
101

Chapter 6

Scheduling Simulations

This chapter presents a performance evaluation of economic-based Grid resource management and
scheduling. The GridSim toolkit is used to develop an economic Grid resource broker that supports the
deadline and budget constrained (DBC) scheduling strategies and to quantify the broker’s ability to
dynamically select resources at runtime depending on their availability, capability, cost, and user quality of
service requirements (QoS). The broker supports DBC algorithms with the four different optimisation
strategies—cost, time, cost-time, and conservative time. The detailed performance evaluation of economic-
driven scheduling algorithms is carried out through a series of simulations by varying the number of users,
deadline, budget, and optimisation strategies and simulating geographically distributed Grid resources.

6.1 Economic Grid Resource Broker Simulation
We used the GridSim toolkit to simulate a Grid environment and a Nimrod-G like deadline and budget
constrained scheduling system called economic Grid resource broker. The simulated Grid environment
contains multiple resources and user entities with different requirements. The users create an experiment
that contains an application specification (a set of Gridlets that represent application jobs with different
processing) and quality of service requirements (deadline and budget constraints with optimization
strategy). We created two entities that simulate users and the brokers by extending the GridSim class.
When simulated, each user entity having its own application and quality of service requirements creates its
own instance of the broker entity for scheduling Gridlets on resources.

6.1.1 Broker Architecture

The broker entity architecture along with its interaction flow diagram with other entities is shown in Figure
6.1. The key components of the broker are: experiment interface, resource discovery and trading,
scheduling flow manager backed with scheduling heuristics and algorithms, Gridlets dispatcher, and
Gridlets receptor. The following high-level steps describe functionality of the broker components and their
interaction:

1. The user entity creates an experiment that contains an application description (a list of Gridlets to
be processed) and user requirements to the broker via the experiment interface.

2. The broker resource discovery and trading module interacts with the GridSim GIS entity to
identify contact information of resources and then interacts with resources to establish their
configuration and access cost. It creates a Broker Resource list that acts as placeholder for
maintaining resource properties, a list of Gridlets committed for execution on the resource, and the
resource performance data as predicted through the measurement and extrapolation methodology.

3. The scheduling flow manager selects an appropriate scheduling algorithm for mapping Gridlets to
resources depending on the user requirements (deadline and budget limits; and optimisation
strategy—cost, cost-time, time, or time variant). Gridlets that are mapped to a specific resource are
added to the Gridlets list in the Broker Resource.

4. For each of the resources, the dispatcher selects the number of Gridlets that can be staged for
execution according to the usage policy to avoid overloading resources with single user jobs.



102

5. The dispatcher then submits Gridlets to resources using the GridSim’s asynchronous service.

6. When the Gridlet processing completes, the resource returns it to the broker’s Gridlet receptor
module, which then measures and updates the runtime parameter, resource share available to the
user. It aids in predicting the job consumption rate for making scheduling decisions.

7. The steps, 3–6, continue until all the Gridlets are processed or the broker exceeds deadline or
budget limits. The broker then returns the updated experiment data along with processed Gridlets
back to the user entity.

R1

Rm

.

.

.

.

.

.

.

.

C
T

op
tim

iz
e

C
os

to
pt

im
iz

e

T
im

e
op

tim
iz

e

N
on

e
O

pt
.

R
es

ou
rc

e
D

is
co

ve
ry

an
d

T
ra

di
ng

Gridlet Receptor

D
is

pa
tc

he
r

. .. .

1

6

4

2

7

E
xp

er
im

en
tI

nt
er

fa
ce

3

5

Scheduling Flow Manager

R1

R2

Rn

User
Entity

(Broker Resource List and Gridlets Q)

GIS

Broker Entity

Grid Resources

Figure 6.1: Economic Grid resource broker architecture and its interaction with other entities.

A class diagram hierarchy of the Grid broker package built using the GridSim toolkit is shown in Figure
6.2. The Grid broker package implements the following key classes:

class Experiment – It acts as a placeholder for representing simulation experiment configuration that
includes synthesized application (a set of Gridlets stored in GridletList) and user requirements such as
D and B-factors or deadline and budget constraints, and optimization strategy. It provides methods for
updating and querying the experiment parameters and status. The user entity invokes the broker entity
and passes its requirements via experiment object. On receiving an experiment from its user, the broker
schedules Gridlets according to the optimization policy set for the experiment.

class UserEntity – A GridSim entity that simulates the user. It invokes the broker and passes the
user requirements. When it receives the results of application processing, it records parameters of
interest with the gridsim.Statistics entity. When it has no more processing requirements, it sends
END_OF_SIMULATION event to the broker and gridsim.GridSimShutdown entities.

class Broker – A GridSim entity that simulates the Grid resource broker. On receiving an experiment
from the user entity, it does resource discovery, and determines deadline and budget values based on D
and B factors, and then proceeds with scheduling. It schedules Gridlets on resources depending on user
constraints, optimization strategy, and cost of resources and their availability. When it receives the
results of application processing, it records parameters of interest with the gridsim.Statistics entity.
When it has no more processing requirements, it sends END_OF_SIMULATION event to the
gridsim.GridSimShutdown entity.

class BrokerResource – It acts as placeholder for the broker to maintain a detailed record of the
resources it uses for processing user application. It maintains resource characteristics, a list of Gridlets
assigned to the resource, the actual amount of MIPS available to the user, and a report on the Gridlets
processed. These measurements help in extrapolating and predicting the resource performance from the
user point of view and aid in scheduling jobs dynamically at runtime.



103

class ReportWriter – A user-defined, optional GridSim entity which is meant for creating a report
at the end of each simulation by interacting with the gridsim.Statistics entity. If the user does not want
to create a report, then it can pass “null” as the name of the ReportWriter entity. Note that the users
can choose any name for the ReportWriter entity and for the class name since all entities are identified
by their name defined at the runtime.

Figure 6.2: A class hierarchy diagram of Grid broker using the gridsim package.

An interactive class hierarchy diagram of the economic Grid resource broker (accessible from [104])
provides syntax and semantic information of data members and methods of each class discussed above.

6.1.2 Determining the Deadline and Budget

A D-factor close to 1 signifies the user’s willingness to set a highly relaxed deadline, which is sufficient to
process applications even when only the slowest resources are available. Similarly a B-factor close to 1
signifies that the user is willing to spend as much money as required even when only the most expensive
resource is used. The jobs are scheduled on the Grid through user’s broker. The broker uses these factors in
determining the absolute deadline (see Equation 6.1) and budget (see Equation 6.2) values for a given
execution scenario at runtime as follows:



104

Determining the Absolute Deadline Value:�

Equation 6.1

where,

• TMIN = the time required to process all the jobs, in parallel, giving the fastest resource the highest
priority.�

• TMAX = the time required to process all the jobs, serially, using the slowest resource.�

• An application with DFACTOR < 0 would never be completed.�

• An application with DFACTOR ≥ 1 would always be completed as long as some resources are
available with minimal user-share throughout the deadline.�

Determining the Absolute Budget Value:�

Equation 6.2

where,

• CMIN = the cost of processing all the jobs, in parallel within deadline, giving the cheapest resource
the highest priority.

• CMAX = the cost of processing all the jobs, in parallel within deadline, giving the costliest resource
the highest priority.

• An application with BFACTOR < 0 would never be completed.

• An application with BFACTOR ≥ 1 would always be completed as long as some resources are
available with minimal user-share throughout the deadline.

6.1.3 Scheduling Algorithms

We propose deadline and budget constrained (DBC) algorithms with four different optimisation
strategies—cost optimisation, cost-time optimisation, time optimisation, and conservative-time
optimisation—for scheduling task-farming applications on geographically distributed resources. The
properties of DBC scheduling algorithms are shown in Table 6.1.

Table 6.1: Deadline and budget constrained adaptive scheduling algorithms.

L im i t ed b y BM inimiz eT ime O pt

L im i t ed b y B, b ut al l
unpr ocessed j ob s
h ave guar ant eed
minimum b ud get

M inimiz eConser vat ive- T ime
O pt

M inim iz eM inimiz e wh en
possib le

Cost - T ime O pt

M inim iz eL im i t ed b y DCost O pt

Ex ecut ion Cost

(Bud get , B)

Ex ecut ion T ime

(D ead l ine , D )

A lgor i t h m/
S t r at egy

L im i t ed b y BM inimiz eT ime O pt

L im i t ed b y B, b ut al l
unpr ocessed j ob s
h ave guar ant eed
minimum b ud get

M inimiz eConser vat ive- T ime
O pt

M inim iz eM inimiz e wh en
possib le

Cost - T ime O pt

M inim iz eL im i t ed b y DCost O pt

Ex ecut ion Cost

(Bud get , B)

Ex ecut ion T ime

(D ead l ine , D )

A lgor i t h m/
S t r at egy

The cost-optimisation scheduling algorithm uses the cheapest resources to ensure that the deadline can
be met and the computational cost is minimized. The time-optimisation scheduling algorithm uses all the
affordable resources to process jobs in parallel as early as possible. The cost-time optimisation scheduling
is similar to cost optimisation, but if there are multiple resources with the same cost, it applies time
optimisation strategy while scheduling jobs on them. The conservative-time optimisation scheduling

Deadline = TMIN + DFACTOR * (TMAX
__ TMIN )

Budget = CMIN + BFACTOR * (CMAX
__ CMIN )



105

strategy is similar to the time-optimisation scheduling strategy, but it guarantees that each unprocessed job
has a minimum budget-per-job.

We have incorporated DBC cost, time, and conservative time optimisation scheduling algorithms into
the Nimrod-G broker and explored their ability in scheduling parameter sweep applications on the World-
Wide Grid (WWG) testbed. A detailed evaluation of DBC cost, time, and cost-time scheduling algorithms
by simulation for various scenarios is presented in the next sections.

6.2 Simulation Experiment Setup
To simulate application scheduling in GridSim environment using the economic Grid broker requires the
modeling and creation of GridSim resources and applications that model jobs as Gridlets. In this section,
we present resource and application modeling along with the results of experiments with quality of services
driven application processing.

Table 6.2: WWG testbed resources simulated using GridSim.

Resource
Name in

Simulation

Simulated Resource
Characteristics

Vendor, Resource Type,
Node OS, No of PEs

Equivalent Resource
in Worldwide Grid

(Hostname,
Location)

A PE
SPEC/
MIPS
Rating

Resource
Manager

Type

Price

(G$/PE
time
unit)

MIPS
per G$

R0
Compaq, AlphaServer,

CPU, OSF1, 4

grendel.vpac.org,

VPAC, Australia
515 Time-shared 8 64.37

R1 Sun, Ultra, Solaris, 4
hpc420.hpcc.jp,

AIST, Tokyo, Japan
377 Time-shared 4 94.25

R2 Sun, Ultra, Solaris, 4
hpc420-1.hpcc.jp,

AIST, Tokyo, Japan
377 Time-shared 3 125.66

R3 Sun, Ultra, Solaris, 2
hpc420-2.hpcc.jp,

AIST, Tokyo, Japan
377 Time-shared 3 125.66

R4
Intel, Pentium/VC820,

Linux, 2
barbera.cnuce.cnr.it,

CNR, Pisa, Italy
380 Time-shared 2 190.0

R5 SGI, Origin 3200, IRIX, 6
onyx1.zib.de,

ZIB, Berlin, Germany
410 Time-shared 5 82.0

R6
SGI, Origin 3200, IRIX,

16
Onyx3.zib.de,

ZIB, Berlin, Germany
410 Time-shared 5 82.0

R7
SGI, Origin 3200, IRIX,

16

mat.ruk.cuni.cz,
Charles U., Prague,

Czech Republic

410 Space-shared 4 102.5

R8
Intel, Pentium/VC820,

Linux, 2
marge.csm.port.ac.uk,

Portsmouth, UK
380 Time-shared 1 380.0

R9
SGI, Origin 3200, IRIX, 4

(accessible)
green.cfs.ac.uk,
Manchester, UK

410 Time-shared 6 68.33

R10 Sun, Ultra, Solaris, 8,
pitcairn.mcs.anl.gov,
ANL, Chicago, USA

377 Time-shared 3 125.66

6.2.1 Resource Modeling

We modeled and simulated a number of time- and space-shared resources with different characteristics,
configuration, and capability as those in the WWG testbed. We have selected the latest CPUs models
AlphaServer ES40, Sun Netra 20, Intel VC820 (800EB MHz, Pentium III), and SGI Origin 3200 1X
500MHz R14k released by their manufacturers Compaq, Sun, Intel, and SGI respectively. The processing
capability of these PEs in simulation time-unit is modeled after the base value of SPEC CPU (INT) 2000
benchmark ratings published in [128]. To enable the users to model and express their application
processing requirements in terms of MI (million instructions) or MIPS (million instructions per second), we
assume the MIPS rating of PEs is same as the SPEC rating.



106

Table 6.2 shows characteristics of resources simulated and their PE cost per time unit in G$ (Grid
dollar). These simulated resources resemble the WWG testbed resources used in processing a parameter
sweep application using the Nimrod-G broker [102]. The PE cost in G$/unit time does not necessarily
reflects the cost of processing when PEs have different capability. The brokers need to translate it into the
G$ per MI (million instructions) for each resource. Such translation helps in identifying the relative cost of
resources for processing Gridlets on them.

6.2.2 Application Modeling

We have modeled a task farming application that consists of 200 jobs. In GridSim, these jobs are packaged
as Gridlets whose contents include the job length in MI, the size of job input and output data in bytes along
with various other execution related parameters when they move between the broker and resources. The job
length is expressed in terms of the time it takes to run on a standard resource PE with SPEC/MIPS rating of
100. Gridlets processing time is expressed in such a way that they are expected to take at least 100 time-
units with a random variation of 0 to 10% on the positive side of the standard resource. That means,
Gridlets’ job length (processing requirements) can be at least 10,000 MI with a random variation of 0 to
10% on the positive side. This 0 to 10% random variation in Gridlets’ job length is introduced to model
heterogeneity in different tasks.

Figure 6.3: Deadline and budget constrained (DBC) scheduling with cost-optimization.

Algorithm: DBC_Scheduling_with_Cost_Optimisation()

1. RESOURCE DISCOVERY: Identify resources that can be used in this execution with their
capability through the Grid Information Service.

2. RESOURCE TRADING: Identify cost of each of the resources in terms of CPU cost per
second and capability to be delivered per cost-unit.

3. If the user supplies D and B factors, then determine the absolute deadline and budget based on
the capability and cost of resources and user’s requirements.

4. SORT resources by increasing order of cost.

5. SCHEDULING: Repeat while there exist unprocessed jobs in application job list with a delay
of scheduling event period or occurrence of an event AND the time and process expenses are
within deadline and budget limits:

[SCHEDULE ADVISOR with Policy]

a. For each resource perform load profiling to establish the job consumption rate or the
available resource share through measure and extrapolation.

b. For each resource based on its job consumption rate or available resource share, predict
and establish the number of jobs a resource can process by the deadline.

c. For each resource in order:

i. If the number of jobs currently assigned to a resource is less than the predicted number
of jobs that a resource can consume, assign more jobs from unassigned job queue or
from the most expensive machines based on job state and feasibility. Assign job to a
resource only when there is enough budget available.

ii. Alternatively, if a resource has more jobs than it can complete by the deadline, move
those extra jobs to unassigned job queue.

6. [DISPATCHER with Policy]

Repeat the following steps for each resource if it has jobs to be dispatched:

• Identify the number of jobs that can be submitted without overloading the resource. Our
default policy is to dispatch jobs as long as the number of user jobs deployed (active or in
queue) is less than the number of PEs in the resource.



107

6.3 Deadline and Budget Constrained Cost Optimisation Scheduling
The steps for implementing DBC cost-optimisation scheduling algorithms within economic broker
simulator are shown in Figure 6.3. This algorithm attempts to process jobs as economically as possible
within the deadline and budget.

6.3.1 Scheduling Experiments with a Single User

In this experiment, we perform scheduling experiments with different values of deadline and budget
constraints (DBC) for a single user. The deadline is varied in simulation time from 100 to 3600 in steps of
500. The budget is varied from G$ 5000 to 22000 in steps of 1000. For this scenario, we performed
scheduling simulation for DBC cost-optimization algorithm. The number of Gridlets processed, deadline
utilized, and budget spent for different scheduling scenario is shown in Figure 6.4–Figure 6.7. From Figure
6.4, it can be observed that for a tight deadline (e.g., 100 time unit), the number of Gridlets processed
increased with the increase in budget value. Because, when a higher budget is available, the broker leases
expensive resources to process more jobs within the deadline. Alternatively, when scheduling with a low
budget value, the number of Gridlets processed increases as the deadline is relaxed (see Figure 6.5).

5000

9000

13000

17000

21000

10
0

60
0

11
00

16
00

21
00

26
00

31
00

36
00

0

20

40

60

80

100

120

140

160

180

200

Gridlets

Budget

Deadline

100

600

1100

1600

2100

2600

3100

3600

Figure 6.4: No. of Gridlets processed for different budget limits with a fixed deadline for each.



108

10
0

11
00 21

00 31
00

50
0070

0090
00

11
00

0

13
00

0

15
00

0

17
00

0

19
00

0

21
00

0

0

20

40

60

80

100

120

140

160

180

200

Gridlets

Deadline

Budget

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

18000

19000

20000

21000

22000

Figure 6.5: No. of Gridlets processed for different deadline limits with a fixed budget for each.

The impact of budget for different values of deadline is shown in Figure 6.6. In cost-optimization
scheduling, for a larger deadline value (see time utilization for deadline of 3600), the increase in budget
value does not have much impact on resource selection. This trend can also be observed from the budget
spent for processing Gridlets with different deadline constraints (see Figure 6.7). When the deadline is too
tight (e.g., 100), it is likely that the complete budget is spent for processing Gridlets within the deadline.

5000

9000

13000

17000

21000

10
0

60
0

11
00

16
00

21
00

26
00

31
00

36
00

0

500

1000

1500

2000

2500

3000

3500

4000

Deadline Time
Utilised

Budget

Deadline

100

600

1100

1600

2100

2600

3100

3600

Figure 6.6: Deadline time utilized for processing Gridlets for different values of deadline and budget.



109

50
0070

0090
00

11
00

0

13
00

0

15
00

0

17
00

0

19
00

0

21
00

0

10
0

11
00

21
00

31
00

0

5000

10000

15000

20000

25000

Budget
Spent

Budget

Deadline

100

600

1100

1600

2100

2600

3100

3600

Figure 6.7: Budget spent for processing Gridlets for different values of deadline and budget.

Three diagrams (Figure 6.8–Figure 6.10) show the selection of resources for processing Gridlets for
different budget values with a fixed deadline of 100, 1100, and 3100 (short, medium, and long deadline
value) respectively. It can be observed that when the deadline is low, the economic broker also leases
expensive resources to process Gridlets whenever the budget permits (see Figure 6.8). In this, all resources
have been used depending on the budget availability. When the deadline is increased to a high value (a
medium deadline of 1100), the broker processes as many Gridlets as possible on cheaper resources by the
deadline (see Figure 6.9) and utilizes expensive resources if required. When the deadline is highly relaxed
(a long deadline of 3100), the broker allocates Gridlets to the cheapest resource since it was able to process
all Gridlets within this deadline (see Figure 6.10). In all three diagrams (Figure 6.8 –Figure 6.10), the left
most solid curve marked with the label “All” in the resources axis represents the aggregation of all
resources and shows the total number of Gridlets processed for the different budgets.

5000

9000

13000

17000

21000

R
0R
1R
2R
3R
4R
5R
6R
7R
8R
9

R
10A

ll

0

20

40

60

80

100

120

140

160

180

200

Gridle ts
Completed

Budget

Resources
[DEADLINE = 100]

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

All

Figure 6.8: Gridlets processed on resources for different budget values with short deadline.



110

5000

10000

15000

20000

R
0R
1

R
2R
3R
4R
5R
6

R
7R
8R
9

R
10A

ll

0

20

40

60

80

100

120

140

160

180

200

Gridlets
Completed

Budget

Resources
[DEADLINE = 1100]

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

All

Figure 6.9: Gridlets processed on resources for different budget values with medium deadline.

5000

9000

13000

17000

21000

R
0R
1R
2R
3R
4R
5R
6R
7R
8R
9

R
10A

ll

0

20

40

60

80

100

120

140

160

180

200

Gridlets
Completed

Budget

Resources
[DEADLINE = 3100]

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

All

Figure 6.10: Gridlets processed on resources for different budget values with long deadline.

Let us now take a microscopic look at the allocation of resources at different times during the scheduling
experimentation. The two graphs (Figure 6.11, Figure 6.13, and Figure 6.14) show a trace of leasing
resources at different times during the scheduling experiment for processing Gridlets for different budget
values with a fixed deadline of 100, 1100, and 3100 (short, medium, and long deadline values) respectively.
It can be observed that when the deadline value is low, the economic broker also leases expensive resources
to process Gridlets whenever the budget permits. The broker had to allocate powerful resources even if they
are expensive since the deadline is too tight (see Figure 6.11 for Gridlets completed and Figure 6.12 for
budget spent in processing). But this is not the case when the deadline is highly relaxed (see Figure 6.14)—
the broker leased just one resource, which happened to process all Gridlets within the given deadline. From
the diagrams (Figure 6.11 and Figure 6.12), it can be observed that the resource R7 has processed more



111

Gridlets than the resource R6, but had to spend more budget on the resource R6 since it is more expensive
than the resource R7.

0

10

20

30

40

50

60

70

0.0
6

25.
48

25.
52

25.
55

26.
31

26.
38

26.
39

26.
53

26.
83

27.
25

27.
47

46.
61

50.
45

50.
62

50.
75

52.
89

53.
66

53.
86

58.
13

75.
74

79.
30

96.
03

101
.8

1

102
.0

3

Time [Deadline = 100, Budget = 22000]

G
ri

d
le

ts
P

ro
ce

ss
ed

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10

Figure 6.11: Trace of No. of Gridlets processed for a short deadline and high budget constraints.

0

1000

2000

3000

4000

5000

6000

7000

0.
06

25
.4

8

25
.5

2

25
.5

5

26
.3

1

26
.3

8

26
.3

9

26
.5

3

26
.8

3

27
.2

5

27
.4

7

46
.6

1

50
.4

5

50
.6

2

50
.7

5

52
.8

9

53
.6

6

53
.8

6

58
.1

3

75
.7

4

79
.3

0

96
.0

3

10
1.

81

10
2.

03

Time---> [Deadline=100 and Budget = 22000]

B
u

d
g

et
S

p
en

t

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

Figure 6.12: Trace of budget spent for short deadline and high budget constraints.



112

0

10

20

30

40

50

60

70

80

0.0
6

28.72
52.78

57.51
82.60

86.51

115.3
0

132.0
4

204.0
0

317.3
1

445.3
7

549.7
7

672.0
1

768.1
3

884.5
8

972.9
0

1084
.8

6

1091
.8

6

1098
.8

6

Time ---> [Deadline=1100, Budget=22,000]

G
ri

d
le

ts
P

ro
ce

ss
ed

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

Figure 6.13: Trace of No. of Gridlets processed for a medium deadline and low budget constraints.

0

50

100

150

200

250

0.
06 13

2

23
8

37
1

47
8

61
3

72
1

85
6

96
6

11
03

12
13

13
51

14
62

16
00

17
13

18
52

19
66

21
06

22
21

23
62

24
78

26
20

27
37

Time --> [Deadline = 3100, Budget = 6000]

G
ri

d
le

ts
P

ro
ce

ss
ed

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

Figure 6.14: Trace of No. of Gridlets processed for a long deadline and low budget constraints.

A trace of the number of Gridlets committed to resources at different times depending on their
performance, cost, and the user constraints (deadline and budget) and optimization requirements is shown
in Figure 6.15 and Figure 6.16 for deadline values of 100 and 1100 time units respectively. In both graphs
it can be observed the broker committed Gridlets to expensive resources only when it is required. It
committed as many Gridlets as the cheaper resources can process by the deadline. The remaining Gridlets
were assigned to expensive resources. The broker used expensive resources in the beginning and continued
to use cheaper resources until the end of the experiment. This ability of economic Grid broker to select



113

resources dynamically at runtime demonstrates its adaptive capability driven by the user’s quality of
service requirements.

0

10

20

30

40

50

60

70

0.
06

25.4
8

25
.5

2
25.

55
26.3

1
26

.3
8

26
.3

9
26.

53
26

.8
3

27
.2

5
27.

47
46

.6
1

50
.4

5
50.

62
50

.7
5

52
.8

9
53.

66
53

.8
6

58
.1

3
75

.7
4

79.
30

96
.0

3

10
1.8

1

102
.0

3

Time --> [Deadline = 100, Budget=22000]

G
ri

d
le

ts
C

o
m

m
itt

ed

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

Figure 6.15: Trace of the no. of Gridlets committed for a short deadline and high budget constraints.

0

10

20

30

40

50

60

70

80

90

0.
06

28
.7

1
28

.7
9

57
.4

7
57

.6
2
86

.3
2
86

.5
7

11
5.

30

11
5.

62

17
7.

52

27
4.

60

37
8.

03

47
8.

59

57
6.

60

67
2.

01

76
4.

77

85
5.

03

94
2.

87

10
28

.2
9

10
86

.8
6

10
92

.8
6

10
98

.8
6

Time --> [Deadline = 1100, Budget = 22000]

G
ri

d
le

ts
C

o
m

m
it

te
d

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

Figure 6.16: Trace of the no. of Gridlets committed for a medium deadline and high budget
constraints.

6.3.2 Scheduling Experiments with Multiple Competing Users

In the second experiment, we explore distributed economic scheduling for a varying number of users
competing for the same set of resources using the DBC constrained cost-optimisation scheduling algorithm.
All users are modeled to have similar requirements to enable comparison among them and understand the
overall scenario. Each user application contains 200 Gridlets with small variation as explained in



114

application modeling section. We modeled varying number of users in series from 1, 10, 20, and so on up
to 100 and each with their own broker scheduling Gridlets on simulated WWG testbed resources (listed in
Table 6.2). We explored scheduling of Gridlets for different budget values varied from 5000 to 22000 in
step of 1000. For this scenario, we performed two scheduling experiments with two different values of
deadline for DBC constrained cost minimization algorithm.

User Deadline = 3100 time units

The number of Gridlets processed, average time at which simulation is stopped, and budget spent for
different scheduling scenario for each user with the deadline constraint of 3100 time units is shown in
Figure 6.17, Figure 6.18, and Figure 6.19. From Figure 6.17, it can be observed that as the number of users
competing for the same set of resources increase, the number of Gridlets processed for each user is
decreasing because they have tight deadline. Whether there are few users (e.g., 1 or 10 users in this case),
they are able to process all jobs in most cases when the budget is increased. Figure 6.18 shows the time at
which broker terminated processing of Gridlets. When a large number of users are competing (e.g., 100) for
resources, it can be observed that the broker exceeded the deadline. This is because the broker initially
planned scheduling Gridlets for the period of deadline, but that schedule had to be terminated because
competing users had already occupied high resource share well before the recalibration phase (the first
establishment of the amount of resource share available to the user, which of course can change). Figure
6.19 shows the average budget spent by each user for processing Gridlets shown in Figure 6.17, which is
also clear from the graphic similarity between both diagrams when a large number of users are competing
for resources.

50
0080

0011
00

0

14
00

0

17
00

0

20
00

0

1
102030405060708090

10
0

0

20

40

60

80

100

120

140

160

180

200

Gridlets
processed

Budget

Users
[Deadline = 3100]

1

10

20

30

40

50

60

70

80

90

100

Figure 6.17: No. of Gridlets processed for each user when a varying number of users competing for
resources.

When there are a large number of users arriving at different times, they are likely to impact on the
schedule and the execution time of jobs already deployed on resources. The broker waiting for the return
of jobs that are deployed on resources leads to the termination time exceeding the soft deadline, unless the
execution of jobs is cancelled immediately.



115

5000

8000

11000

14000

17000

20000

1
102030405060708090

10
0

0

1000

2000

3000

4000

5000

6000

Time
(Termination)

Budget

Users
[Deadline=3100]

1

10

20

30

40

50

60

70

80

90

100

Figure 6.18: The average time at which the user experiment is terminated when a number of users
are competing for resources.

50
0080

0011
00

0

14
00

0

17
00

0

20
00

0

1
102030405060708090

10
0

0

2000

4000

6000

8000

10000

12000

14000

16000

Budget Spent
(by each user)

Budget

Users
[Deadline=3100]

1

10

20

30

40

50

60

70

80

90

100

Figure 6.19: The average budget spent by each user for processing Gridlets.

User Deadline = 10000 time units

The number of Gridlets processed, average time at which simulation is stopped, and budget spent for
different scheduling scenario for each user with the deadline constraint of 10000 time units is shown in



116

Figure 6.20, Figure 6.21, and Figure 6.22. In this experiment, the number of Gridlets processed for each
user improved substantially due to the relaxed deadline constraint compared to the previous experiment
(see Figure 6.17 and Figure 6.20). As the number of users competing for resources increased, the number
of Gridlets processed for each user decreased. But when the budget is increased, the number of Gridlets
processed increased as well. Unlike the previous experiment, the broker is able to learn and make better
predictions on the availability of resource share and the number of Gridlets that can be finished by
deadline. As the deadline was sufficient enough to revisit the past scheduling decisions, the broker is able
to ensure that the experiment is terminated within the deadline for most of the time (see Figure 6.21). The
average budget spent by each user for processing Gridlets is shown in Figure 6.22, which is also clear from
the graphic similarity between Figure 6.20 and Figure 6.22 when a large number of users are competing for
resources. However, up to the medium number of users (1-40 users), they were able to get many Gridlets
processed, but decreased with the increasing number of users competing for resources, which means the
increase in processing cost.

50
0080

0011
00

0

14
00

0

17
00

0

20
00

0

1
102030405060708090

10
0

0

20

40

60

80

100

120

140

160

180

200

Gridlets
processed

Budget

Users [Deadline=10000]

1

10

20

30

40

50

60

70

80

90

100

Figure 6.20: No. of Gridlets processed for each user with varying number of users competing for
resources.

6.4 Deadline and Budget Constrained Time Optimisation Scheduling
In this experiment, we perform scheduling experiments with different values of deadline and budget
constraints (DBC) for a single user using the DBC constrained time-optimisation scheduling algorithm
shown in Figure 6.23. The deadline is varied in simulation time from 100 to 3600 in steps of 500. The
budget is varied from G$ 5000 to 22000 in steps of 1000. The number of Gridlets processed, time spent,
and budget spent for different scheduling scenario is shown in Figure 6.24, Figure 6.25, and Figure 6.26.
The number of Gridlets processed increased with the increase in budget or deadline value (see Figure 6.25
for a tight deadline value say 100). This is because, when a higher budget is available, the broker is able to
select expensive resources to process more jobs as quickly as possible. The increase in budget has impact
not only on the number of Gridlets completed; it also has impact on the completion time. The application
processing completion time decreases with the increase in budget value (see Figure 6.25). When a higher
budget is available, the broker schedules jobs on even expensive resources depending on their capability
and availability (e.g., resources R6 and R7) to complete the processing at the earliest possible time (see
Figure 6.27). This also means that as the application processing completion time decreases, the processing
cost increases as powerful and expensive resources are used in processing jobs (see Figure 6.28).



117

5000

9000

13000

17000

21000

110203040506070809010
0

0

2000

4000

6000

8000

10000

12000

Time
(termination)

Budget

Users [Deadline=10000]

1

10

20

30

40

50

60

70

80

90

100

Figure 6.21: The average time at which the user experiment is terminated with varying number of
users competing for resources.

50
0080

0011
00

0

14
00

0

17
00

0

20
00

0

1
102030405060708090

10
0

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Budget spent
(by each user)

Budget

Users [Deadline=10000]

1

10

20

30

40

50

60

70

80

90

100

Figure 6.22: The average budget spent by each user for processing Gridlets.



118

Figure 6.23: Deadline and budget constrained (DBC) time optimisation scheduling algorithm.

Algorithm: DBC_Scheduling_with_Time_Optimisation()

1. RESOURCE DISCOVERY: Identify the resources and their capability using the Grid information
services.

2. RESOURCE TRADING: Identify the cost of all resources and the capability to be delivered per
cost-unit. The resource cost can be expressed in units such as processing cost-per-MI, cost-per-job,
CPU cost per time unit, etc. and the scheduler needs to choose suitable unit for comparison.

3. If the user supplies D and B-factors, then determine the absolute deadline and budget based on the
capability of resources and their cost, and the application processing requirements (e.g., total MI
required).

4. SCHEDULING: Repeat while there exist unprocessed jobs and the current time and processing
expenses are within the deadline and budget limits. [It is triggered for each scheduling event or
whenever a job completes. The event period is a function of deadline, job processing time,
rescheduling overhead, resource share variation, etc.]:

[SCHEDULE ADVISOR with Policy]

a.) For each resource, predict and establish the job consumption rate or the available resource
share through the measure and extrapolation strategy taking into account the time taken to
process previous jobs.

b.) If any of the resource has jobs assigned to it in the previous scheduling event, but not dispatched
to the resource for execution and there is variation in resource availability, then move
appropriate number of jobs to the Unassigned-Jobs-List. This helps in updating the whole
schedule based on the latest resource availability information.

c.) Repeat the following steps for each job in the Unassigned-Jobs-List:

• Select a job from the Unassigned-Jobs-List.

• Create a resource group containing affordable resources (i.e., whose processing price is
less than or equal to the remaining budget per job).

• For each resource in the resource group, calculate/predict the job completion time taking
into account previously assigned jobs and the job completion rate and resource share
availability.

• Sort resources in the resource group by the increasing order of job completion time.

• Assign the job to the first resource in the resource group and remove it from the
Unassigned-Jobs-List if the predicted job completion time is less than the deadline.

5. [DISPATCHER with Policy]

Repeat the following steps for each resource if it has jobs to be dispatched:

• Identify the number of jobs that can be submitted without overloading the resource.
Our default policy is to dispatch jobs as long as the number of user jobs deployed
(active or in queue) is less than the number of PEs in the resource.



119

50
00

80
00 11

00
0 14
00

0

17
00

0

20
00

0

10
0

60
0

11
00

16
00

21
00

26
00

31
00

36
00

0

20

40

60

80

100

120

140

160

180

200

Gidlets
Completed

Budget

Deadline

100

600

1100

1600

2100

2600

3100

3600

Time Optimise

Figure 6.24: No. of Gridlets processed for different budget and deadline limits.

50
00

70
00

90
00

11
00

0

13
00

0

15
00

0

17
00

0

19
00

0

21
00

0

10
0

11
00 21

00 31
00

0

500

1000

1500

2000

2500

3000

3500

4000

Time
Utilised

Budget
Deadline

100

600

1100

1600

2100

2600

3100

3600

Time-Optimise

Figure 6.25: The time spent in processing Gridlets using the DBC time optimisation.



120

5000

9000

13000

17000

21000

10
0

60
0

11
00

16
00

21
00

26
00

31
00

36
00

0

5000

10000

15000

20000

25000

Budget
Spent

Budget

Deadline

100

600

1100

1600

2100

2600

3100

3600

Time Optimise

Figure 6.26: The budget spent in processing Gridlets using the DBC time optimisation.

50
00 80

00 11
00

0

14
00

0

17
00

0

20
00

0

R
0R
1R
2R
3R
4R
5R
6R
7R
8R
9

R
10

0

20

40

60

80

100

120

140

160

180

200

Gridlets
Completed

Budget

Resources

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

Time OptimiseDeadline = 3100

Figure 6.27: Selection of different resources for processing Gridlets for different budget limits.



121

50
00 70

00 90
00

11
00

0

13
00

0

15
00

0

17
00

0

19
00

0

21
00

0

R
0R

2R
4R
6R
8

R
10

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Budget
Spent

Budget
Resources

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

Deadline = 3100 Time Optimise

Figure 6.28: The budget spent in processing Gridlets on different resources for different budgets.

6.5 Comparing the Cost and Time Optimisation Scheduling
The completion time and the budget spent for processing application jobs scheduled using the cost and the
time optimisation strategies is shown in Figure 6.29 and Figure 6.30. In both scheduling optimisation
scenarios, the deadline value is set to 3100 time units and budget value is varied from 5000 to 22000 in
steps of 1000. In general, as the budget value increases, the completion time decreases and the processing
cost increases when the time-optimisation scheduling strategy is used; whereas, the completion time
remains closer to the deadline and processing cost decreases when the cost-optimisation scheduling is used.

Note that, when the available budget per job is less than the cost of processing a job on any resource, no
jobs are scheduled for processing in the case of time-optimisation scheduling. This can be observed from
Figure 6.30 when the budget is 5000—the budget per job is less than the cost of processing even on the
cheapest resource and no jobs are processed, hence the budget spent in processing is shown as 0. Such a
condition can also be strictly enforced within the cost-optimisation strategy.

The time-optimisation scheduling algorithm uses as many resources as it can in parallel as long as the
budget is available since minimizing the completion time is a major goal. Whereas, the cost-optimisation
scheduling algorithm uses resources, giving the first preference to cheaper resources, as long as the
deadline can be met, since minimizing the processing cost is a major goal. That means, the users can
choose a scheduling strategy that meets their quality of service requirements. When the work is urgent and
the results are needed as quickly as possible, they can choose the time optimisation strategy and place a
limit on the processing expenses. If they do not have immediate requirement for results, they can choose
the cost-optimisation scheduling strategy and minimize the processing cost.

In the DBC time optimization scheduling, the increase in budget value has much impact on resource
selection and the completion time. When a higher budget is available, the increase in deadline to a larger
value does not have much impact on a completion time or budget spent (see Figure 6.25 and Figure 6.26).
This situation is very much different for the cost optimisation scheduling where deadline parameter drives
the selection of resources.



122

0

500

1000

1500

2000

2500

3000

3500

50
00

70
00

90
00

11
00

0

13
00

0

15
00

0

17
00

0

19
00

0

21
00

0

Budget

D
ea

d
li

n
e

S
p

en
t

Cost Optimisation

Time Optimisation

Deadline = 3100 Completion Time

Figure 6.29: The time spent in processing application jobs using time cost and time optimisation
scheduling algorithms given different budget limits.

0

5000

10000

15000

20000

25000

50
00

70
00

90
00

11
00

0

13
00

0

15
00

0

17
00

0

19
00

0

21
00

0

Budget

B
u

d
g

et
S

p
en

t

Cost Optimisation

Time Optimisation

Deadline = 3100 Processing Expenses

Figure 6.30: The budget spent in processing application jobs using time cost and time optimisation
scheduling algorithms given different budget limits.



123

6.6 DBC Cost-Time Optimisation Scheduling
The DBC cost-time optimisation scheduling algorithm (shown in Figure 6.31) extends the cost-optimisation
algorithm to optimise the time without incurring additional processing expenses. This is accomplished by
applying the time-optimisation algorithm to schedule jobs on resources having the same processing cost.

Figure 6.31: Deadline and budget constrained (DBC) scheduling with cost-time optimisation.

6.6.1 Experiment Setup

The resources used in evaluating the performance of cost-time optimisation scheduling are show in Table

Algorithm: DBC_Scheduling_with_Cost_Time_Optimisation()

1. RESOURCE DISCOVERY: Identify the resources and their capability using the Grid information services.

2. RESOURCE TRADING: Identify the cost of all resources and the capability to be delivered per cost-unit. The
resource cost can be expressed in units such as processing cost-per-MI, cost-per-job, CPU cost per time unit,
etc. and the scheduler needs to choose suitable unit for comparison.

3. If the user supplies D and B-factors, then determine the absolute deadline and budget based on the capability
of resources and their cost, and the application processing requirements (e.g., total MI required).

4. SCHEDULING: Repeat while there exist unprocessed jobs and the current time and processing expenses are
within the deadline and budget limits. [It is triggered for each scheduling event or whenever a job completes.
The event period is a function of deadline, job processing time, rescheduling overhead, resource share
variation, etc.]:

[SCHEDULE ADVISOR with Policy]

a. For each resource, predict and establish the job consumption rate or the available resource share
through the measure and extrapolation strategy taking into account the time taken to process previous
jobs.

b. SORT the resources by increasing order of cost. If two or more resources have the same cost,
order them such that powerful ones (e.g., higher job consumption rate or resource share availability, but
the first time based on the total theoretical capability, say the total MIPS) are preferred first.

c. Create resource groups containing resources with the same cost.

d. SORT the resource groups with the increasing order of cost.

e. If any of the resource has jobs assigned to it in the previous scheduling event, but not
dispatched to the resource for execution and there is variation in resource availability, then move
appropriate number of jobs to the Unassigned-Jobs-List. This helps in updating the whole schedule based
on the latest resource availability information.

f. Repeat the following steps for each resource group as long as there exist unassigned jobs:

Repeat the following steps for each job in the Unassigned-Jobs-List depending on the
processing cost and the budget availability: [It uses the time optimisation strategy.]

• Select a job from the Unassigned-Jobs-List.

• For each resource, calculate/predict the job completion time taking into account previously
assigned jobs and the job completion rate and resource share availability.

• Sort resources by the increasing order of completion time.

• Assign the job to the first resource and remove it from the Unassigned-Jobs-List if the predicted
job completion time is less than the deadline.

5. [DISPATCHER with Policy]

Repeat the following steps for each resource if it has jobs to be dispatched:

• Identify the number of jobs that can be submitted without overloading the resource. Our default
policy is to dispatch jobs as long as the number of user jobs deployed (active or in queue) is less
than the number of PEs in the resource.



124

6.3. The characteristics of resources is same as those used in previous experiment except that the price of
resource R4 is set to the same value as the resource R8 to demonstrate the superior ability of cost-time
optimisation scheduling algorithm over the cost optimisation scheduling algorithm. It can be noted some of
the resources in Table 6.3 have the same MIPS per G$. For example, both R4 and R8 have the same cost
and so resources R2, R3, and R10.

A task farming application containing 200 jobs used in this scheduling experiment is the same as the one
used in previous experiments.

Table 6.3: Resources used in Cost-Time scheduling simulation.

Resource
Name in

Simulation

Simulated Resource
Characteristics

Vendor, Resource
Type, Node OS, No of

PEs

Equivalent Resource
in Worldwide Grid

(Hostname,
Location)

A PE
SPEC/
MIPS
Rating

Resource
Manager

Type

Price

(G$/PE
time
unit)

MIPS
per G$

R0
Compaq, AlphaServer,

CPU, OSF1, 4

grendel.vpac.org,

VPAC, Melb,
Australia

515 Time-shared 8 64.37

R1 Sun, Ultra, Solaris, 4
hpc420.hpcc.jp,

AIST, Tokyo, Japan
377 Time-shared 4 94.25

R2 Sun, Ultra, Solaris, 4
hpc420-1.hpcc.jp,

AIST, Tokyo, Japan
377 Time-shared 3 125.66

R3 Sun, Ultra, Solaris, 2
hpc420-2.hpcc.jp,

AIST, Tokyo, Japan
377 Time-shared 3 125.66

R4
Intel, Pentium/VC820,

Linux, 2
barbera.cnuce.cnr.it,

CNR, Pisa, Italy
380 Time-shared 1 380.0

R5
SGI, Origin 3200,

IRIX, 6
onyx1.zib.de,

ZIB, Berlin, Germany
410 Time-shared 5 82.0

R6
SGI, Origin 3200,

IRIX, 16
Onyx3.zib.de,

ZIB, Berlin, Germany
410 Time-shared 5 82.0

R7
SGI, Origin 3200,

IRIX, 16

mat.ruk.cuni.cz,
Charles U., Prague,

Czech Republic

410 Space-shared 4 102.5

R8
Intel, Pentium/VC820,

Linux, 2
marge.csm.port.ac.uk,

Portsmouth, UK
380 Time-shared 1 380.0

R9
SGI, Origin 3200,

IRIX, 4 (accessible)
green.cfs.ac.uk,
Manchester, UK

410 Time-shared 6 68.33

R10 Sun, Ultra, Solaris, 8,
pitcairn.mcs.anl.gov,
ANL, Chicago, USA

377 Time-shared 3 125.66

6.6.2 Scheduling Experiments with Cost and Cost-Time Optimisation Strategies

We perform both cost and cost-time optimisation scheduling experiments with different values of deadline
and budget constraints (DBC) for a single user. The deadline is varied in simulation time from 100 to 3600
in steps of 500. The budget is varied from G$ 5000 to 22000 in steps of 1000. The number of Gridlets
processed, deadline utilized, and budget spent for the DBC cost-optimisation scheduling strategy is shown
in Figure 6.32a, Figure 6.32c, and Figure 6.32e, and for the cost-time optimisation scheduling strategy is
shown in Figure 6.32b, Figure 6.32d, and Figure 6.32f. In both cases, when the deadline is low (e.g., 100
time unit), the number of Gridlets processed increases as the budget value increases. When a higher budget
is available, the broker leases expensive resources to process more jobs within the deadline. Alternatively,
when scheduling with a low budget value, the number of Gridlets processed increases as the deadline is
relaxed.

The impact of budget for different values of deadline is shown in Figure 6.32e and Figure 6.32f for cost
and cost-time strategies. For a larger deadline value (see the time utilization for deadline of 3600), the
increase in budget value does not have much impact on resource selection. When the deadline is too tight



125

(e.g., 100), it is likely that the complete budget is spent for processing Gridlets within the deadline.

50
00 70

00 90
00 11
00

0

13
00

0

15
00

0

17
00

0

19
00

0

21
00

0

10
0

60
0

11
00

16
00

21
00

26
00

31
00

36
00

0

20

40

60

80

100

120

140

160

180

200

Gridlets
Completed

Budget

Deadline

100

600

1100

1600

2100

2600

3100

3600

Cost-Optimise

(a) No. of Gridlets processed.

50
00 70

00 90
00

11
00

0

13
00

0

15
00

0

17
00

0

19
00

0

21
00

0

10
0

60
0

11
00

16
00

21
00

26
00

31
00

36
00

0

20

40

60

80

100

120

140

160

180

200

Grid
Completed

Budget

Deadline

100

600

1100

1600

2100

2600

3100

3600

Cost-Time Optimise

(b) No. of Gridlets processed

50
00 70

00 90
00

11
00

0

13
00

0

15
00

0

17
00

0

19
00

0

21
00

0

10
0

60
0

11
00

16
00

21
00

26
00

31
00

36
00

0

500

1000

1500

2000

2500

3000

Time
Spent

Budget

Deadline

100

600

1100

1600

2100

2600

3100

3600

Cost Optimise

(c) Time spent for processing Gridlets.
50

00 70
00 90

00

11
00

0

13
00

0

15
00

0

17
00

0

19
00

0

21
00

0

10
0

60
0

11
00

16
00

21
00

26
00

31
00

36
00

0

500

1000

1500

2000

2500

3000

Time
Spent

Budget

Deadline

100

600

1100

1600

2100

2600

3100

3600

Cost-Time Optimise

(d) Time spent for processing Gridlets.

50
0070

0090
00

11
00

0

13
00

0

15
00

0

17
00

0

19
00

0

21
00

0

10
0

60
0

11
00

16
00

21
00

26
00

31
00

36
00

0

5000

10000

15000

20000

25000

Budget
Spent

Budget

Deadline

100

600

1100

1600

2100

2600

3100

3600

Cost Optimise

(e) Budget spent for processing Gridlets.

50
0070

0090
00

11
00

0

13
00

0

15
00

0

17
00

0

19
00

0

21
00

0

10
0

60
0

11
00

16
00

21
00

26
00

31
00

36
00

0

5000

10000

15000

20000

25000

Budget
Spent

Budget

Deadline

100

600

1100

1600

2100

2600

3100

3600

Cost-Time Optimise

(f) Budget spent for processing Gridlets.

Figure 6.32: The number of Gridlets processed, time, and budget spent for different deadline and
time limits when scheduled using the cost and cost-time optimisation algorithms.

It can be observed that the number of Gridlets processed and the budget-spending pattern is similar for
both scheduling strategies. However, the time spent for the completion of all the jobs is significantly
different (see Figure 6.32c and Figure 6.32d), as the deadline becomes relaxed. For deadline values from
100 to 1100, the completion time for both cases is similar, but as the deadline increases (e.g., 1600 to
3600), the experiment completion time for cost-time scheduling optimisation strategy is much less than the



126

cost optimisation scheduling strategy. This is because when there are many resources with the same MIPS
per G$, the cost-time optimisation scheduling strategy allocates jobs to them using the time-optimisation
strategy for the entire deadline duration since there is no need to spent extra budget for doing so. This does
not happen in case of cost-optimisation strategy—it allocates as many jobs that the first cheapest resource
can complete by the deadline and then allocates the remaining jobs to the next cheapest resources.

A trace of resource selection and allocation using cost and cost-time optimisation scheduling strategies
shown in Figure 6.33 indicates their impact on the application processing completion time. When the
deadline is tight (e.g., 100), there is high demand for all the resources in short time, the impact of cost and
cost-time scheduling strategies on the completion time is similar as all the resources are used up as long as
budget is available to process all jobs within the deadline (see Figure 6.33a and Figure 6.33b). However,
when the deadline is relaxed (e.g., 3100), it is likely that all jobs can be completed using the first few
cheapest resources. In this experiment there were resources with the same cost and capability (e.g., R4 and
R8), the cost optimisation strategy selected resource R4 to process all the jobs (see Figure 6.33c); whereas
the cost-time optimisation strategy selected both R4 and R8 (see Figure 6.33d) since both resources cost the
same price and completed the experiment earlier than the cost-optimisation scheduling (see Figure 6.32c
and Figure 6.32d). This situation can be observed clearly in scheduling experiments with a large budget for
different deadline values (see Figure 6.34). Note that the left most solid curve marked with the label “All”
in the resources axis in Figure 6.34 represents the aggregation of all resources.

50
00 80

00 11
00

0

14
00

0

17
00

0

20
00

0

R
0R
1R
2R
3R
4R
5R
6R
7R
8R
9

R
10

0

10

20

30

40

50

60

70

Gridlets
Completed

Budet

Resources

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

Cost-OptimiseDeadline = 100

(a) Cost optimisation with a short deadline.

50
00 80

00

11
00

0

14
00

0

17
00

0

20
00

0

R
0R
1R
2R
3R
4R
5R
6R
7R
8R
9

R
10

0

10

20

30

40

50

60

70

Gridlets
Completed

Budget

Resources

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

Deadline = 100 Cost-Time Optimise

(b) Cost-time optimisation with a short deadline.

50
00 80

00 11
00

0

14
00

0

17
00

0

20
00

0

R
0R
1R
2R
3R
4R
5R
6R
7R
8R
9

R
10A

ll

0

20

40

60

80

100

120

140

160

180

200

Gridlets
Completed

Budget

Resources

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

All

Cost-OptimiseDeadline = 3100

(c) Cost optimisation with a long deadline.

5000

9000

13000

17000

21000

R
0R
1R
2R
3R
4R
5R
6R
7R
8R
9

R
10A

ll

0

20

40

60

80

100

120

140

160

180

200

Gridlets
Completed

Budget

Resources

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

All

Cost-Time OptimisationDeadline = 3100

(d) Cost-time optimisation with a long deadline.

Figure 6.33: The number of Gridlets processed and resources selected for different budget values
with a long deadline value when scheduled using the cost and cost-time optimisation algorithms.

As the deadline increases, the cost optimisation algorithm predominantly scheduled jobs on the resource
R4 (see Figure 6.34a) whereas, the cost-time optimisation algorithm scheduled jobs on resources R4 and
R8 (see Figure 6.34b), the first two cheapest resources with the same cost. Therefore, the application



127

scheduling using the cost-time optimisation algorithm is able to finish earlier compared to the one
scheduled using the cost optimisation algorithm (see Figure 6.35) and both strategies have spent the same
amount of budget for processing its jobs (see Figure 6.36). The completion time for cost optimisation
scheduling continued to increase with increase of the deadline as the broker allocated more jobs to the
resource R4 and less to the resource R8. However, the completion time for deadline values 3100 and 3660
is the same as the previous one since the broker allocated jobs to only resource R4. This is not the case with
the cost-time optimisation scheduling since jobs are allocated proportionally to both resources R4 and R8
and thus minimizing the completion time without spending any extra budget.

10
0

60
0

11
00

16
00

21
00

26
00

31
00

36
00

R
0R
1R
2R
3R
4R
5R
6R
7R
8R
9

R
10A

ll

0

20

40

60

80

100

120

140

160

180

200

Gridlets
Processed

Deadline

Resources

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

All

Cost OptimiseBudget = 22,000

(a) Resource selection when the budget is high.

10
0

60
0

11
00

16
00

21
00

26
00

31
00

36
00

R
0R
1R
2R
3R
4R
5R
6R
7R
8R
9

R
10A

ll

0

20

40

60

80

100

120

140

160

180

200

Gridlets
Processed

Deadline

Resources

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

All

Cost-Time OptimisationBudget = 22,000

(b) Resource selection when the budget is high.

Figure 6.34: The number of Gridlets processed and resources selected for different deadline values
with a large budget when scheduled using the cost and cost-time optimisation algorithms.

0

500

1000

1500

2000

2500

3000

100 600 1100 1600 2100 2600 3100 3600

Deadline

T
im

e
S

p
en

t

Cost Optimise

Cost-Time Optimise

Budget = 22,000

Figure 6.35: The time spent for processing application jobs for different deadline constraints with a
large budget when scheduled using the cost and cost-time optimisation algorithms.



128

100 600 1100 1600 2100 2600 3100 3600

C
os

t
O

pt
im

is
e

C
os

t-
T

im
e

O
pt

im
is

e

0

5000

10000

15000

20000

25000

Budget
Spent

Deadline

Cost Optimise

Cost-Time Optimise
Budget = 22,000

Figure 6.36: The budget spent for processing application jobs for different deadline constraints with
a large budget when scheduled using the cost and cost-time optimisation algorithms.

Let us now take a microscopic look at the allocation of resources when a moderate deadline and large
budget is assigned. A trace of resource allocation and the number of Gridlets processed at different times
when scheduled using the cost and cost-time optimisation algorithms is shown in Figure 6.37 and Figure
6.38. It can be observed that for both the strategies, the broker used the first two cheapest resources, R4 and
R8 fully. Since the deadline cannot be completed using only these resources, it used the next cheapest
resources R2, R3, and R10 to make sure that deadline can be meet. The cost optimisation strategy allocated
Gridlets to resource R10 only, whereas the cost-time optimisation allocated Gridlets to resources R2, R3,
and R10 as they cost the same price. Based on the availability of resources, the broker predicts the number
of Gridlets that each resource can complete by the deadline and allocates to them accordingly (see Figure
6.39 and Figure 6.40). At each scheduling event, the broker evaluates the progress and resource availability
and if there is any change, it reschedules some Gridlets to other resources to ensure that the deadline can be
meet. This can be observed in Figure 6.39 and Figure 6.40—the broker allocated a few extra Gridlets to
resource R10 (cost-optimisation strategy) and resources R2, R3, and R10 (cost-time optimisation strategy)
during the first few scheduling events.



129

0

10

20

30

40

50

60

70

80

90

0.
06

26
.5

9

53
.1

1

79
.6

4

10
5.

33

13
1.

64

18
4.

27

23
6.

91

31
5.

85

36
8.

49

44
7.

43

50
0.

07

57
9.

01

63
1.

65

71
0.

59

76
3.

22

84
2.

17

89
4.

80

97
3.

75

10
26

.3
8

10
98

.4
3

Time

G
ri

d
le

ts
C

o
m

p
le

te
d

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R4
R8

R10

Deadline=1100, Budget=22,000 Cost Optimise

Figure 6.37: Trace of No. of Gridlets processed on resources for a medium deadline and high budget
constraints when scheduled using the cost optimisation strategy.

0

10

20

30

40

50

60

70

80

90

0.
06

26
.5

9

52
.7

0

53
.1

1

79
.0

1

10
5.

33

15
7.

96

23
6.

91

28
9.

54

34
2.

17

42
1.

12

47
3.

75

55
2.

70

60
5.

33

68
4.

28

73
6.

91

81
5.

86

86
8.

49

94
7.

44

10
00

.0
7

10
79

.0
2

Time

G
ri

d
le

ts
co

m
p

le
te

d

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R10

Deadline=1100, Budget=22,000 Cost-Time Optimise

R4

R8

R2

R3

Figure 6.38: Trace of No. of Gridlets processed on resources for a medium deadline and high budget
constraints when scheduling using the cost-time optimisation strategy.



130

0

10

20

30

40

50

60

70

80

90

0.
06

26
.5

9

53
.1

1

79
.6

4

10
5.

33

13
1.

64

18
4.

27

23
6.

91

31
5.

85

36
8.

49

44
7.

43

50
0.

07

57
9.

01

63
1.

65

71
0.

59

76
3.

22

84
2.

17

89
4.

80

97
3.

75

10
26

.3
8

10
98

.4
3

Time

G
ri

d
le

ts
C

o
m

m
it

te
d

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

Deadline=1100, Budget=22000 Cost Optimise

R10

R4

R8

Figure 6.39: Trace of the number of Gridlets committed to resources for a medium deadline and high
budget constraints when scheduled using the cost optimisation strategy.

0

10

20

30

40

50

60

70

80

90

0.
06

26
.5

9

52
.7

0

53
.1

1

79
.0

1

10
5.

33

15
7.

96

23
6.

91

28
9.

54

34
2.

17

42
1.

12

47
3.

75

55
2.

70

60
5.

33

68
4.

28

73
6.

91

81
5.

86

86
8.

49

94
7.

44

10
00

.0
7

10
79

.0
2

Time

G
ri

d
le

ts
C

o
m

m
it

te
d

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R4

R8

R10

Deadline=1100, Budget=22000 Cost-Time Optimise

Figure 6.40: Trace of the number of Gridlets committed to resources for a medium deadline and high
budget constraints when scheduled using the cost-time optimisation strategy.

In summary, when there are multiple resources with the same cost and capability, the cost-time
optimisation algorithm schedules jobs on them using the time-optimisation strategy for the deadline period.
The results of scheduling experiments for many scenarios with a different combination of the deadline and
budget constraints, we observe that applications scheduled using the cost-time optimisation are able to
complete earlier than those scheduled using the cost optimisation algorithm without incurring any extra
expenses. This proves the superiority of the new deadline and budget constrained cost-time optimisation
algorithm in scheduling jobs on global Grids.



131

6.7 Summary and Conclusion
We discussed the use of computational economy as a metaphor for devising scheduling strategies for large-
scale applications on distributed resources. We used the GridSim toolkit in simulating an economic-based
Grid resource broker that supports deadline and budget-based scheduling. We simulated and evaluated
performance of scheduling algorithms with cost, time, and cost-time optimisation strategies for a variety of
scenarios. The broker is able allocate resources depending on the users’ quality of service requirements
such as the deadline, budget, and optimisation strategy. The performance evaluation results at microscopic
level reveal their impact on the application processing cost and time; and demonstrate the usefulness of
allowing uses to trade-off between the timeframe and processing cost depending on their QoS
requirements. Also, these extensive simulation studies demonstrate the suitability of GridSim for
developing simulators for scheduling in parallel and distributed systems.

Software Availability
The economic Grid resource broker simulator with source code can be downloaded from the GridSim
project website:

http://www.buyya.com/gridsim/


