file and masking the blocks of the encrypted file by using a random value (Ru)
for each of the replicas. Thereafter, the client uses a decrypted file to create a tag for
each block on the basis of the RSA signature. The client then outsources a generated
replica and a set of tags on each server as

Ti = (h(υ||i).gb[i])d mod n, (1)

where Ti is the tag for the ith data block (b[i]), n is the number of blocks, d and υ are
the clients’ private key, and g is the public key. To check for the data possession in
each of the servers, the clients select a random portion of the data blocks and compute
a random number gs to prevent the server from using a previous challenge message.
When the challenge message is received, the server computes a proof on the basis of
the challenge and the corresponding tags. Finally, the DO is able to verify the received
proof message based on the random value (Ru).
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Fig. 4. Generating a unique replication in the DMR-PDP scheme.

Although the MR-PDP method is suitable for checking the integrity and availability
of distributed servers, the DO is unable to delegate the auditing to the TPA because
the MR-PDP only supports private verification. Moreover, to update a block of the
file, the DOs must retrieve the entire data, which imposes a huge computation and
communication overhead on the client and server.

Barsoum and Hasan [2010] proposed the Efficient Multi-Copy Provable Data Posses-
sion (EMC-PDP) scheme to devise a public verification method for the replication-based
storage based on the Boneh-Lynn-Shacham (BLS) homomorphic linear authenticators
[Shacham and Waters 2008]. The EMC-PDP is introduced in two different versions: de-
terministic (DEMC-PDP) and probabilistic (PEMC-PDP). In the deterministic version,
all of the file blocks are verified. The probabilistic scheme relies on the spot-checking
approach in which only a random fraction of the file is checked. Even though the
DEMC-PDP provides a stronger security guarantee, it is achieved at the expense of a
higher storage overhead on the client and the server.

The main idea behind the EMC-PDP method is to generate a unique replication of
file (Ri) by attaching a replica number i to the original file F. Therefore, the generated
replica is encrypted with a strong diffusion property of an encryption scheme, such as
the Advanced Encryption Standard (AES). The DO also generates a distinctive tag for
each block of replicas by using the following equation and distributes them along with
the replicas among the servers:

Ti, j = (h(Fid)ub[i][ j])d, (2)

where Fid indicates a unique fingerprint for each file that is generated by attaching the
filename to the number of blocks and the number of replicas, i indicates the replication
number, j is the block number, d is the client’s private key, and u is a generator for
a bilinear group mapping G. Finally, the authorized users are able to validate the
data possession of all of the replicas or a random subset by using a challenge-response
protocol. The experimental result shows that the EMC-PDP is more efficient than
the MR-PDP scheme [Curtmola et al. 2008b] in the following ways: (1) it supports
authorized users, (2) the storage cost for the EMC-PDP is six times less than that of
the MR-PDP, (3) the required bandwidth is much less than the MR-PDP due to the
application of the aggregation strategy, and (4) the PEMC-PDP is the most efficient
protocol in terms of computational cost.

Although Barsoum and Hasan [2010] used BLS homomorphic linear authenticators
to delegate the auditing task to the trusted third party, the client must re-encrypt and
upload the entire replicas to the servers to update a block of the file, which incurs high
overhead on the client and server sides.

Mukundan et al. [2012] proposed a Dynamic Multi-Replica Provable Data Possession
(DMR-PDP) scheme to verify the integrity and completeness of multiple copies. The
authors utilized a probabilistic encryption algorithm, namely, the Paillier encryption
scheme, to generate distinct copies of the original file F = {b[1], b[2], . . . , b[m]}. Figure 4
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shows the operation to compute the ith replication using the following equation:

Ri =
{
(1 + N)b[ j] (kiri, j

)N
}m

j=1
, (3)

where j is the index of the block, i is the number of replicas, kj represents a random
number that is used to identify the number of replicas, ri, j indicates a random number
that is used for the Paillier encryption scheme, and N is the owner’s public key.

The DO generates a unique tag for each data b[i] block through the BLS signatures
by using Ti = (h(F).ub[i].N)d, where h represents a hash function, d is the client’s private
key, and u is a generator for the bilinear group mapping G. The main contribution of
the DMR-PDP method is the introduction of a data block modification operation in
which the DO calculates the difference between the blocks (�b [ j] = b′ [ j] − b[ j]) and
encrypts �b [ j] using the Paillier encryption En (�b [ j]) = (1 + �b [ j]N) rN. After
generating a tag for the new block Tj = (h(F).ub′[ j].N)

d
, the DO sends En (�b [ j]) and

Tj along with a random challenge to ensure the integrity of the modification operation.
When the request message is received, the servers make all of the copies of the file up to
date by carrying out a homomorphic addition operation, without needing to re-encrypt
all of the files (En (b′ [ j]) = En (b [ j]) .En (�b [ j])).

Yan et al. [2012] built a replication-based remote data auditing framework for dis-
tributed systems by using the homomorphic verification response (HVR) and hash
index hierarchy (HIH), called the Cooperative Provable Data Possession (C-PDP). The
HIH is a hierarchical structure that is used to present the relationships among the data
blocks of various storage service providers and includes three layers: Express, Service,
and Storage Layers. In the Express Layer, the original file is divided and distributed
among all of the service providers in the Service Layer. The next layer that is in charge
of managing cloud storage services fragments the received file data and stores it in the
storage servers in the Storage Layer. The last layer that is constructed as a data struc-
ture to store a set of block and tag pairs allows the auditor to check the outsourced data
integrity. The HVR is another fundamental technique in the C-PDP scheme that takes
care of combining the generated responses from numerous cloud providers into one
response based on the sum of the challenges. As a result, the communication overhead
is reduced and the privacy of data is preserved by hiding the outsourced data location
in the distributed storage system.

In the architecture of the C-PDP scheme, an independent server or one of the existing
CSPs is assumed as an organizer, who has responsibility for managing all of the CSPs,
initiating and organizing the verification process, and communicating directly with the
client. Moreover, after a challenge is issued by the client, the organizer aggregates all of
the responses received from the CPSs into one response by using the HVR technique, to
be sent to the client. Even though the C-PDP scheme has several advantages, it must be
assumed that the organizer is a trusted entity. Moreover, a heterogeneous structure of
the proposed scheme leads to a high communication load due to the intercommunication
between various cloud servers.

Barsoum and Hasan [2011] discussed the problem of verifying the multiple copies of
a remote file when the file is liable to update operations, such as modification, insertion,
and deletion. Specifically, the authors proposed two Dynamic Multi-Copy Provable Data
Possession (DMCPDP) methods: Tree-Based DMCPDP (TB-DMCPDP) and Map-Based
DMCPDP (MB-DMCPDP), which are based the Merkle Hash Tree (MHT) [Merkle 1980]
and the map-version table to support the dynamic data outsourcing.

In the TB-DMCPDP method, the original form of the MHT is used for each of the
replicas, and then the root of each of the trees is placed as a leaf to construct a unique
tree, namely, the directory of the MHT. The main concept behind such an approach is
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Fig. 5. Directory tree for multiple replicas in TB-DMCPDP scheme.

to verify the integrity of all of the replicas in a hierarchical manner using a directory
MHT in which the leaf nodes of the tree are the root node of each file copy’s MHT. By
using such a structure, the auditor only needs to store M = hash(IDF + R), where IDF
indicates a unique file identifier for each of the replicas and R is the root value of the
directory tree. Figure 5 shows an example of the directory MHT.

When the client requires modifying a block of the outsourced data (b[i]), a verification
tag of the new block is computed and sent to the servers along with a copy of the
data block for each server. Upon receiving the modification request at each server, the
old block is replaced by a new version and reconstructs the MHT based on the new
data block. The CSP then updates the directory tree and calculates the authentication
paths of the updated blocks as a proof of modification. Finally, the CSP sends the
authentication path, including a set of nodes from the modified block to the root of
each of the MHTs. The DO is able to verify the modify operation by rebuilding the
root of the directory tree on the basis of the received authentication path. However,
modify, insert, and delete operations impose significant overhead on the server side in
the TB-DMCPDP method because the CSP must rebalance all of the MHT structures
to perform such operations. On the other hand, storing several MHTs on the servers
incurs an enormous storage cost when the size of files is dramatically increasing.

To address the storage and computation overhead, Barsoum and Hasan [2011] imple-
mented a novel data structure known as the map-version table. The table that is used
to check the outsourced data integrity contains three columns: Serial Number (SN),
Block Number (BN), and Version Number (VN). The SN basically represents the actual
(or physical) position of the block in the file, while the BN shows the logical location of
the block in the file. The VN for a block indicates the number of dynamic operations
applied to that block so far. Upon outsourcing a data block for the first time, the VN
is set to one, and for every dynamic operation of this block, the VN is incremented by
one.

The map-version table needs to be stored in the local storage of the DO, who is
responsible for updating the table during the modify, insert, and delete operations. For
example, when the DO decides to insert a data block after position i, a new row must be
appended to the table (after the last entity of the table as an actual position) with these
characteristics (SN, BN, VN) = (i + 1, Max (BN) + 1, 1). Meanwhile, to delete a data
block from the outsourced data, the DO is only required to delete the requested block
from the map-version table. An example of a map-version table is shown in Figure 6.

Although the conducted security analysis proves the security of both of the al-
gorithms, the performance analysis reveals that the MB-DMCPDP is more efficient
than the TB-DMCPDP. This is because the TB-DMCPDP extends a single-copy DPDP
scheme. Such an extension introduces a large amount of storage overhead to the server,
as well as a sizable computation overhead to the CSP and the client. Moreover, in the
map-version-based approach, the update operation is performed in an efficient way
that leads to fewer computational and communication costs. The MB-DMCPDP is also
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Fig. 6. Map-version table during different file operations.

efficient when there are many verifiers connected to the CSP, as the challenge-response
phase requires a lower computational time. Nevertheless, the main disadvantage of the
map-version table is that the required storage to keep the table is more than the MHT
directory.

Previous works on data auditing in the distributed scenario, such as Curtmola
et al. [2008b], Bowers et al. [2009a], Barsoum and Hasan [2010, 2011], and Zhu et al.
[2010], disclose the internal architecture of the system to the clients. The reason is
that clients must essentially preprocess the files as part of a scheme procedure that
entails a computation overhead commensurate with the number of existing servers.
Therefore, an excessive amount of computational burden is imposed on the client side.
Other than the aforementioned methodology, there is no way to check whether the CSP
actually stores the exact number of file copies as agreed on by the client. When the
client is aware of the internal architecture of the cloud, the CSP is unable to efficiently
improve the architecture without the need to inform the client. Etemad and Küpçü
[2013] proposed an extension of the DPDP [Erway et al. 2009], called DR-DPDP, that
tends to be transparent to the client to improve scalability, availability, load balancing,
and fault tolerance in RDA schemes. Such a transparency permits the CSP to flexibly
manage servers and still be able to prove the possession over the outsourced files to
the client. From the client’s perception, only a single server exists. Consequently, the
clients only need to follow the same DPDP protocol. Moreover, the clients are ensured
that at least one intact copy of the files is always stored in the cloud.

Similar to the C-PDP scheme [Yan et al. 2012], in the architecture of the DR-DPDP,
one of the servers is considered as a logical entity, called the organizer, who is in charge
of connecting servers to the clients. The servers are only able to communicate with
the organizer, and there is no internal communication among the servers. The central
idea behind such an architecture is to break a large authenticated skip list into several
smaller sublists. The top sublist is provided to the organizer, and the other low-level
parts are stored by the other servers, which causes improvement in the scalability.
Each sublist may also be copied to more than one server to enhance availability and
reliability.
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Table I. Comparison of the Replication-Based RDA Methods

Methods Objectives Drawbacks
MR-PDP
[Curtmola
et al. 2008b]

Extends the PDP scheme to
generate multiple replicas for
distributed servers without
encoding each replica separately

Costly dynamic update
Incurs unnecessary overhead on
the clients due to performing
pre-computation step

EMC-PDP
Barsoum and
Hasan 2010]

a. Supports the dynamic auditing;
b. Resilient against colluding
servers attack; c. Less storage
overhead than MR-PDP scheme

a. Costly dynamic update; b. Each
verification needs the whole file to be
transmitted; c. The client needs to
perform precomputation based on
the number of servers/replicas

TB-DMCPDP
[Barsoum
and Hasan
2011]

Supports the dynamic auditing by
using a type of MHT tree

a. More storage and communication
overhead than MB-DMCPDP; b.
Cloud needs to store MHT for each
file, which affects system
performance

MB-DMCPDP
[Barsoum
and Hasan
2010]

Reduces the storage and
computation overhead on client
side and server side by introducing
a map-version table structure

The clients need to perform
precomputation based on the
number of servers/replicas that incur
unnecessary overhead on them

DMR-PDP
[Mukundan
et al. 2012]

Introduction of efficient dynamic
data update

The performance of system is clear

C-PDP [Yan
et al. 2012]

a. Supports the batch auditing for
auditing multiple clouds; b.
Supports the dynamic data
auditing

Its performance depends on existing
trusted server as organizer

DR-DPDP
[Etemad and
Küpçü 2013]

a. Hides the internal architecture
of the system from clients; b.
Ensures that the CSP stores the
right number of replicas

a. Only provides a probabilistic
proof of possession; b. Lacks
flexibility on dynamic data updates

In the course of the upload phase, the client must divide the input file into n blocks
and generate a unique tag for each of the blocks before transmitting the data to the
organizer. When the file is received, the organizer splits the file in some partitions
and sends them to an agreed-upon number of servers. Each server then constructs the
corresponding part of the rank-based authenticated skip list and returns the root value
as a response to the organizer. In the last step of the uploading phase, the organizer
rebuilds a rank-based authenticated skip list and returns the root value to the auditor.
In general, all of the algorithms in the DR-DPDP scheme include three steps: (1) Find
the root sublist that contains the requested block. The organizer is responsible for
searching the skip list to find the server that stores the blocks. (2) Send the command
to the servers. All commands must be sent to the servers through the organizer and
the server executes the operations in parallel. (3) Construct the result. Once all of the
servers send the partial results to the organizer, the received results are compiled and
the authenticated skip list is updated.

Table I compares the replication-based RDA methods.

4.2. Erasure-Coding-Based Remote Data Auditing

The Maximum Distance Separable (MDS) code is a form of data-repairing technique
that is used to achieve a reliable distributed storage system. In the MDS code, a given
file f of k blocks must be encoded into n blocks, as the original file is retrievable from
any k blocks out of the n blocks. The erasure code technique is constructed on the basis
of the MDS code and compared to replication, which provides more reliability for the
same redundancy [Weatherspoon and Kubiatowicz 2002; Changho and Ramchandran
2010; Mingqiang and Jiwu 2010].
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Fig. 7. Erasure-coding-based distributed storage system.

When a client detects that a block of file is corrupted, he or she is able to utilize the
remaining intact blocks to recompute the codes of the corrupted block. Therefore, the
storage overhead across n servers within the erasure code technique is equal to n×| f |/k.
This is due to the fact that to recover the corrupted coded block, only k servers are
sufficient. However, compared to the replication-based technique, the communication
overhead of such a method is higher because the client wants the entire file to be
reconstructed by downloading at least k blocks to create a new block. Therefore, an
erasure-coding-based solution for data recovery requires that at least k out of the n
coded blocks remain intact. The remainder of this section reviews several erasure-
coding-based data auditing techniques. Figure 7 indicates an erasure-coding-based
distributed storage system in which the original input file that includes three blocks
(b[1], b[2], b[3]) is encrypted using the (3:2) erasure code. Each of the codes is stored in
a server so that the lost data can be recovered from two of the intact servers.

Bowers et al. [2009a] were the first to propose an erasure-coding-based remote data
auditing for distributed storage systems, called the High-Availability and Integrity
Layer (HAIL). The HAIL is designed based on the Test-and-Redistribute (TAR) strat-
egy, in which the DO detects the file corruption using the Proofs of Retrievability (POR)
scheme [Juels and Kaliski 2007] in each of the servers and proceeds to reallocate the
resources when necessary. When a fault is detected in a server, the client recovers
the corrupted block based on the erasure coding. The HAIL relies on three fundamen-
tal coding constructions: (1) Dispersal code: Instead of replicating files across servers,
each file is distributed through the erasure code technique. The main idea behind the
dispersal coding is to implement a new cryptosystem based on the universal hash
functions (UHFs), pseudo-random function, and error-correcting code to achieve an
error-correcting code and corruption-resilient Message Authentication Code (MAC) at
the same time. (2) Server code: When the data blocks are received by the servers, the
blocks need to be encoded with an error-correcting code to protect the blocks against
low-level corruption, if the integrity checks fail. (3) Aggregation code: By using such
a code, the responses from all of the servers to the received challenge including the
multiple MACs are combined into a single composite MAC.

Figure 8 shows the dispersal coding technique in the HAIL scheme. To distribute a
file of k data blocks across n servers (n > k), the client first encrypts the data blocks and
spreads the blocks across k servers (S1, S2 , . . . , Sk). Upon receiving the data blocks,
each of the blocks is encrypted using the server code with an error rate εc to generate the
parity codes for each server. Thereafter, the dispersal code is carried out on the servers
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Fig. 8. Encoding of the original file and outsourcing to the servers in HAIL scheme.

to generate the parity blocks on the rest of the servers (Sk+1, Sk+2, . . . , Sn). Finally, the
MAC of each of the matrix rows is computed using the client’s shared secret key and
embedded in the parity blocks of the dispersal code to overcome a creeping-corruption
attack in which any entity has the capability to verify the integrity of the outsourced
data [Schwarz and Miller 2006].

Wang et al. [2012] devised a flexible and lightweight auditing scheme, named the
Secure Distributed Storage (SDS), based on the Homomorphic Token [Sadeghi et al.
2010] and the Reed-Solomon erasure-correcting code [Plank and Ding 2005], to guar-
antee the data integrity and availability in an erasure code distributed storage system.
Unlike previous works that merely determine whether the file has been tampered with,
the SDS supports error localization techniques to determine the location of the errors
when data corruption is detected. Such an ability is of great importance because it
helps in recovering from the data errors and protects against the potential external
attacks. The SDS scheme builds on the following four main components:

(1) Data Dispersal: To distribute the original file across n = m+ k servers, the file needs
to be divided into m blocks and encrypted by the (m, k) Reed-Solomon erasure code
to extend the k parity blocks to the original file in such a way that the original
file is retrievable from any m out of the m + k data and parity blocks. As a result,
by dispersing m + k data blocks that are developed from a Vandermonde matrix
[Plank and Ding 2005], over different servers, the original file has k blocks fault
tolerance with the storage overhead k/m.

(2) Token Precomputation: Before distributing the file in the servers, a certain number
of tokens must be generated based on a random subset of data blocks. Therefore,
the client randomly selects r sectors ({Ik}r

k=1) of the jth block of the extended client’s
file G by using pseudo-random permutation with Kchal as a key and generates r
coefficients {αk}r

k=1 by pseudo-random function with Kcoe as a key, to calculate the
linear combination of the data block as a verification token of the block j:

ν j =
r∑

k=1

αk
i Gj[Ik], (4)
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where ν j indicates the verification token of the block j and Gj[Ik] is the Ik sector of
the jth block of the extended client’s file G. The DO must also blind the verification
tokens to protect the data privacy before sending the tokens to the server.

(3) Error Localization: The objective of this component is to identify malicious servers.
To achieve this goal, the client is only required to reveal the {αk}r

k=1and the pseudo-
random permutation key Kchal to all of the servers and asks them to compute the
linear combination of the certain block by using Equation (4). Upon receiving the
tokens from all of the servers, the client removes the blind value and verifies it by
using his or her stored secret matrix. As a result, the client is able to determine
the file block corruptions.

(4) Dynamic Update: The SDS scheme permits the data owners to perform dynamic
update operations on the outsourced data blocks, such as updates, deletes, appends,
and inserts. The client only needs to prepare a matrix including changed blocks
� f , in which unchanged blocks are shown by the zero value. The client updates
the verification tokens of the changed blocks on the basis of homomorphic tokens
without retrieving other blocks. Therefore, the user blinds the data blocks and
sends them to the servers along with the updated verification tokens.

4.3. Network-Coding-Based Remote Data Auditing

Reliable data storage can be achieved using distributed storage systems for an extended
period of time. This is because peer-to-peer networks and modern data centers are
usually deployed in unreliable environments, and such systems must support data
redundancy to augment reliability against data failures. As previously mentioned in
Section 3.1, replication is the simplest way to achieve such a goal, while the erasure
coding provides better storage efficiency and orders of magnitude higher reliability than
the replication technique for the same redundancy [Weatherspoon and Kubiatowicz
2002]. However, the main disadvantage of the erasure-coding-based solution is the
communication overhead for the repair component.

Network coding (NC) is a critical technique that has the capability to overcome
the communication overhead during the repair process. This is because when a data
block is lost due to server failures, a new data block is created on the basis of a
linear combination of the stored data blocks across the intact servers during the repair
process [Dimakis et al. 2010, 2011]. For example, given an input file including m
blocks (F = b[1], b[2], . . . , b[m]), the network coding of the original file as a linear
combination of the data blocks is generated on the basis of a coding coefficient vector
of m random value (v1, v2, . . . , vm):

NC =
m∑

i=1

vib[i]. (5)

These code blocks have the same size as an original file and are divided into m blocks.
Similar to the erasure coding, the client stores the m code blocks across n servers
redundantly, so that the DO has the capability to retrieve a file from any k servers.
Figure 9 shows a network-coding-based distributed storage system for the original file
including three blocks (b[1], b[2], b[3]). When data corruption is detected on Server 3,
both Server 1 and Server 2, as intact servers, are selected to generate two linear com-
binations of the server’s blocks. The coefficient values used for the linear combinations
are represented by the arrows.

There are some challenges and difficulties that must be overcome when the network-
coding-based RDA methods are used to validate the integrity and correctness of the
outsourced files in distributed storage systems: (1) Error localization: After detecting
the file corruption in distributed storage systems, the client must distinguish the faulty
servers from intact servers to restore the faulty servers. (2) Loss of a fixed layout of the

ACM Computing Surveys, Vol. 47, No. 4, Article 65, Publication date: May 2015.



65:18 M. Sookhak et al.

Fig. 9. Network-coding-based distributed storage system.

file: Unlike the erasure-coding-based storage, the network-coding-based storages can
have various layouts because they create a new code block during the repair process.
This variety of layout makes auditing the code block more challenging. (3) Reply attack:
Here, the adversary reuses old coded blocks to decrease the redundancy on the storage
servers until the client is unable to recover the original file. (4) Pollution attack: In this
attack, the server is able to offer a correct message as a proof in the challenge step,
while the corrupted data are used to generate a new block during the repair process.
Consequently, the auditor must check the integrity of the new block without having
access to the original blocks [Zhang et al. 2012; Oliveira et al. 2012].

Chen et al. [2010] proposed a holistic approach for remote data auditing in the
network-coding-based storage systems (RDC-NC) by extending the single-server data
auditing methods, such as PDP [Ateniese et al. 2007] and POR [Juels and Kaliski
2007], to validate the integrity of the stored blocks on each server. The first difficulty in
implementing the RDC-NC scheme is to prevent the pollution attack and ensure that
the data blocks are stored in the predetermined servers on the basis of the contract.
The authors addressed the pollution attack by attaching the block index to the tag of
the block. The next difficulty is to provide a fixed file layout when the client recovers
new coded blocks from the intact servers in the repair process. The core idea behind the
RDC-NC method to address the issue and preserve the storage in stable condition is to
allocate logical identifiers to the coded data blocks outsourced on each of the servers.
These identifiers are presented in the form of Si.bj , where Si is the server number and
bjis the index of the block stored in the considering server. For instance, the identifier
i. j indicates that block j is stored on server i. Therefore, if server i fails, then the
client must compute new code blocks to store them on a new server with the same
identifier (i. j). On the other hand, the logical identifiers also need to be attached to
the verification tags of every single coded block. As a result, during the challenge step,
the server is able to regenerate the logical identifiers i. j.

However, applying logical identifiers allows the malicious servers to pass the chal-
lenge step successfully by using old coded blocks with the identical logical identifier,
known as the reply attack [Chen et al. 2010]. To overcome this issue, the client must en-
crypt the coefficients of the coding instead of storing them in plain text at the servers.
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Therefore, even though the adversaries succeed in corrupting the servers, they are
unable to obtain the original file to perform harmful replay attacks.

The NC-RDC scheme performs the verification by using two types of verification tags
in two different steps: (1) Challenge verification tags: In the challenge step, all of the
α-coded blocks in each of the n servers are checked to ensure that the servers actually
possess the blocks based on a spot-checking-based challenge in POR [Juels and Kaliski
2007] and PDP [Ateniese et al. 2011]. Each server utilizes the blocks itself and the
verification block to respond to the client’s challenge. A challenge tag for a segment
is actually responsible for binding the data segment in a coded block with a logical
identifier of the block and with the considering coefficient vector. (2) Repair verification
tags: If a defective server is detected in the repair step, the auditor retrieves a new
coded block from each of the l healthy servers. Thereafter, the client creates α new
coded blocks by combining the l received coded blocks and keeps the new blocks in a
new healthy server. Such tags are employed in the repair step to ensure that the correct
blocks and the coefficients are used to produce new coded blocks.

The main limitation of this method is that the verifier must download the remain-
ing intact nodes to check the integrity of the new coded blocks, which incurs heavy
bandwidth and computational overhead on the verifier’s side.

Anh and Markopoulou [2012] built upon an RDA method for network-coding-based
storage systems (NC-audit) on the basis of a homomorphic MAC scheme [Agrawal and
Boneh 2009] and a customized encryption scheme that takes advantage of random lin-
ear combinations. The homomorphic MAC cryptosystem is used to protect the scheme
against a pollution attack when the client and server have a shared secret key. This
cryptosystem contains three probabilistic polynomial-time algorithms: sign, combine,
and verify. The sign algorithm generates a tag for each of the source blocks, and then a
linear combination of MAC tags of the blocks is generated by the combined algorithm
using the homomorphic property. The server is able to validate the received tags and
eliminate all of the invalid tags using the verify algorithm. Due to the ability of ho-
momorphic MAC to aggregate blocks and tags, the auditor is capable of validating the
integrity of several data blocks at the same time with the communication and com-
putation overhead of a single block verification. To preserve the privacy of the blocks,
the authors exploit the Random Linear Encryption (Ncrypt) scheme, in which the data
blocks are masked with a randomly chosen vector so that the auditor has the capability
to verify the data blocks.

When a data failure occurs, the new block is generated in the new server based on
the linear combination of intact servers. To mitigate the communication and compu-
tation cost on the client side, the verification tag of the new data block is computed
by combining the verification tags of intact blocks. This releases the client from the
burden of generating a verification tag for the new data block. The data auditing in the
NC-audit scheme, including the setup, challenge, proof, and verify steps, is illustrated
in Figure 10.

Chen and Lee [2013] devised a Data Integrity Protection (DIP) method against data
corruption for network coding distributed cloud storage on the basis of Functional
Minimum-Storage Regenerating (FMSR) codes [Hu et al. 2012].

The FMSR code is an extended version of the Maximum Distance Separable (MDS)
codes that enables a client to reconstruct a specific piece of a part of data with size
less than (|F|. An (n, k)-FMSR code divides an original file into k(n− k) fragments and
randomly generates n(n − k) block codes using a linear combination of the fragments
where the size of the fragments and block codes are |F|/K(n − k) [Rabin 1989]. The
primary aim of the FMSR code is to reduce the number of reads from the intact servers
to rebuild the lost data that is known as repair traffic. When a server failure is detected,
the client needs to randomly select one block code from all of the n − 1 intact servers,
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Fig. 10. Network code remote data auditing scheme.

and then it generates the new block code based on the linear combinations of them.
For example, the experimental results in Hu et al. [2012] indicate that the FMSR code
reduces the rate of repair traffic to 50% for a large n, where k = n − 2.

The FMSR-DIP scheme consists of four operations: upload, check, download, and re-
pair operations: (1) Upload operation: The client encrypts the input file using the FMSR
code method to generate n(n− k) data block codes. Before the block codes are uploaded
to the servers, each of them must be encrypted with the FMSR-DIP codes. During
this encryption process, first, each of the block codes must be protected against data
corruption using the adversarial error-correcting code (AECC) [Bowers et al. 2009b].
After adding k bits parity to the block codes by using the AECC method, the block codes
are blended using the pseudo-random functions. Thereafter, the MAC of the first block
codes are computed to verify the integrity of the blocks. (2) Check operation: The client
randomly selects some rows of block codes at the server to check the integrity by error
detection in each row of the data blocks using the AECC method. (3) Download opera-
tion: When the clients want to download a file, k(n − k) FMSR-DIP block codes from
any k servers are selected to be verified on the basis of MAC. If the clients detect any
failure, then the AECC parities must be downloaded to recover the errors. (4) Repair
operation: When the number of failures is more than n − k, the client uses the FMSR
technique to generate the new block on the new server. Figure 11 shows how the client
is able to recover the blocks that are stored on the compromised server S4 with the
FMSR code.

The main limitation of the FMSR-DIP method is that it is only applicable to a thin-
cloud interface [Vrable et al. 2009] that only supports read and write operations.

Table II summarizes and provides a comparison of the erasure-coding-based and the
network-coding-based RDA methods.

5. TAXONOMY AND COMPARISON OF REMOTE DATA AUDITING METHODS

Figure 12 shows the thematic taxonomy of the RDA for the distributed storage systems
that is classified on the basis of Scheme Nature (SN), security pattern, objective func-
tions, auditing mode, update mode, cryptography model, and dynamic data structure.
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Fig. 11. Recovering data blocks in the (5,3) FMSR-DIP scheme.

Table II. Comparison of the Erasure-Coding-Based and Network-Coding-Based RDA Methods

Methods Objectives Drawbacks
HAIL [Bowers
et al. 2009a]

Extends POR scheme to manage the
integrity and availability across multiple
clouds

a. High computation overhead;
b. Cannot support data error
localization

SDS [Wang et al.
2012]

a. Supports dynamic auditing; b.
Resilient against Byzantine failure,
malicious data modification attack, and
even server colluding attacks; c.
Supports data error localizatio

Secure communication link
between clients and cloud

RDC-NC [Chen
et al. 2010]

a. Reduces significantly the
communication cost of the repair phase
by applying network-coding-based
approach compared to
erasure-coding-based methods; b.
Supports data error localization; c.
Resilient against pollution attacks

High bandwidth and
computational overhead on the
client during the repair process

NC-Audit [Anh and
Markopoulou 2012]

Reduces the computation overhead by
using the homomorphic MAC scheme

Secure communication link
between clients and cloud

FMSR-DIP [Chen
and Lee 2013]

Reduces the number of reads from the
intact servers to rebuild the lost data by
using FMSR code

a. Costly dynamic update; b.
Only applicable to thin-cloud
interface

The attribute of the SN indicates the various types of RDA techniques for distributed
servers that are categorized based on the type of data redundancy into replication-
based, erasure-coding-based, and network-coding-based methods. Replication is the
most straightforward way of data redundancy in distributed storage systems, in which
multiple copies of a file are outsourced in each server. A number of current RDA meth-
ods employ replication-based approaches [Curtmola et al. 2008b; Barsoum and Hasan
2010; Yan et al. 2012]. An erasure code approach encodes a file of k blocks into a larger
file with n blocks such that the whole system can tolerate up to k block failures and any
subset of the n blocks is sufficient to retrieve the original data blocks [Weatherspoon
and Kubiatowicz 2002]. Network-coding-based data auditing indicates storing a linear
combination of the original data blocks across various servers [Anh and Markopoulou
2012]. The security pattern attribute represents the cryptosystems that are used to
construct the RDA methods.

The characteristic of the security pattern determines the type of cipher used at the
cloud side or the client side to dynamically audit the stored data. The contemporary
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Fig. 12. Taxonomy of RDA techniques for the distributed cloud servers.

data storage security methods address the following security patterns for auditing
the outsourced data: (1) Symmetric key cryptography: In the symmetric encryption
scheme, the sender and receiver must establish a secure communication session based
on a shared key and also the same key is used to encrypt and decrypt the message.
(ii) The (n, k)-Reed-Solomon (RS) code is one of the most important encryption mech-
anisms to correct block-based error codes and is applicable in a wide range of digital
communications and storage domains. The RS code encrypts k blocks to n blocks by
adding d = n − k bits parity to the original file to enable the DO to correct up to �k/2�
symbols. (3) Homomorphic Encryption: Data encryption is an essential need to ensure
data is securely accessed within the cloud. The subsequent issue, however, is how to
efficiently perform calculation on the encrypted data to obtain identical results as when
calculations were performed on the unencrypted data and without having to decrypt
data. An encryption function (E(.)) is homomorphic if for any E(x) and E(y), E(x

⊗
y)

can be computable without decrypting x and y for an operation
⊗

:

∀x, y ∈ M, E(x ⊗ y) ← E(x) ⊗ E(y). (6)

In the distributed cloud server, the homomorphic encryption methods are divided
into five different categories: (1) RSA Homomorphic: Rivest et al. [1978] proposed the
first holomorphic encryption on the basis of the RSA scheme, which enables the client
to combine tags computed from different data blocks of the file into a single value. For
example, two messages (m1, m2) are encrypted based on multiplying the corresponding
ciphertexts as follows:

Ek(m1) = me
1modn

Ek(m2) = me
2modn

}
→ Ek(m1m2) = Ek(m1)Ek(m2), (7)

where (e, n) indicates the clients’ public key. (2) Paillier Homomorphic: The Paillier
cryptosystem is a type of homomorphic cryptosystem [Paillier 1999] based on the RSA
scheme in which the product of two ciphertexts (m1, m2) is calculated by

Ek(m1) = gm1rnmodn2

Ek(m2) = gm2rnmodn2

}
→ Ek(m1 + m2) = Ek(m1)Ek(m2), (8)
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Fig. 13. Merkle Hash Tree structure.

where (g, n) is the clients’ public key and r is a random number. (3) The Homomorphic
Verification Token (HVT) is a mechanism that can be used in distributed clouds to verify
the integrity and identify the errors by using the universal hash function [Carter and
Wegman 1979] and Reed-Solomon method [Plank and Ding 2005]. (4) Homomorphic
Linear Authentication (HLA) uses a linear sum of the discrete input blocks to produce
a distinct value as output. Since the HLA benefits from the comparatively small-sized
BLS signatures, it imposes less computation burden than HVT. (5) The Homomorphic
Verification Response (HVR) is a mechanism that can be used to verify the integrity
in distributed cloud storage by combining multiple responses from several clouds into
a single value. (6) The Homomorphic MAC cryptosystem is used to protect the scheme
against a pollution attack when the client and server have a shared secret key.

The attribute of the auditing mode shows who is responsible for verifying the out-
sourced data. In a private verification, the DO only has to verify the data integrity.
However, in a public verification mode, the DO is able to delegate the auditing task to
the TPA.

The attribute of the uploading mode indicates the type of data modification that
can be supported by the protocols. The current RDA techniques employ two different
strategies for updating the outsourced data blocks in the distributed cloud servers:
(1) In the static approach, the user must download the data and upload the modified
data on the cloud. This process imposes high communication and computation over-
heads on the cloud side and the device side. (2) In the dynamic uploading approach,
the user is capable of updating the stored data to the cloud by inserting, deleting, and
modifying a part of the file or appending to the file remotely rather than downloading
the entire file.

The dynamic data structure attribute indicates what the data structure is used for
in the scheme to support dynamic data update characteristics. This attribute includes
the following: (1) The rank-based skip list is an authentication model that enables the
client to efficiently perform the update, delete, and insert operations on the outsourced
data. Each of the nodes in this data structure is subject to store the following: (a) the
searching variables; (b) the data block’s homomorphic tag (T (b[i])); (c) the label of the
node; (d) rank of a node, which indicates the number of reachable leaf nodes from that
node; and (e) the level of the node. (2) The Hash Index Hierarchy (HIH) is a type of hash
function that is used to combine multiple hash responses into a single value. (3) The
Merkle Hash Tree (MHT) is a type of a binary tree structure often used for data integrity
verification. In MHT, the leaves are the hash values of the individual blocks, while the
remaining nodes are calculated on the basis of the hash value for a combination of
the two children nodes. Figure 13 shows an MHT data structure for a file including
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four data blocks. (4) The map-version table is a structure to verify the integrity of
outsourced data dynamically. The table includes three columns, Serial Number (SN),
Block Number (BN), and Version Number (VN), to store the physical location, the
logical location, and the number of updates for each block. (5) The EVENODD code is a
type of MDS code used to achieve reliable communication and dynamic load balancing
in distributed storage systems [Blaum et al. 1995].

The characteristic of the cryptographic model suggests a more common practice to
outline the cryptographic protocols, together with the following: (1) standard model: in
this model, the hash functions (SHA, MD5) are employed to ensure the overall security
of the method, and (2) random oracle model: this model substitutes the hash function
in the former model by a number of truly random functions. It should also be noted that
once a method that uses the random oracle model is found secure, the implementation
of such systems in the standard model is also secure [Canetti et al. 2004].

The attribute of the architecture indicates the cloud storage service architecture.
As previously mentioned in Section 3.1, there are three architectures for the RDA
approaches: multiservers, single cloud and multiservers, and multiclouds and mul-
tiservers. Table III represents the comparison summary of the RDA methods in the
distributed cloud servers based on the presented attributes in the taxonomy.

The RDA methods incur additional communication, computation, and storage costs
on the auditor and the prover because of performance of the challenge-response scheme.
Moreover, the mobile device has various constraints, such as battery lifetime, limited
CPU capacity, and insufficient storage. Therefore, it is necessary to compare the perfor-
mance of RDA methods based on the objective function attribute. The objective function
attribute involves crucial metrics that are used to analyze the performance and efficacy
of the data auditing schemes, such as the following: (1) the storage overhead designates
the amount of storage that clients or servers need to perform the auditing or repair-
ing task. (2) Computational cost: performing a data auditing technique introduces a
specific excessive amount of computation burden to the both the auditor and prover
according to the type of cryptographic algorithm used. Generating the challenge mes-
sage and verifying the correctness of the received proof message are the processes that
require the client’s computational resources. On the other hand, the main processes in
servers are the update step and calculation of a proof for a file block. (3) The communi-
cation complexity is correlated with the size of the packet that is exchanged between
the client and server during the auditing or repairing step including the challenge
message and the proof message. Attribute-based critical comparison of the efficiency
between a number of RDA protocols is displayed in Table IV, where n is the number of
blocks that each file contains, s is the number of sectors in each block, m refers to the
number of symbols within a block, | f | stands for the size of file, t shows the number of
blocks that are going to change, and c is the number of cloud providers in a multicloud
architecture.

Moreover, the performance analysis of replication-based RDA methods, such as
Curtmola et al. [2008b] and Barsoum and Hasan [2010, 2011], are tabulated on the
basis of several parameters, such as (1) the computational cost to generate the replica-
tions, tags, and metadata before the uploading data block to the servers; (2) client and
server storage overhead; (3) communication cost to send the challenge and response
message by the client and servers; (4) computation cost to generate the proof by the
server and to verify the proof by the client; and (5) the computation and computation
cost to support the dynamic data update. Table V shows the storage, communication,
and computation costs of the replication-based schemes, where h is cryptographic hash-
ing, HG is hashing to G, R is a random number, D is division in group G, Dz indicates
division in group Z, E shows exponentiation in G, MG is multiplication in G, MZ is
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Table III. Comparison of Remote Data Auditing Protocols for Distributed Cloud Servers Based on the Basic
Parameters of Taxonomy

Security Cryptography Update Dynamic Auditing
SN Protocols Pattern Model Mode Structure Mode Architecture

MR-PDP
[Curtmola
et al. 2008a]

RSA
Homomorphic

Multiservers

EMC-PDP
[Barsoum
and Hasan
2010]

HLA-Based
BLS Signature

Static Support Public

DMR-PDP
[Mukundan
et al. 2012]

Paillier
Homomorphic,
BLS Signature

Dynamic Merkle Hash
Tree

Private
Single

Cloud and
Multiservers

C-PDP [Yan
et al. 2012]

Homomorphic
Verification
Response

Random Oracle

Static Index-Hash
Hierarchy

Public Multiclouds
and
Multiservers

DR-DPDP
[Etemad and
Küpçü 2013]

RSA-Based
HVT

Standard Rank-Based
Skip List

Private

R
ep

li
ca

ti
on

-b
as

ed

TB-DMCPDP
[109]

HLA-Based
BLS Signature

Merkle Hash
Tree

MB-
DMCPDP
[Schwarz and
Miller 2006]

HLA-Based
BLS Signature

Random Oracle

Dynamic

Map-Version
Table

Public

HAIL [108] RS Codes,
Universal
Hash Function
(UHF)

Standard Static Not
Supported

Private

E
ra

su
re

C
od

in
g-

ba
se

d

SDS [Wang
et al. 2012]

Homomorphic
Verification
Token

Dynamic Linear
Property of
Reed-
Solomon
Code,
Verification
Token
Construction

Public

Single
Cloud and
Multiservers

RDC-NC
[Chen et al.
2010]

Homomorphic
Linear
Authenticators
(HLAs)

Static Not Support Private

NC-Audit
[Anh and
Markopoulou
2012]

Homomorphic
MAC

Dynamic EVENODD
Code

Public

N
et

w
or

k
C

od
in

g-
ba

se
d

FMSR-DIP
[Chen and
Lee 2013]

Symmetric
Encryption,
Message
Authentication
Code (MAC)

Random Oracle

Static Not
Supported

Private
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Table IV. Efficiency Comparison Between Remote Data Auditing Protocols for Distributed Cloud Servers

Client Storage Server Client Communication
Overhead Storage Computation Server Complexity

Protocols Auditing Repairing (Repairing Mode) (Auditing Mode) Computation Auditing Repairing
C-PDP [Yan
et al. 2012]

– – – O (t + s) O (t + cs) O (s) –

NC-Audit
[Anh and
Markopoulou
2012]

O (cns) O (cns) – – – –

RDC-NC
[Chen et al.
2010]

O (1) O (cns) O
(

2c| f |
n+1

)
– O (1) – O

(
2| f |
n+1

)

DR-DPDP
[Etemad and
Küpçü 2013]

O (1) – – – O (1 + logn )

MR-PDP
[Curtmola
et al. 2008b]

– – O (c| f |) – O (1) – O (| f |)

HAIL
[Bowers et al.
2009a]

– – O
(

c| f |
n+1

)
O (1) – O (| f |)

multiplication in Z, AZ is addition in Z, P is bilinear pairing, and EK shows encryption
using K.

6. OPEN ISSUES FOR DISTRIBUTED-BASED REMOTE DATA AUDITING TECHNIQUES

The section represents a number of salient challenges in leveraging and applying the
RDA techniques for distributed cloud servers and presents some open issues that serve
as a platform for future research works.

6.1. Dynamic Data Update

Supporting dynamic data updates is an important characteristic of RDA methods both
for single and distributed cloud servers, since many common applications such as online
word processing intrinsically deal with a dynamic form of data or are involved with
dynamic log files. During the update operations, such as modify, delete, insert, and
opened in static mode, the clients must completely download the outsourced data from
the cloud and upload it after performing the corresponding operations [Chen et al.
2013]. If the auditing method supports the dynamic data update, then the client only
needs to download the number of blocks that are to be updated. As a result, such a
feature reduces the computation and communication overhead of updating data on the
client and servers.

Among various types of distributed-based remote data auditing approaches, such
as replication based, erasure coding based, and network coding based, most of the
methods belong to the replication-based category. However, the network-coding-based
approaches can be more efficient than the other types because of their specific features.
Although it is imperative to implement a dynamic data auditing for NC-based dis-
tributed servers, this has received less attention by the researchers due to its complex
nature.

6.2. Batch Auditing

The batch auditing feature enables TPA to process multiple auditing tasks received
from different users at the same time rather than performing each of the tasks sepa-
rately. In other words, the batch auditing property utilizes the linear sum of the random
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Table V. Storage, Communication, and Computation Costs for Replication-Based Remote Data Auditing
Protocols for Distributed Cloud Servers

����������
Cost

Protocols
MR-PDP

[Curtmola et al.
2008b]

EMC-PDP
[Barsoum
and Hasan

2010]

TB-DMCPDP
[Barsoum and
Hasan 2011]

MB-DMCPDP
[Barsoum and
Hasan 2011]

P
re

co
m

pu
ta

ti
on

C
os

t

Generating
Replica-
tions

Ek + nmR + nmAz – – –

Generating
Tags

2nmεZ∗
n + nmMG +

nmHG

2nmεG +
nmMG +
nmHG

(s + 1) nmεG +
mnHG + (sn + n −
1)mMG

(s + 1) nmεG +
mnHG + (sn +
n − 1)mMG

Generating
Metadata

– – mnHG + (2m+ 1)nh –

File Copies n| f | n| f | n| f | n| f |
Server
Overhead

1024m bits – (257 + 512n)m bits 257m bits

S
to

ra
ge

C
os

t

Client
Overhead

– – 256 bits 64m bits

Challenge 1280 + log2(c) bits 256 +
log2(c) bits

256 + log2(c) bits 256 + log2(c) bits

C
om

m
.

C
os

t

Response 1024(n + 1) bits 160(n +
1) bits

257 + 256sn +
(256 log2(m) +
257)cn bits

257 + 256sn bits

Proof (c + n) εZ∗
n + (cn +

c − 1)MZ + (c −
1)nAz

cεG + c(n +
1)MZ + cnAz

c εG + (c − 1) MG +
csnMZ + (c −
1)snAz + cnHG

c εG +
(c − 1) MG +
csnMZ + (c −
1)snAz

C
om

pu
ta

ti
on

C
os

t

Verify (2n + c + 1) εZ∗
n +

(cn + c + n) MZ +
cnAz + cHG + 1DZ

2P +
(c + 2) εG +
(c + 1) MG +
nAz + cHG

(
clog2 (m) + 2

)
nh+

2P + (c + s) εG +
cnHG +
(cn + s − 1) MG +
s (n − 1) Az

2P +
(c + s + 1) εG +
cHG + (c + s −
1)MG +s(n− 1)Az

Comm. – – “Request” +
O(n log2(m))

“Request”

D
yn

am
ic

O
pe

r-
at

io
n

s
C

os
t

State
update

– – O(n log2(m)) h –

blocks to shorten the proof message and thus mitigate the corresponding communica-
tion overhead [Wang et al. 2011]. Due to the redundancy characteristic of the RDA
algorithms, addressing batch auditing in the distributed storage systems is more chal-
lenging. Only a few existing RDA methods [Yan et al. 2012] focus on the batch auditing
issue in the distributed storage systems. A simple way to achieve such a goal is to use
a bilinear aggregate signature [Boneh et al. 2003] to combine the proof messages into
a single and unique signature that can be verified by the auditor.

6.3. Privacy Preserving

When DOs outsource data to the remote cloud or delegate the auditing task to the
trusted third party, it is important for them that the auditors or cloud not be given
the opportunity to gain knowledge of the data content or be able to make a copy of the
original data [Wang et al. 2013]. That is to say that, most of the data auditing methods
for the distributed cloud servers usually assume that the TPA is a trustworthy agent,
though such an illogical assumption further leads to data leakage. Randomization of
data blocks and tags is a common method to address the privacy issue to prevent tag
or data leakage during the entire verification phase.
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6.4. Data Deduplication

Data deduplication basically removes duplicate data copies in order to facilitate a cost-
effective storage. It is a kind of data compression technique (as a single-instance data
storage) that is employed to avoid data redundancy [Mandagere et al. 2008; Meyer
and Bolosky 2012]. There is no inconsistency between duplication and the distributed
storage system because the technique has to identify a common byte set inside or
among files to allow single-instance storage of each fragment in each of the servers
on the basis of the replication-based, erasure-coding-based, or network-coding-based
approaches.

6.5. Large-Scale Data Auditing

We live in the area of large-scale data where billions of files and petabytes of data are
stored in the distributed data storage. Around 2.5 quintillion bytes of data are created
every day by Sakr et al. [2013]. By increasing the size of data, the RDA protocols incur
communication, storage, and computation costs on both the auditor side and the prover
side.

On the other hand, there are many big data applications that employ the cloud
to store a huge amount of data with small size, such as Twitter. Although the users
of Twitter are only able to write less than 144 characters, they can generate up to
12 terabytes of data per day and update the data very frequently [Liu et al. 2013; Naone
2010]. The problem of big data auditing worsens in the case of dynamic data updates,
in which the DO modifies a single bit of the outsourced data. This is because of the
type of data structure that is used to support the dynamic data update. For example,
after performing an update operation, the MHT must be kept balanced. Therefore,
large-scale data auditing with the aim of minimizing computation, communication,
and storage overhead is primarily an open issue.

7. CONCLUSIONS

In this article, we have discussed, characterized, and categorized a wide range of re-
search areas relevant to the RDA techniques for distributed cloud servers. We began
by explaining the concept of cloud computing and distributed storage systems and dis-
cussing the RDA technique to protect the outsourced data in geographically distributed,
heterogeneous, and untrusted cloud servers. Moreover, we focused on the architecture
of the distributed-based remote data auditing techniques and the fundamental dif-
ferences between distributed and single auditing approaches. Our research presented
an extensive survey on the security of data storage in distributed servers. The article
also reported a parametric thematic taxonomy with the aim of classifying the common
methods and highlighting the differences and similarities for the comparison of the
RDA for the distributed storage systems.

The state-of-the-art RDA techniques were compared for multiple cloud servers to
classify them according to the presented taxonomy. We also highlighted the issues
and the challenges relating to the security requirements in order to offer an efficient
and lightweight security mechanism. Moreover, we critically examined the methods
to discover some of the advantages and disadvantages, the significance, and the re-
quirements and identified the research gap in the architecture. The article also depicts
some of the important trends for researchers around the globe in this domain. Further-
more, numerous open challenges, particularly, dynamic data update, privacy preserv-
ing, batch auditing, and data deduplication, were introduced as prominent upcoming
research challenges for further investigation.
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Alptekin Küpçü. 2010. Efficient Cryptography for the Next Generation Secure Cloud. Thesis. Retrieved from
home.ku.edu.tr/∼akupcu/papers/kupcu-phd.pdf.

Chang Liu, Jinjun Chen, Laurence T. Yang, Xuyun Zhang, Chi Yang, Rajiv Ranjan, and Ramamohanarao
Kotagiri. 2013. Authorized public auditing of dynamic big data storage on cloud with efficient verifiable
fine-grained updates. IEEE Transactions on Parallel and Distributed Systems 99 (2013), 1–1.

Satyanarayanan Mahadev. 1990. Scalable, secure, and highly available distributed file access. Computer 23,
5 (1990), 9–18. DOI:http://dx.doi.org/10.1109/2.53351

Nagapramod Mandagere, Pin Zhou, Mark A Smith, and Sandeep Uttamchandani. 2008. Demystifying data
deduplication. In Proceedings of the ACM/IFIP/USENIX Middleware’08 Conference Companion. Leu-
ven, Belgium, 12–17.

Petros Maniatis, Mema Roussopoulos, T. J. Giuli, David S. H. Rosenthal, and Mary Baker. 2005. The LOCKSS
peer-to-peer digital preservation system. ACM Transactions on Computer Systems 23, 1 (2005), 2–50.
DOI:http://dx.doi.org/10.1145/1047915.1047917

Peter Mell and Timothy Grance. 2011. The NIST definition of cloud computing (draft). NIST Special Publi-
cation 800 (2011), 145.

R. C. Merkle. 1980. Protocols for public key cryptosystems. In IEEE Symposium on Security and Privacy.
Oakland, CA, USA, 122–134.

ACM Computing Surveys, Vol. 47, No. 4, Article 65, Publication date: May 2015.

http://status.aws.amazon.com/s3-20080720.html
http://status.aws.amazon.com/s3-20080720.html
http://home.ku.edu.tr/sim;akupcu/papers/kupcu-phd.pdf
http://dx.doi.org/10.1109/2.53351
http://dx.doi.org/10.1145/1047915.1047917


65:32 M. Sookhak et al.

Dutch T. Meyer and William J. Bolosky. 2012. A study of practical deduplication. Transactions on Storage 7,
4 (2012), 1–20. DOI:http://dx.doi.org/10.1145/2078861.2078864

Rich Miller. 2010. Amazon Addresses EC2 Power Outages. Retrieved from http://www.datacenterknowledge.
com/archives/2010/05/10/amazon-addresses-ec2-power-outages/.

Li Mingqiang and Shu Jiwu. 2010. DACO: A high-performance disk architecture designed specially for
large-scale erasure-coded storage systems. IEEE Transations on Computers 59, 10 (2010), 1350–1362.

Raghul Mukundan, Sanjay Madria, Mark Linderman, and N. Y. Rome. 2012. Replicated data integrity
verification in cloud. Bulletin of the Technical Committee on Data Engineering (2012), 55–65.

Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and Benjie Chen. 2002. Ivy: A read/write peer-to-
peer file system. SIGOPS Operating Systems Review 36, SI (2002), 31–44.

Erica Naone. 2010. What Twitter Learns from All Those Tweets. Retrieved from http://www.technology
review.com/view/420968/what-twitter-learns-from-all-those-tweets/.

Paulo F. Oliveira, Luı́sa Lima, Tiago T. V. Vinhoza, João Barros, and Muriel Médard. 2012. Coding for trusted
storage in untrusted networks. IEEE Transactions on Information Forensics and Security 7, 6 (2012),
1890–1899.

Andrew Oram. 2001. Peer-to-Peer: Harnessing the Benefits of a Disruptive Technologies. O’Reilly Media, CA.
Ivan Osipkov, Peng Wang, Nicholas Hopper, and Yongdae Kim. 2006. Robust accounting in decentralized

P2P storage systems. In IEEE International Conference on Distributed Computing Systems. 14–14.
Pascal Paillier. 1999. Public-key cryptosystems based on composite degree residuosity classes. In Proceedings

of the International Conference on the Theory and Application of Cryptographic Techniques. Lecture Notes
in Computer Science, Vol. 1592. Springer, 223–238.

James S. Plank. 2005. T1: erasure codes for storage applications. In Proceedings of the 4th USENIX Confer-
ence on File and Storage Technologies. San Francisco, 1–74.

James S. Plank and Ying Ding. 2005. Note: Correction to the 1997 tutorial on Reed-Solomon coding. Software:
Practice and Experience 35, 2 (2005), 189–194. DOI:http://dx.doi.org/10.1002/spe.631

Michael O. Rabin. 1989. Efficient dispersal of information for security, load balancing, and fault tolerance.
Journal of the ACM 36, 2 (1989), 335–348.

Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. 1978. On data banks and privacy homomorphisms.
Foundations of Secure Computation 32, 4 (1978), 169–178.

Chunming Rong, Son T. Nguyen, and Martin Gilje Jaatun. 2013. Beyond lightning: A survey on security
challenges in cloud computing. Computers & Electrical Engineering 39, 1 (2013), 47–54.

Robert B. Ross and Rajeev Thakur. 2000. PVFS: A parallel file system for Linux clusters. In Proceedings of
the 4th Annual Linux Showcase and Conference. USENIX Association, 391–430.

Ahmad-Reza Sadeghi, Thomas Schneider, and Marcel Winandy. 2010. Token-Based Cloud Computing. Lec-
ture Notes in Computer Science, Vol. 6101. Springer, Book section 30, 417–429.

Sherif Sakr, Anna Liu, and Ayman G. Fayoumi. 2013. The family of Mapreduce and large-scale data process-
ing systems. ACM Computer Surveys 46, 1 (2013), 1–44.

Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon. 1985. Design and im-
plementation of the Sun network filesystem. In Proceedings of the Summer USENIX Conference.
119–130.

Frank B. Schmuck and Roger L. Haskin. 2002. GPFS: A shared-disk file system for large computing clusters.
In Proceedings of the 1st Conference on File and Storage Technologies (FAST’02), Vol. 2. 19.

Mathew J. Schwartz. 2012. 6 Worst Data Breaches of 2011. Retrieved from http://www.informationweek.
com/news/security/attacks/232301079.

S. J. Thomas Schwarz and Ethan L. Miller. 2006. Store, forget, and check: Using algebraic signatures to check
remotely administered storage. In Proceedings of the 26th IEEE International Conference on Distributed
Computing Systems. 12–12.

Hovav Shacham and Brent Waters. 2008. Compact Proofs of Retrievability. Lecture Notes in Computer
Science, Vol. 5350. Springer, Book section 7, 90–107.

Elaine Shi, Emil Stefanov, and Charalampos Papamanthou. 2013. Practical dynamic proofs of retrievability.
In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security. ACM,
325–336.

Y. Shin, J. Hur, and K. Kim. 2012. Security weakness in the proof of storage with deduplication. IACR
Cryptology ePrint Archive (2012), 554. http://eprint.iacr.org.

Sandeep K. Sood. 2012. A combined approach to ensure data security in cloud computing. Journal of Network
and Computer Applications 35, 6 (2012), 1831–1838.

ACM Computing Surveys, Vol. 47, No. 4, Article 65, Publication date: May 2015.

http://dx.doi.org/10.1145/2078861.2078864
http://www.datacenterknowledge.com/archives/2010/05/10/amazon-addresses-e c2-power-outages
http://www.datacenterknowledge.com/archives/2010/05/10/amazon-addresses-e c2-power-outages
http://www.technologyreview.com/view/420968/what-twitter-learns-from-all-those-tweets/
http://www.technologyreview.com/view/420968/what-twitter-learns-from-all-those-tweets/
http://dx.doi.org/10.1002/spe.631
http://www.informationweek.com/news/security/attacks/232301079
http://www.informationweek.com/news/security/attacks/232301079
http://eprint.iacr.org.


Remote Data Auditing in Cloud Computing Environments 65:33

Mehdi Sookhak, Adnan Akhunzada, Abdullah Gani, Muhammad Khurram Khan, and Nor Badrul Anuar.
2014a. Towards dynamic remote data auditing in computational clouds. Scientific World Journal 2014
(2014), 12. DOI:http://dx.doi.org/10.1155/2014/269357

Mehdi Sookhak, Hamid Talebian, Ejaz Ahmed, Abdullah Gani, and Muhammad Khurram Khan. 2014b. A
review on remote data auditing in single cloud server: Taxonomy and open issues. Journal of Network
and Computer Applications 43 (2014), 121–141. DOI:http://dx.doi.org/10.1016/j.jnca.2014.04.011

Emil Stefanov, Marten van Dijk, Ari Juels, and Alina Oprea. 2012. Iris: A scalable cloud file system with
efficient integrity checks. In Proceedings of the 28th Annual Computer Security Applications Conference.
ACM, 229–238.

Darlene Storm. 2011. Epsilon Breach: Hack of the Century? Retrieved from http://blogs.computerworld.
com/18079/epsilon_breach_hack_of_the_century.

S. Subashini and V. Kavitha. 2011. A survey on security issues in service delivery models of cloud
computing. Journal of Network and Computer Applications 34, 1 (2011), 1–11. DOI:http://dx.doi.org/
10.1016/j.jnca.2010.07.006

Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee. 1997. Frangipani: A scalable distributed
file system. SIGOPS Operating Systems Review 31, 5 (1997), 224–237.

Kurt Tutschku. 2004. A Measurement-Based Traffic Profile of the eDonkey Filesharing Service. Lecture
Notes in Computer Science, Vol. 3015. Springer, Book section 2, 12–21. DOI:http://dx.doi.org/10.1007/
978-3-540-24668-8_2

Luism Vaquero, Luis Rodero-Merino, and Daniel Morán. 2011. Locking the sky: A survey on IaaS cloud
security. Computing 91, 1 (2011), 93–118.

Sudharshan S. Vazhkudai, Xiaosong Ma, Vincent W. Freeh, Jonathan W. Strickland, Nandan Tammineedi,
and Stephen L. Scott. 2005. FreeLoader: Scavenging desktop storage resources for scientific data. In
Proceedings of the ACM/IEEE Supercomputing Conference. Washington, DC, USA, 56–56.

Srikumar Venugopal, Rajkumar Buyya, and Kotagiri Ramamohanarao. 2006. A taxonomy of data grids for
distributed data sharing, management, and processing. ACM Computer Surveys 38, 1 (2006), 3.

Michael Vrable, Stefan Savage, and Geoffrey M. Voelker. 2009. Cumulus: Filesystem backup to the cloud.
Transactions on Storage 5, 4 (2009), 1–28.

Marc Waldman, Aviel D. Rubin, and Lorrie Faith Cranor. 2001. Publius: A robust, tamper-evident censorship-
resistant web publishing system. In Proceedings of the 9th USENIX Security Symposium. 59–72.

Cong Wang, S. S. M. Chow, Qian Wang, Kui Ren, and Wenjing Lou. 2013. Privacy-preserving public auditing
for secure cloud storage. IEEE Transactions on Computers 62, 2 (2013), 362–375.

Cong Wang, Kui Ren, Wenjing Lou, and Jin Li. 2010. Toward publicly auditable secure cloud data storage
services. IEEE Network 24, 4 (2010), 19–24.

Cong Wang, Qian Wang, Kui Ren, Ning Cao, and Wenjing Lou. 2012. Toward secure and dependable storage
services in cloud computing. IEEE Transactions on Services Computing, 5, 2 (2012), 220–232.

Huaqun Wang. 2012. Proxy provable data possession in public clouds. IEEE Transactions on Services Com-
puting, 99 (2012), 1–1.

Qian Wang, Cong Wang, Jin Li, Kui Ren, and Wenjing Lou. 2009. Enabling public verifiability and data
dynamics for storage security in cloud computing. Proceedings of Computer Security 5789 (2009), 355–
370.

Qian Wang, Cong Wang, Kui Ren, Wenjing Lou, and Jin Li. 2011. Enabling public auditability and data dy-
namics for storage security in cloud computing. IEEE Transactions on Parallel and Distributed Systems
22, 5 (2011), 847–859.

Weichao Wang, Zhiwei Li, Rodney Owens, and Bharat Bhargava. 2009. Secure and efficient access to out-
sourced data. In Proceedings of the ACM Workshop on Cloud Computing Security. ACM, 1655016, 55–66.

Hakim Weatherspoon and John D. Kubiatowicz. 2002. Erasure Coding Vs. Replication: A Quantitative Com-
parison. Lecture Notes in Computer Science, Vol. 2429. Springer, Book section 31, 328–337.

Lifei Wei, Haojin Zhu, Zhenfu Cao, Xiaolei Dong, Weiwei Jia, Yunlu Chen, and Athanasios V. Vasilakos.
2014. Security and privacy for storage and computation in cloud computing. Information Sciences 258
(2014), 371–386.

Chun Wesley. 2011. What Is Google App Engine? Retrieved from https://ep2012.europython.eu/conference/
talks/google-app-engine-best-practices-latest-features.

Md Whaiduzzaman, Mehdi Sookhak, Abdullah Gani, and Rajkumar Buyya. 2014. A survey on vehicular
cloud computing. Journal of Network and Computer Applications 40 (2014), 325–344.

Zack Whittaker. 2012. Amazon web services suffers partial outage. Retrieved from http://www.zdnet.com/
blog/btl/amazon-web-services-suffers-partial-outage/79981.

ACM Computing Surveys, Vol. 47, No. 4, Article 65, Publication date: May 2015.

http://dx.doi.org/10.1155/2014/269357
http://dx.doi.org/10.1016/j.jnca.2014.04.011
http://blogs.computerworld.com/18079/epsilonbreachhackofthecentury.
http://blogs.computerworld.com/18079/epsilonbreachhackofthecentury.
http://dx.doi.org/10.1016/j.jnca.2010.07.006
http://dx.doi.org/10.1016/j.jnca.2010.07.006
http://dx.doi.org/10.1007/978-3-540-24668-82
http://dx.doi.org/10.1007/978-3-540-24668-82
https://ep2012.europython.eu/conference/talks/google-app-engine-best-practices-latest-features
https://ep2012.europython.eu/conference/talks/google-app-engine-best-practices-latest-features
http://www.zdnet.com/blog/btl/amazon-web-services-suffers-partial-outage/79981
http://www.zdnet.com/blog/btl/amazon-web-services-suffers-partial-outage/79981


65:34 M. Sookhak et al.

Da Xiao, Yan Yang, Wenbin Yao, Chunhua Wu, Jianyi Liu, and Yixian Yang. 2012. Multiple-file remote data
checking for cloud storage. Computers & Security 31, 2 (2012), 192–205. DOI:http://dx.doi.org/10.1016/
j.cose.2011.12.005

Min Xie, Haixun Wang, Jian Yin, and Xiaofeng Meng. 2007. Integrity auditing of outsourced data. In
Proceedings of the 33rd International Conference on Very Large Data Bases. VLDB Endowment, 1325940,
782–793.

Zhu Yan, Hu Hongxin, Ahn Gail-Joon, and Yu Mengyang. 2012. Cooperative provable data possession for
integrity verification in multicloud storage. IEEE Transactions on Parallel and Distributed Systems 23,
12 (2012), 2231–2244.

Kan Yang and Xiaohua Jia. 2012. An efficient and secure dynamic auditing protocol for data storage in cloud
computing. IEEE Transactions on Parallel and Distributed Systems PP, 99 (2012), 1717–1726.

Liu Ying and V. Vlassov. 2013. Replication in distributed storage systems: State of the art, possible directions,
and open issues. In International Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery. IEEE, 225–232.

Shucheng Yu, Wnjing Lou, and Kui Ren. 2012. Data Security in Cloud Computing. Morgan Kaufmann/
Elsevier, Book section 15, 389–410.

Jiawei Yuan and Shucheng Yu. 2013a. Proofs of retrievability with public verifiability and constant commu-
nication cost in cloud. In Proceedings of the International Workshop on Security in Cloud Computing.
ACM, Hangzhou, China, 19–26.

Jiawei Yuan and Shucheng Yu. 2013b. Secure and constant cost public cloud storage auditing with dedupli-
cation. IACR Cryptology ePrint Archive 2013 (2013), 149.

Qi Zhang, Lu Cheng, and Raouf Boutaba. 2010. Cloud computing: State-of-the-art and research challenges.
Journal of Internet Services and Applications 1, 1 (2010), 7–18.

Xiaolan Zhang, Giovanni Neglia, and Jim Kurose. 2012. Network coding in disruption tolerant networks.
Academic Press, Boston, 267–308.

Qingji Zheng and Shouhuai Xu. 2011. Fair and dynamic proofs of retrievability. In Proceedings of the First
ACM Conference on Data and Application Security and Privacy. 237–248.

Qingji Zheng and Shouhuai Xu. 2012. Secure and efficient proof of storage with deduplication. In Proceedings
of the Second ACM Conference on Data and Application Security and Privacy. ACM, San Antonio, Texas,
USA, 1–12. DOI:http://dx.doi.org/10.1145/2133601.2133603

Zhou Zhibin and Huang Dijiang. 2012. Efficient and secure data storage operations for mobile cloud comput-
ing. In 8th International Conference and Workshop on Systems Virtualiztion Management Network and
Service Management. 37–45.

Xiao Zhifeng and Xiao Yang. 2013. Security and privacy in cloud computing. IEEE Communications Surveys
& Tutorials 15, 2 (2013), 843–859.

Yan Zhu, Huaixi Wang, Zexing Hu, Gail-Joon Ahn, Hongxin Hu, and Stephen S. Yau. 2010. Efficient prov-
able data possession for hybrid clouds. In Proceedings of the 17th ACM Conference on Computer and
Communications Security (CCS’10). ACM, New York, NY, 756–758.

Dimitrios Zissis and Dimitrios Lekkas. 2012. Addressing cloud computing security issues. Future Generation
Computer Systems 28, 3 (2012), 583–592.

Received August 2014; revised January 2015; accepted February 2015

ACM Computing Surveys, Vol. 47, No. 4, Article 65, Publication date: May 2015.

http://dx.doi.org/10.1016/j.cose.2011.12.005
http://dx.doi.org/10.1016/j.cose.2011.12.005
http://dx.doi.org/10.1145/2133601.2133603

