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Chapter 7

The Virtual Laboratory: Enabling Drug Design on the Grid

This chapter presents the design and development of a virtual laboratory environment that enables
molecular modelling for drug design on geographically distributed data and computational resources. It
leverages existing Grid technologies such as the Nimrod-G parameter specification language to transform
the existing molecular docking application into a parameter sweep application and the Nimrod-G broker for
scheduling jobs on distributed resources. It provides additional tools for enabling and providing distributed
access to ligand records/molecules in the chemical databases (CDB) located remotely. The results of
molecular docking application scheduling on the World-Wide Grid (WWG) resources are being presented
to demonstrate the ease of use and the effectiveness of Nimrod-G and virtual laboratory tools for Grid
computing.

7.1 Introduction
Computational Grids serve as a scalable computing platform for executing large-scale computational and
data intensive applications in parallel through the aggregation of geographically distributed computational
resources. They enable exploration of large problems in science, engineering, and business with huge data
sets, which is essential for creating new insights into the problem. Molecular modelling for drug design is
one of the scientific applications that can benefit from the availability of such a large computational
capability.

Drug Discovery Process

Drug discovery is an extended process that can take as many as 15 years from the first compound synthesis
in the laboratory until the therapeutic agent, or drug, is brought to market [25]. Reducing the research
timeline in the discovery stage is a key priority for pharmaceutical companies worldwide. Many such
companies are trying to achieve this goal through the application and integration of advanced technologies
such as computational biology, chemistry, computer graphics, and high performance computing (HPC).
Molecular modelling has emerged as a popular methodology for drug design—it can combine
computational chemistry and computer graphics. Molecular modelling can be implemented as a master-
worker parallel application, which can take advantage of HPC technologies such as clusters [93] and Grids
for large-scale data exploration.

Drug design using molecular modelling techniques involve screening a very large number (of the order
of a million) of ligand4 records or molecules of compounds in a chemical database (CDB) to identify those
that are potential drugs. This process is called molecular docking. It helps scientists in predicting how small
molecules, such as drug candidates, bind to an enzyme or a protein receptor of known 3D structure (see
Figure 7.1). Docking each molecule in the target chemical database is both a compute and data intensive
task. It is our goal to use Grid technologies to provide cheap and efficient solutions for the execution of
molecular docking tasks on large-scale, wide-area parallel and distributed systems.

While performing docking, information about the molecule must be extracted from one of the many
large chemical databases. As each chemical database requires storage space in the order of hundreds of

4 An ion, a molecule, or a molecular group that binds to another chemical entity to form a larger complex.
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megabytes to terabytes, it is not feasible to transfer the chemical database to all resources in the Grid. Also,
each docking job only needs a ligand or module record, not the whole database. Therefore, access to a
chemical database must be provided as a network service (see Figure 7.2). The chemical databases need to
be selectively replicated on a few nodes to avoid any bottleneck, which might happen due to providing
access to the database from a single source. Intelligent mechanisms (e.g., CDB broker) need to be
supported for selecting optimal sources for CDB services depending on the location of resources selected
for processing docking jobs.
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Figure 7.1: X-ray crystal structure of a target protein receptor and small molecules to be docked.

Fundamentally, drug design is a computational and data challenge problem since it involves screening
millions of compounds in chemical databases. Screening each compound, depending on structural
complexity, can take from a few minutes to hours on a standard PC, which means screening all compounds
in a single database can take years! For example, we are looking into a drug design problem that involves
screening 180,000 compounds. Each job screening a compound is expected to take up to 3 hours of
execution time on a desktop computer (e.g., Pentium-based Linux/Windows PC). That means, if we aim to
screen all these compounds on a single PC, it can take up to 540000 hours, which is roughly equivalent to
61 years! If we use a typical cluster-based supercomputer with 64 nodes, we can solve this problem in one
year. The problem can be solved with a large scale Grid of hundreds of supercomputers within a day. If we
use a massive network of peer-to-peer style Grid computing infrastructure such as SETI@Home [141], the
drug discovery problem could be solved within a few hours.

The rest of this chapter is organized as follows. A high-level operational model for molecular modelling
on the Grid is presented in Section 7.2. A layered architecture for building the Virtual Laboratory
environment is discussed in Section 7.3. The virtual laboratory implementation leverages the existing Grid
technologies and supports new tools that are essential for Grid-enabling the chemical database and the
docking application on distributed resources. Formulation of molecular docking as a parameter sweep
application is presented in Section 7.4. The results of two experiments on scheduling molecular docking
jobs for processing on the WWG (World Wide Grid) [111] testbed resources are presented in Section 7.5.
The final section summarizes the chapter along with suggestions for future works.

7.2 Operational Model
The Virtual Laboratory tools transform the existing molecular modelling application (without the need for
making any changes to it) into a parameter sweep application for executing jobs docking molecules in the
CDBs in parallel on distributed resources. The parameterized application contains multiple independent
jobs, each screening different compounds to identify their drug potential. These jobs are computationally
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intensive in nature and only a small proportion of the execution time is spent on data communication (e.g.,
fetching molecular information on demand from remote databases). Applications expressed with this task-
farming computational model have high computation to communication ratio. Hence, they can tolerate high
network latency, which makes them suitable for executing in parallel on Internet-wide distributed
resources.

A high-level operation model of docking molecules on the Grid is shown in Figure 7.2. The drug
designer formulates the molecular docking problem, submits the application to the Grid resource broker
(e.g., Nimrod-G [100]) along with performance and optimisation requirements—“screen 2000 molecules
within 30 minutes and the available budget for processing is $10”. The broker discovers resources,
establishes their cost and capability, and then prepares a schedule to map docking jobs to resources. Let us
say, it identified a GSP (Grid Service Provider), say GSP2, and assigned a job of screening a molecule 5 to
it. A job has a task specification that specifies a list of operations to be performed. To process a job on
GSP2, the broker dispatcher deploys its Agent on resource GSP2. The agent executes a list of commands
specified in the job’s task specification. A typical task specification contains necessary commands to copy
executables and input files from the user machine, substitution of parameters declared in the input file,
execution of the program, and finally copying results back to the user. It can also contain special commands
for accessing the input data from the remote database. For example, a docking task can contain a special
command (e.g., an instruction to fetch molecule record from the CDB) to make a request to the data broker
(e.g., CDB broker) for a molecule record. The data broker looks at the replica catalogue for a list of sites
providing CDB services, checks the status of those sites, and selects a suitable site (e.g., a node with fast
network connectivity) and recommends the same. The molecule fetch command can then request the CDB
service provider for a molecule record and write the molecule structure to a file that acts as an input to the
docking program. After executing the docking program, the agent executes commands related to copying
docking results to the user home node.

Nim rod/ G
Com putat ional

Grid Broker

Data Replica
CatalogueCDB Broker

Algorithm1

AlgorithmN

. . .

CDB
Service

“Screen
m ol.5
please?”

GSP1 GSP2 GSP4GSP3
(Grid Service Provider)

GSPm

CDB
Service

GSPn

1

“advise CDB
source?

2
“select ion &
advise: use
GSP4 !”

5
Grid I nfo.

Serv ice

3

“I s GSP4
healthy?”

4

“m ol.5 please?”
6

“CDB replicas
please?”

“Screen 2K molecules
in 30min. for $10”

7

“process
& send
results”

Figure 7.2: Resource brokering architecture for screening molecules on distributed resources.

7.3 Architecture – The Software Stack
The Virtual Laboratory builds on the existing Grid technologies and tools for performing data intensive
computing on distributed resources. It provides new tools for managing and accessing remote chemical
databases as a network service. There are many scientific and commercial applications (e.g., molecular
modelling, high-energy physics events processing, and financial investment risk-analysis) that explore a
range of scenarios. Instead of explicitly developing them as parallel applications using interfaces such as
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MPI, they can be composed as parameter sweep applications using tools such as Nimrod [21]. Such
application jobs can be executed in parallel on distributed resources using the Nimrod-G resource broker
(see Figure 7.2). A layered architecture and the software stack essential for performing molecular
modelling on distributed resources is depicted in Figure 7.3. The components of the Virtual Laboratory
software stack are:

• The DOCK software for Molecular Modelling [11].
• The Nimrod Parameter Modelling Tools [135] for enabling DOCK as a parameter sweep

application.
• The Nimrod-G Grid Resource Broker [100] for scheduling DOCK jobs on the Grid.
• Chemical Database (CDB) Management and Intelligent Access Tools:

o CDB database lookup/Index table generation.
o CDB and associated index-table replication.
o CDB replica catalogue for CDB resource discovery.
o CDB servers for providing CDB services
o CDB broker for selecting a suitable CDB service (Replica Selection).
o CDB clients for fetching molecular records (Data Movement).

• The GrACE software for resource trading toolkit [99].
• The Globus middleware for secure and uniform access to distributed resources [49].

Globus [security, information, job management] and GRACE

[Distributed computers and databases with different Arch, OS, and local resource management systems]

Nimrod-G and CDB Data Broker

[task farming engine, scheduler, dispatcher, agents, CDB (chemical database) server]

Nimrod and Virtual Lab Tools

[parametric programming language, GUI tools, and CDB indexer]

Nimrod and Virtual Lab Tools

[parametric programming language, GUI tools, and CDB indexer]
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Figure 7.3: Layered architecture of Virtual Laboratory for drug design.

The Grid resources (e.g., multiprocessors or clusters) at each location are generally presented as a single
entity using resource management systems such as OS-fork, LSF, Condor, and SGE.

In the current implementation, operational steps 2-6 (shown in Figure 7.2) are integrated within the
chemical database server. That is, the CDB server deployed at one of the resource sites directly provides
the remote access to molecules in the selected databases.

7.3.1 Docking Code

The original docking code developed by researchers at the University of California in San Francisco
(UCSF) is one of the most popular molecular docking applications [130]. The docking program evaluates
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the chemical and geometric complementarities between a small molecule and a macromolecular binding
site. It explores ways in which two molecules, such as a drug and an enzyme or protein receptor, might fit
together. Compounds that might bind tightly to the target receptor must have complementary chemical and
spatial natures. Thus docking can be seen as a 3 dimensional puzzle searching for pieces that will fit into
the receptor site. It is important to be able to identify small molecules (compounds), which may bind to a
target macromolecule. This is because a compound, which binds to a biological macromolecule, may
modulate its function, and with further development eventually become a drug candidate. An example of
such a drug is the anti influenza drug Relenza which functions by binding to influenza virus attachment
proteins thus preventing viral infection.

The relationship between the key programs in the dock suite is depicted in Figure 7.4 (source [130]).
The receptor coordinates at the top represent the three-dimensional (3D) structure of a protein. The
molecular modeller identifies the active site, and other sites of interest, and uses the program sphgen to
generate the sphere centers, which fill the site [52]. The program grid generates the scoring grids [11]. The
program dock matches spheres (generated by sphgen) with ligand atoms and uses scoring grids (from grid)
to evaluate ligand orientations [11]. It also minimizes energy-based scores [26]. The focus of our work is
on docking molecules in CDB with receptors to identify potential compounds that act as a drug. Hence,
discussion in this chapter is centered on the execution of the program dock as a parameter sweep
application on world-wide distributed resources.

Figure 7.4: Relation between key programs in the dock suite.

The docking code is highly portable—we have been able to compile and produce executables for Sun-
Solaris, PC Linux, SGI IRIX, and Compaq Alpha/OSF1 architectures. For docking on heterogeneous
resources, the Nimrod-G broker selects the correct executable automatically based on the resources it
discovers at runtime.

7.3.2 Nimrod-G Tools

The Nimrod-G toolkit provides a suite of tools and services for creating parameter sweep applications,
managing resources and scheduling applications on the world-wide distributed resources. It provides a
simple declarative programming language or GUI tools for parameterization of application input data files
and creation of task-script to be performed by each job; and a programmable Grid resource broker for
processing jobs on Grid resources.

The steps involved in distributed parametric execution are:

a) parameterise input files,

b) prepare a plan file containing the commands that define parameters and their values,

c) generate a run file, which converts the generic plan file to a detailed list of jobs,

d) schedule jobs for processing on distributed machines, and

e) control and monitor the execution of the jobs.
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The application execution environment handles online creation of input files and command line arguments
through parameter substitution. The GUI tools supported by enFuzion, a commercial version of Nimrod,
can also be used for parameterising applications. enFuzion uses the same syntax as Nimrod for parameter
specification [135]. In Section 7.4, we discuss the capabilities of Nimrod-G tools by composing a
molecular modelling program as a parameter sweep application for docking compounds in CDB databases.
In Section 7.5, we discuss the results of the Nimrod-G broker scheduling a molecular modelling application
on the Grid with DBC time and cost optimization scheduling algorithms.

7.3.3 Chemical Database Management and Intelligent Access Tools

The chemical databases contain records of a large number of molecules from commercially available
organic synthesis libraries, and natural product databases. The molecules in the CDB are represented in
MOL2 file (.mol2) format [132], which is a portable representation of a SYBYL [133] molecule. The
MOL2 file is an ASCII file that contains all the information needed to reconstruct a SYBYL molecule.
Each ligand record in a chemical database represents the three-dimensional structural information of a
compound. The number of compounds in each CDB can be in the order of tens of thousands and the
database size be anywhere from tens of Megabytes to Gigabytes and even Terabytes. We have developed
tools for turning the CDB into a network service and accessing them from remote resources. They include
tools for indexing ligand records in the CDB, a multithreaded CDB Server for serving requests for
molecule records, and a tool for fetching molecule/ligand record from remote CDB via the network [109].

When a chemical database is available from more than one source (replica site), a suitable strategy such
as a source with high network speed or lightly loaded, can be used for selecting one of them. It is likely that
multiple users from different locations issue requests for accessing the CDB, the server should be able to
process such simultaneous requests concurrently. Therefore, we have developed a multithreaded CDB
server that can service requests from multiple users concurrently. An interaction between a Grid node and a
node running the CDB server while performing docking is shown in Figure 7.5. We developed and
implemented protocols shown in Figure 7.6 for interaction between the CDB clients and the server. Both
figures illustrate the operational model and the flow of control between CDB clients and servers.
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Figure 7.5: Deployment of Virtual Laboratory components at runtime and their interaction.

When the Nimrod-G broker schedules a docking job for processing on one of the Grid resources, it
actually submits an agent to Globus GRAM, which acts as a process server. The process server either
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executes it by forking it as process on time shared system or submits to the site resource manager such as
PBS, LSF, and Condor, which allocates a compute node for the agent and starts its execution. The agent
contacts the Nimrod-G dispatcher for job task information, which contains instructions for executing a job.
It copies input files, performs parameter substitution, executes programs (e.g., CDB client to fetch a
molecule record from the remote CDB server and docking program), and ships results back to the Nimrod-
G user. When the CDB server receives a request for molecule record, it reads the molecule record from the
chemical database and sends back to the client.

CDB-Client MultiThreaded CDB-Server

Establish Connection

CDB-Thread

GetMolecule[CDB_NAME, MOL_NO]

Connection ID (CID)

(Found, Not Found, or DB error)

Transfer Molecule Record

(Molecule Record Size)

WriteToFile("Mol_No.mol2")

CreateThread(CID)

Close Connection

Figure 7.6: Protocols for Interaction between the CDB clients and the server.

Instead of searching molecule records sequentially in a database, we have built tools for creating index-
tables for each CDB represented using the MOL2 format along with the record size information. The CDB
index file, organized in in binary format, contains the starting address (byte location) of a molecule record
and record size of all molecules in sequence. When a molecule record is requested, the CDB server first
looks at the CDB index file to identify the record location and its size. It then fetches the molecule record
from the CDB file with a single read operation; thus improving the access and response speed.

It is possible to screen virtual combinatorial databases in their entirety. This methodology allows only
the potential compounds to be subjected to physical (manual) screening and/or synthesis in laboratories,
which is extremely time-consuming and resource-intensive.

7.4 Application Composition
A docking application having an ability to screen a molecule for each execution can be composed as a task-
farming, parameter sweep application for distributed execution. This can be achieved by using Nimrod-G
parameter specification language to parameterize docking application input data and files. There is no need
to make any changes to the existing (sequential) docking application nor does it need to be developed as
parallel application explicitly for distributed execution. The users just need to parameterize the input data
and files appropriately and define a Nimrod-G plan file once. Note that the values of parameters can be
changed while launching the application execution. The plan file specifies the parametric tasks and the
types of the parameters and their values for these tasks. A parametric task consists of a script defined using
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a sequence of simple commands, providing the ability to copy files to and from the remote node, perform
parameter substitutions in input files, execute certain programs, and copy output files back to the user home
node. The parametric plan can be submitted to the Nimrod-G runtime machinery, which creates
independent docking jobs, and schedules these jobs for concurrent execution on distributed resources. It
takes care of replacing the actual value of parameters in the parameterized input files before executing
docking jobs.

A sample configuration input file of the docking application is shown in Figure 7.7. It specifies docking
configuration parameters and molecule to be docked by indicating a name of the file in which molecule
record is stored using the parameter variable "ligand_atom_file". To perform a parameter sweep of
different molecules, the value specified by the parameter variable "ligand_atom_file" needs to be
parameterized. This is accomplished by replacing the current value, which represents the name of a file
containing molecule record, by a substitution place marker. The place marker T consists of a dollar-sign ($)
followed by the name of the parameter controlling the substitution, optionally surrounded by braces.

score_ligand yes

minimize_ligand yes
multiple_ligands no

random_seed 7
anchor_search no

torsion_drive yes
clash_overlap 0.5
conformation_cutoff_factor 3

torsion_minimize yes
match_receptor_sites no

random_search yes
. . . . . .
. . . . . .

maximum_cycles 1
ligand_atom_file S_1.mol2

receptor_site_file ece.sph
score_grid_prefix ece
vdw_definition_file parameter/vdw.defn

chemical_definition_file parameter/chem.defn
chemical_score_file parameter/chem_score.tbl

flex_definition_file parameter/flex.defn
flex_drive_file parameter/flex_drive.tbl
ligand_contact_file dock_cnt.mol2

ligand_chemical_file dock_chm.mol2
ligand_energy_file dock_nrg.mol2

Molecule toMolecule to
be screenedbe screened
Molecule toMolecule to
be screenedbe screened

Figure 7.7: A configuration input file for docking application.

A parameterized input file with several attributes replaced by substitution place markers is shown in
Figure 7.8. For example, a place marker called for the parameter “ligand_number” has replaced the first
part of the “ligand_atom_file” attribute value. The actual value of these parameters is defined in the
Nimrod-G plan file that contains parameter definition and task specification. The parameter definition
section of the plan file is shown in Figure 7.9. Each parameter is defined by a keyword "parameter",
followed by the parameter name, an optional label, and a parameter type. The remaining information on
each line defines valid values for the parameter.

The parameter, for example, "database_name" has a label, and is of type text. Its valid values are listed,
and the user will be able to select one of the values for the duration of the entire experiment. Most of the
remaining parameters are single values, either text strings or integers, selected by the user, but with default
values provided if the user does not wish to choose a value.
The range parameter, "ligand_number", used to select the molecule, is defined as an integer variable with
bounds. For example, to process the first 2000 molecules in the CDB, this range parameter can vary from 1
to 2000 with the step size of 1.
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score_ligand $score_ligand

minimize_ligand $minimize_ligand
multiple_ligands $multiple_ligands

random_seed $random_seed

anchor_search $anchor_search
torsion_drive $torsion_drive

clash_overlap $clash_overlap

conformation_cutoff_factor $conformation_cutoff_factor
torsion_minimize $torsion_minimize

match_receptor_sites $match_receptor_sites

random_search $random_search
. . . . . .

. . . . . .

maximum_cycles $maximum_cycles
ligand_atom_file ${ligand_number}.mol2

receptor_site_file $HOME/dock_inputs/${receptor_site_file}

score_grid_prefix $HOME/dock_inputs/${score_grid_prefix}
vdw_definition_file vdw.defn

chemical_definition_file chem.defn

chemical_score_file chem_score.tbl
flex_definition_file flex.defn

flex_drive_file flex_drive.tbl

ligand_contact_file dock_cnt.mol2

ligand_chemical_file dock_chm.mol2
ligand_energy_file dock_nrg.mol2

Molecule to beMolecule to be
screenedscreened

Molecule to beMolecule to be
screenedscreened

Figure 7.8: Parameterisation of a configuration input file.

parameter database_name label "database_name" text select oneof "aldrich"
"maybridge" "maybridge_300" "asinex_egc" "asinex_epc" "asinex_pre"
"available_chemicals_directory" "inter_bioscreen_s" "inter_bioscreen_n"
"inter_bioscreen_n_300" "inter_bioscreen_n_500" "biomolecular_research_institute"
"molecular_science" "molecular_diversity_preservation"
"national_cancer_institute" "IGF_HITS" "aldrich_300" "molecular_science_500"
"APP" "ECE" default "aldrich_300";

parameter CDB_SERVER text default "bezek.dstc.monash.edu.au";

parameter CDB_PORT_NO text default "5001";

parameter score_ligand text default "yes";

parameter minimize_ligand text default "yes";

parameter multiple_ligands text default "no";

parameter random_seed integer default 7;

parameter anchor_search text default "no";

parameter torsion_drive text default "yes";

parameter clash_overlap float default 0.5;

parameter conformation_cutoff_factor integer default 5;

parameter torsion_minimize text default "yes";

parameter match_receptor_sites text default "no";

. . . . . .

. . . . . .

parameter maximum_cycles integer default 1;

parameter receptor_site_file text default "ece.sph";

parameter score_grid_prefix text default "ece";

parameter ligand_number integer range from 1 to 2000 step 1;

Molecules to beMolecules to be
screenedscreened

Figure 7.9: A plan file defining parameters type and their values.

The parameters “receptor_site_file” and “score_grid_prefix” indicate the data input files. Their values
indicate that data input files are located in the user home directory on Grid nodes. Instead of pre-staging,
these files can be copied at runtime by defining necessary “copy” operations in the job’s “nodestart” or
“main” task (see Figure 7.10). However, it is advisable to copy or “pre-stage” large input files in the
beginning of application execution instead of copying them during execution of every job. This saves
transmission time particularly when those files are going to be used for docking with many databases.

The plan file is submitted to a job generation tool, such as the EnFuzion Generator, in order to create a
run file that contains specific instances of jobs to be run, which is then submitted to the Nimrod-G runtime
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machinery for processing on the Grid. The run file contains a job for each combination of parameters.
Hence the number of jobs is the product of the number of values chosen for each parameter. Since most of
the parameters except "ligand_number" are single-valued, they have no effect on the number of jobs.

task nodestart

copy ./parameter/vdw.defn node:.

copy ./parameter/chem.defn node:.

copy ./parameter/chem_score.tbl node:.

copy ./parameter/flex.defn node:.

copy ./parameter/flex_drive.tbl node:.

copy ./dock_inputs/get_molecule node:.

copy ./dock_inputs/dock_base node:.

endtask

task main

node:substitute dock_base dock_run

node:substitute get_molecule get_molecule_fetch

node:execute sh ./get_molecule_fetch

node:execute $HOME/bin/dock.$OS -i dock_run -o dock_out

copy node:dock_out ./results/dock_out.$jobname

copy node:dock_cnt.mol2 ./results/dock_cnt.mol2.$jobname

copy node:dock_chm.mol2 ./results/dock_chm.mol2.$jobname

copy node:dock_nrg.mol2 ./results/dock_nrg.mol2.$jobname

endtask

Figure 7.10: Task definition of docking jobs.

It is also possible to set concrete values for each of the parameters at runtime when job Generator is
invoked. For the parameter "ligand_number", the user may choose not to select all values from 1 to 2000,
but may select a subset of these values. By default, this generated 2000 jobs, each docking a single
molecule.

The second part of Nimrod-G plan file is task specification that defines a series of operations that each
job needs to perform to dock a molecule (see Figure 7.10). The "nodestart" task is performed once for each
remote node. Following that, the files copied during that stage are available to each job when it is started.
The "main" task controls the actions performed for each job.

The first line of the "main" task performs parameter substitution on the file "dock_base", creating a file
"dock_run". This is the action that replaces the substitution place markers in our input file with the actual
values for the job.

As each docking operation is performed on a selected molecule in the CDB database, it is not necessary
to copy such large databases on all Grid nodes. Hence, not only is the molecule file named in the
configuration file, we also go to particular lengths to copy only the data for the molecule being tested. The
executable script "get_molecule_fetch" (see Figure 7.11) is also created using parameter substitution, and
runs the "vlab-cdb-get-molecule" executable, which fetches the molecule record from the CDB molecule
server based on the parameter "ligand_number". The molecule record is saved in a file whose name is the
same as integer value of the “ligand_number” parameter and “mol2” as its extension. For instance, if the
parameter ligand_number value is 5, then molecule record will be saved in a file “5.mol2”.

#!/bin/sh

$HOME/bin/vlab-cdb-get-molecule.$OS $CDB_SERVER $CDB_PORT_NO ${database_name}.db $ligand_number

Figure 7.11: Parameterisation of script for extracting molecule from CDB.

The main code is the "dock" executable. Note that in the “execute” command, there are pseudo-
parameters that do not appear in the plan file. These include environment variables, such as "HOME", as
well as other useful parameters, such as "OS" indicating the operating system on the node. This allows us to
select the correct executable for the node. If the “dock” executable files do not exist on Grid nodes, they
need to be copied at runtime as part of the job’s “nodestart” task similar to copying input files.
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The dock_run file created in the substitution step previously is now provided as the input configuration
file for the docking process. The output files are then copied back to the local host, and renamed with
another pseudo-parameter, the unique "jobname" parameter.

7.5 Scheduling Experimentations
We have performed scheduling experiments from a Grid resource in Australia along with four resources
available in Japan and one in USA. Table 7.1 shows the list of resources and their properties, Grid services,
access cost or price in terms of Grid dollar (G$) per CPU-second, and the number of jobs processed on
resources with deadline-and-budget constrained (DBC) time optimization (TimeOpt) or cost optimization
(CostOpt) strategies. The resource price in terms of G$ is assigned arbitrarily at runtime in these
experiments, however, they can be set to match the power of resources and job turn around time as valued
in supercomputing centers such as the Manchester computing services. The G$ can be equated to real
money or tokens charged to users for accessing resources. In the current scenario, the users get allocation of
tokens via funding from the project sponsoring agents or partnerships. There are supercomputing centers
that sell tokens to commercial users and the value of tokens correspond to the quantity of resource
allocations. It is also possible to price resources based on the real world economic models [102] that are
driven by the supply and demand for resources.

Table 7.1: The WWG testbed resources used in scheduling experiments, job execution and costing.

Number of Jobs
Executed

Organization &
Location

Vendor, Resource Type,
# CPU, OS, hostname

Grid Services and
Fabric, Role

Price

(G$/CPU
sec.) TimeOpt CostOpt

Monash University,
Melbourne, Australia

Sun: Ultra-1, 1 node,
bezek.dstc.monash.edu.au

Globus, Nimrod-G,
CDB Server, Fork
(Master node)

-- -- --

AIST, Tokyo, Japan
Sun: Ultra-4, 4 nodes,
Solaris, hpc420.hpcc.jp

Globus, GTS, Fork
(Worker node)

1 44 102

AIST, Tokyo, Japan
Sun: Ultra-4, 4 nodes,
Solaris, hpc420-1.hpcc.jp

Globus, GTS, Fork
(Worker node)

2 41 41

AIST, Tokyo, Japan
Sun: Ultra-4, 4 nodes,
Solaris, hpc420-2.hpcc.jp

Globus, GTS, Fork
(Worker node)

1 42 39

AIST, Tokyo, Japan
Sun: Ultra-2, 2 nodes,
Solaris, hpc220-2.hpcc.jp

Globus, GTS, Fork
(Worker node)

3 11 4

Argonne National
Lab, Chicago, USA

Sun: Ultra -8, 8 nodes,
Solaris,
pitcairn.mcs.anl.gov

Globus, GTS, Fork
(Worker node)

1 62 14

Total Experiment Cost (G$) 17702 14277

Time to Finish Experiment
(Min.)

34.00 59.30

We have performed a trial screening 200 molecules (from the aldrich_300 CDB) on a target receptor
called endothelin converting enzyme (ECE), which is involved in hypotension. The three dimensional
structure of the receptor is derived from homology modelling using related receptor structures. In these
experimentations, for faster evaluation purpose, the range parameter “ligand_number” is defined with the
bounds 1 and 200 and the step size as 1, which produces 200 jobs for docking molecules. As shown in
Figure 12, the dock program takes two different types of inputs files: a) common input files, the same files
are required for all docking jobs and b) ligand specific input files, which vary from one job to another. The
large common input files (receptor structure and pre-calculated score potentials) are pre-staged on
resources instead of copying them at runtime. The files are copied using the globus-rcp command and
stored in the directory location “$HOME/dock_inputs/” on resources as specified by the parameters
“receptor_site_file” and “score_grid_prefix” (see Figure 7.8). The two application-specific executable files,
“dock” and “vlab-cdb-get-molecule” invoked in the task scripts (see Figure 7.10 and Figure 7.11) are also
pre-staged. The executable files are stored in the “$HOME/bin/” directory on resources.
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Common Input FilesLigand Specific Files

Dock.in
(Input
Spec.)

Ligand
Record
(2.mol2)

Receptor
Structure
(ece.sph)

Parameters:
vdw.defn, chem.defn,

chem_score.tbl,
flex.defn, flex_drive.tbl

Precalculated
Score Potentials:
ece.bmp, ece.cnt,
ece.chm, ece.nrg

Dock
Program

Ligand Specific Files

Dock.in
(Input
Spec.)

Ligand
Record
(1.mol2)

Ligand Specific Files

Dock.in
(Input
Spec.)

Ligand
Record

(200.mol2)
...

job1
Dock

Programjob2 Dock
Programjob200...

Figure 7.12: Static and Dynamic Input Files of Docking program.

We conducted deadline and budget constrained scheduling experiments for two different optimization
strategies [105]:

1. Optimize for Time - this strategy aims to produce results at the earliest possible time before a
deadline, and within a budget limit. It process as many jobs as possible cheapest resources for the
deadline period and uses expensive ones just to meet the deadline.

2. Optimize for Cost - this strategy aims to minimize the cost of execution (spending from the given
budget) and complete the experiment on or before the deadline. It uses all resources aggressively
as long as it can afford them and tries to process all jobs at the earlier possible time.

In both experiments, we have set 60 minutes as the deadline limit and 50,000 G$ as the budget limit at
runtime using the Nimrod-G scheduler steering and control monitor. The value of these constraints can be
changed at anytime during the execution, of course not less than the time and budget that is already spent!

Figure 7.13: A snapshot of the Nimrod-G
monitor during “Optimize for Time” scheduling.

Figure 7.14: A snapshot of the Nimrod-G
monitor during “Optimize for Cost” scheduling.

The first experiment, Optimize for Time scheduling, was performed on November 3, 2001 at 23:23:00,
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Australian Eastern Standard Time (AEST), with a 60-minute deadline and finished on November 3, 2001
by 23:57:00. A snapshot of the Nimrod-G monitoring and steering client taken a few minutes (~5min.)
before the completion of application processing is shown in Figure 7.13. This experiment took 34 minutes
to finish the processing of all jobs using resources available at that time with an expense of 17,702 G$.
Figure 7.15 shows the number of jobs processed on different resources selected depending on their cost and
availability. Figure 7.16 shows the corresponding expenses of processing on resources. Figure 7.17 shows
the number of jobs in execution on resources at different times. From the graphs it can be observed that the
broker selected resources to ensure that the experiment was completed at the earliest possible time given
the current availability of resources and the budget limitations. After 30 minutes, it discovered that it could
still complete early without using the most expensive resource, hpc220-2.hpcc.jp.

It should be noted that for each job scheduled for execution on the Grid, the Nimrod-G runtime
machinery (actuator) deploys Nimrod-G agents on remote resources. The Nimrod agents setup runtime
environments (generally in scratch file space, “/tmp”) on remote resources and execute commands specified
in the task definition script (see Figure 7.10). The docking parameter files and ligand specific files are
transferred from the home node, bezek.dstc.monash.edu.au in this case. The agent uses http protocols to
fetch files via the http-based file server running on the home node. All parameter variables in the
parameterized input files (see Figure 7.8 and Figure 7.9) are substituted by their concrete values before
processing. The ligand record is fetched from the CDB database server running on the home node. The
agent then executes the dock program and stores output files in the scratch area. The required output files
are then transferred to the home node and stored with the job number as their extension. All these steps
involved in the execution of the dock program on Grid resources were completely hidden from the user.
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Figure 7.15: No. of jobs processed on Grid resources during DBC time optimization scheduling.
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Figure 7.16: The amount spent on resources during DBC time optimization scheduling.
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Figure 7.17: No. of jobs in execution on Grid resources during DBC time optimization scheduling.

The second experiment, Optimize for Cost scheduling, was performed on November 4, 2001 at 00:08:00,
AEST, with a 60-minute deadline and finished on November 4, 2001 by 01:07:30. A snapshot of the
Nimrod-G monitoring and steering client taken few minutes (~5min.) before the completion of application
processing is shown in Figure 7.14. This experiment took almost 59.30 minutes to finish the processing of
all jobs using resources available at that time with an expense of 14,277 G$. It can be noted that the second
experiment took an extra 25.30 minutes and saved 3,425 G$ in the process. Figure 7.18 shows the number
of jobs processed on different resources selected depending on their cost and availability. Figure 7.19
shows the corresponding expenses of processing on resources. Figure 7.20 shows the number of jobs in
execution on resources at different times. From the graphs it can be observed that the broker selected the
cheapest resources to ensure that the experiment was completed with minimum expenses, but before the
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deadline limit. In the beginning expensive resources are used to ensure that the deadline can be met. If for
any reason cheapest resources are unable to deliver expected performance, then the broker seeks the help of
expensive resources to meet the deadline.
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Figure 7.18: No. of jobs processed on Grid resources during DBC Cost optimization scheduling.
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Figure 7.19: The amount spent on resources during DBC Cost optimization scheduling.
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Figure 7.20: No. of jobs in execution on Grid resources during DBC Cost optimization scheduling.

7.6 Related Work
Although many researchers have explored the use of parallel computing techniques in molecular docking
for drug design [35][116], there are only a few efforts that use the world wide distributed computers for
processing docking jobs in parallel. One of the most related efforts is the FightAIDS@Home project [27],
which is based on the Entropia’s distributed computing network and the Scripps Research Institute’s
docking application. In this case, volunteers need to download Entropia’s screen saver program that runs in
the background on the volunteer computer. The volunteer PC contacts the Entropia server to download the
data to perform docking. When docking on an assigned data is completed, it uploads the results to the
server. This execution model is different from our model where the scheduler (Nimrod-G) assigns the work
to computers that are available and initiates the execution.

Most of the efforts explicitly develop docking application as a parallel application using a special
purpose, legacy or standard, parallel programming languages and interfaces such as PVM and MPI, which
requires extra development effort and time. The scalability of such applications and runtime systems is
limited to resources available in a single domain and they need powerful computers and networks for faster
processing.

Our techniques are novel in many ways. To perform parallel and distributed docking using our tools,
there is no need to develop docking application as a parallel application. Our framework supports the
composition of the existing molecular docking application as a parameter sweep application without
making any changes to it. Our runtime machinery, the Nimrod-G resource broker, creates independent
docking jobs automatically and launches their parallel execution on world-wide distributed computers. It
hides all the complexity associated with scheduling jobs, shipping appropriated input files, starting and
monitoring their execution, and shipping results back to the user. Our scheduler also supports the deadline
and budget based scheduling, which prioritizes the processing depending on the user requirements—how
quickly they need results, how much they want to spend, and which one to optimise.

7.7 Summary and Conclusion
Computational Grids enable the sharing and aggregation of geographically distributed resources for
solving large-scale, resource and data-intensive problems. However, application development, resource
management, and scheduling in these environments is a complex undertaking. We have developed a Virtual



148

Laboratory environment and tools for formulating molecular docking for drug design as a parameter sweep
application, chemical database management, and scheduling docking jobs for processing on a wide area
distributed resources by leveraging existing Grid technologies. The new tools developed include a chemical
database indexer, CDB server for providing access to molecules in chemical databases as a network
service, clients for accessing CDB services from a selected CDB service. We have used the Nimrod-G
parameter specification language for composing an existing docking application as a parameter sweep
application and the Nimrod-G Grid resource broker for processing molecular docking jobs on distributed
resources.

We have conducted deadline and budget constrained scheduling experiments for concurrent processing
of docking jobs on the WWG testbed under two different optimization scenarios. The results of this
molecular docking application scheduling on a large-scale distributed resources demonstrate the potential
of the Virtual Laboratory tools for service oriented computing. They demonstrate the suitability of Grids
and Grid technologies (like Globus and Nimrod-G) for computational and data intensive computing and at
the same time prove the effectiveness of computational economy and quality of services (QoS) driven
scheduling as an efficient mechanism for the management of supply-and-demand for resources depending
on the value delivered to the user. Also, this framework with economic incentive encourages the users to
reveal their true requirements and allows them to trade-off between the deadline and budget. Thus allowing
the allocation of resources to users with high priority jobs and requirements.


