Chapter 5

GridSim: A Toolkit for Modeling and Simulation of Grid
Resource Management and Scheduling

This chapter presents the design and implementation of GridSim, atoolkit for modelling and simulation of
resources and application scheduling in large-scale parallel and distributed computing environments. The
requirements for simulating complex systems are identified. We discuss various mechanisms used by
GridSim to support the simulation of Grid entities—resources, users, application tasks, and
schedulers/brokers—and their characteristics using discrete events. GridSim supports the creation of
repeatable and controllable Grid environments for quicker performance evaluation of scheduling strategies
under different scenarios such as varying number of resources and users with different requirements. A
recipe for developing application scheduling simulators using the GridSim toolKit is presented at the end.

5.1 Introduction

In order to demonstrate the effectiveness of resource brokers and associated scheduling algorithms, their
performance needs to be evaluated under different scenarios such as varying the number of resources and
users with different requirements. In a real Grid environment, it is hard and perhaps even impossible to
perform scheduler performance evaluation in a repeatable and controllable manner for different
scenarios—the availability of resources and their load continuously varies with time and it is impossible for
an individual user/domain to control activities of other users in different administrative domains.

The designers of resource management and scheduling systems and algorithms for large-scale
distributed computing systems need a simple framework for deterministic modeling and simulation of
resources and applications to evaluate their design strategies and algorithms. When access to ready-to-use
testbed infrastructure is not available, building it is expensive and time consuming. Also, even if the testbed
is available, it is limited to a few resources and domains; and testing scheduling algorithms for scalability
and adaptability, and evaluating scheduler performance for various applications and resource scenarios is
harder to trace and resource intensive. Researchers and educators in Grid computing have also recognized
the importance and the need for such a toolkit for modeling and simulation environments [61]. We have
developed a Java-based discrete-event Grid simulation toolkit called GridSim. The toolkit supports
modeling and simulation of heterogeneous Grid resources (both time- and space-shared), users and
application models. It provides primitives for creation of application tasks, mapping of tasks to resources,
and their management. To demonstrate suitability of the GridSim toolkit, we have simulated a Nimrod-G
like Grid resource broker and evaluated the performance of deadline and budget constrained cost- and time-
minimization scheduling algorithms.

Our interest in building a simulation environment arose from the need for performing a detailed
evaluation of deadline and budget constraint scheduling algorithms implemented within the Nimrod-G
broker [100]. We performed many experiments using the Nimrod-G broker for scheduling task farming
applications on the WWG (World-Wide Grid) [111] testbed resources with small configuration (like 2
hours deadline and 10 machines for a single user). The ability to experiment with a large number of Grid
scenarios was limited by the number of resources that were available in the WWG testbed. Also, it was
impossible to perform repeatable evaluation of scheduling strategies as the availability, allocation, and
usage of resources changed with time. Also conducting performance evaluation on a real Grid tested for a

81

number of different scenarios is resource intensive and time consuming task, which can be drastically
minimized by using discrete event simulation techniques.

The GridSim toolkit supports modeling and simulation of awide range of heterogeneous resources, such
as single or multiprocessors, shared and distributed memory machines such as PCs, workstations, SMPs,
and clusters managed by time or space-shared schedulers. That means, GridSim can be used for modeling
and simulation of application scheduling on various classes of parallel and distributed computing systems
such as clusters, Grids, and P2P networks. The resources in clusters are located in a single administrative
domain and managed by a single entity whereas, in Grid and P2P systems, resources are geographically
distributed across multiple administrative domains with their own management policies and goals. Another
key difference between cluster and Grid/P2P systems arises from the way application scheduling is
performed. The schedulersin cluster systems focus on enhancing overall system performance and utility, as
they are responsible for the whole system. Whereas, schedulers in Grid/P2P systems called resource
brokers, focus on enhancing performance of a specific application in such a way that its end-users
requirements are met.

The rest of this chapter is organized as follows. Section 5.2 discusses related work with highlights on
unique features that distinguish our toolkit from other packages. The GridSim architecture and internal
components that make up GridSim simulations are discussed in Section 5.3. Section 5.4, discusses how to
build GridSim based scheduling simulations. The final section summarizes the chapter along with
comments on adoption and usage of the GridSim toolkit.

5.2 Related Work

Simulation has been used extensively for modeling and evaluation of real world systems, from business
process and factory assembly line to computer systems design. Accordingly, over the years, modeling and
simulation has emerged as an important discipline and many standard and application-specific tools and
technologies have been built. They include simulation languages (e.g., Simscript [15]), simulation
environments (e.g., Parsec [90]), simulation libraries (SimJava [29]), and application specific simulators
(e.g., OMNet++ network simulator [5]). While there exists a large body of knowledge and tools, there are
very few tools available for application scheduling simulation in Grid computing environments. The
notable ones are: Bricks [62], MicroGrid [46], Simgrid [43], and our GridSim toolKkit.

The Bricks simulation system [62], developed at the Tokyo Institute of Technology in Japan, helps in
simulating client-server like global computing systems that provide remote access to scientific libraries and
packages running on high performance computers. It follows centralized global scheduling methodology as
opposed to our work in which each application scheduling is managed by the users’ own resource broker.

The MicroGrid emulator [46], undertaken in the University of California at San Diego (UCSD), is
modeled after Globus. It allows execution of applications constructed using Globus toolkit in a controlled
virtual Grid emulated environment. The results produced by emulation can be precise, but modeling
numerous applications, Grid environments, and scheduling scenarios for realistic statistical analysis of
scheduling algorithms is time consuming as applications run on emulated resources. Also, scheduling
algorithms designers generally work with application models instead of constructing actual applications.
Therefore, MicroGrid’s need for an application constructed using Globus imposes significant development
overhead. However, when an actual system is implemented by incorporating scheduling strategies that are
evaluated using simulation, the MicroGrid emulator can be used as a complementary tool for verifying
simulation results with real applications.

The Simgrid toolkit [43], developed in the University of California at San Diego (UCSD), is a
C language based toolkit for the simulation of application scheduling. It supports modeling of resources
that are time-shared and the load can be injected as constants or from real traces. It is a powerful system
that allows creation of tasks in terms of their execution time and resources with respect to a standard
machine capability. Using Simgrid APIs, tasks can be assigned to resources depending on the scheduling
policy being simulated. It has been used for a number of real studies, and demonstrates the power of
simulation. However, because Simgrid is restricted to a single scheduling entity and time-shared systems, it
is difficult to simulate multiple competing users, applications, and schedulers, each with their own policies
when operating under market like Grid computing environment, without extending the toolkit substantially.
Also, many large-scale resources in the Grid environment are space-shared machines and they need to be

82

supported in simulation. Hence, our GridSim toolkit extends the ideas in existing systems and overcomes
their limitations accordingly.

Finaly, we have chosen to implement GridSim in Java by leveraging SimJava’s [29] basic discrete
event simulation infrastructure. This feature is likely to appeal to educators and students since Java has
emerged as a popular programming language for network computing.

5.3 GridSim: Grid Modeling and Simulation Toolkit

The GridSim toolkit provides a comprehensive facility for simulation of different classes of heterogeneous
resources, users, applications, resource brokers, and schedulers. It can be used to simulate application
schedulers for single or multiple administrative domain(s) distributed computing systems such as clusters
and Grids. Application schedulers in Grid environment, called resource brokers, perform resource
discovery, selection, and aggregation of a diverse set of distributed resources for an individual user. That
means, each user has his own private resource broker and hence, it can be targeted to optimize for the
requirements and objectives of its owner. Whereas schedulers, managing resources such as clusters in a
single administrative domain, have complete control over the policy used for allocation of resources. That
means, all users need to submit their jobs to the central scheduler, which can be targeted to perform global
optimization such as higher system utilization and overall user satisfaction depending on resource
allocation policy or optimize for high priority users.

5.3.1 Key Features

Salient features of the GridSim toolkit include the following:
< It allows modeling of heterogeneous types of resources.
* Resources can be modeled operating under space- or time-shared mode.
» Resource capability can be defined (in the form of MIPS as per SPEC benchmark).
* Resources can be located in any time zone.

» Weekends and holidays can be mapped depending on resource’s local time to model non-Grid
(local) workload.

* Resources can be booked for advance reservation.

« Applications with different parallel application models can be simulated.

e Application tasks can be heterogeneous and they can be CPU or 1/O intensive.

e There is no limit on the number of application jobs that can be submitted to a resource.

* Multiple user entities can submit tasks for execution simultaneously in the same resource, which
may be time-shared or space-shared. This feature helps in building schedulers that can use
different market-driven economic models for selecting services competitively.

* Network speed between resources can be specified.
e It supports simulation of both static and dynamic schedulers.

e Statistics of all or selected operations can be recorded and they can be analyzed using GridSim
statistics analysis methods.

5.3.2 System Architecture

We employed a layered and modular architecture for Grid simulation to leverage existing technologies and
manage them as separate components. A multi-layer architecture and abstraction for the development of
GridSim platform and its applications is shown in Figure 5.1. The first layer is concerned with the scalable
Java’s interface and the runtime machinery, called JVM (Java Virtual Machine), whose implementation is
available for single and multiprocessor systems including clusters [146]. The second layer is concerned
with a basic discrete-event infrastructure built using the interfaces provided by the first layer. One of the
popular discrete-event infrastructure implementations available in Java is SimJava [29]. Recently a
distributed implementation of SimJava is also made available. The third layer is concerned with modeling
and simulation of core Grid entities such as resources, information services, and so on; application model,
uniform access interface, and primitives application modeling and framework for creating higher level
entities. The GridSim toolkit focuses on this layer that simulates system entities using the discrete-event

83

services offered by the lower-level infrastructure. The fourth layer is concerned with the simulation of
resource aggregators called Grid resource brokers or schedulers. The final layer focuses on application and
resource modeling with different scenarios using the services provided by the two lower-level layers for
evaluating scheduling and resource management policies, heuristics, and algorithms. In this section, we
briefly discuss SimJava model for discrete events (a second-layer component) and focus mainly on the
GridSim (the third-layer) design and implementation. The resource broker simulation and performance
evaluation is highlighted in the next two sections.

Application, User, Grid Scenario’s Input and Results

Application Resource User Grid output
Configuration Configuration Requirements Scenario P
Grid Resource Brokers or Schedulers
GridSim Toolkit
Application Resource Information Job Resour ce Statistics

M odeling Entities Services M anagement Allocation

Resour ce M odeling and Simulation (with Time and Space shared schedulers)

Single CPU SMPs Clusters L oad Pattern Networ k Reservation

Basic Discrete Event Simulation Infrastructure

SimJava Distributed SimJava

Virtual Machine (Java, cJVM, RMI)

PCs Workstations SMPs Clusters Distributed Resour ces

Figure5.1: A modular architecturefor GridSim platform and components.

5.3.3 SimJava Discrete Event Model

SimJava [29] is a general-purpose discrete event simulation package implemented in Java. Simulations in
SimJava contain a number of entities each of which runsin parallel in its own thread. An entity’s behaviour
isencoded in Java using its body() method. Entities have access to a small number of simulation primitives:

» sm_schedule() sends event objects to other entities via ports;
e sim_hold() holds for some simulation time;
e sm_wait() waitsfor an event object to arrive.

These features help in constructing a network of active entities that communicate by sending and receiving
passive event objects efficiently.

The sequential discrete event simulation algorithm, in SimJava, is as follows. A central object
Sim_system maintains a timestamp ordered queue of future events. Initially all entities are created and their
body() methods are put in run state. When an entity invokes a simulation function, the Sm_system object
halts that entity’s thread and places an event on the future queue to signify processing the function. When
al entities have halted, Sim_system pops the next event off the queue, advances the simulation time

84

accordingly, and restarts entities as appropriate. This continues until no more events are generated. If the
Java virtual machine supports native threads, then all entities starting at exactly the same simulation time
may run concurrently.

5.3.4 GridSim Entities

GridSim supports entities for simulation of single processor and multiprocessor, heterogeneous resources
that can be configured as time or space shared systems. It allows setting their clock to different time zones
to simulate geographic distribution of resources. It supports entities that simulate networks used for
communication among resources. During simulation, GridSim creates a number of multi-threaded entities,
each of which runs in parald in its own thread. An entity’s behavior needs to be simulated within its
body() method, as dictated by SimJava.

User #i Broker #i Output Resource #

Appll L\L”c‘jmm L Job UBJ:—

=) —— onome 85
I [[lIl: >

Information
Service

Figure5.2: A flow diagram in GridSim based simulations.

A simulation environment needs to abstract all the entities and their time dependent interactions in the
real system. It needs to support the creation of user-defined time dependent response functions for the
interacting entities. The response function can be a function of the past, current, or both states of entities.
GridSim based simulations contain entities for the users, brokers, resources, information service, statistics,

and network based 1/O as shown in Figure 5.2. The design and implementation issues of these GridSim
entities are discussed below:

User — Each instance of the User entity represents a Grid user. Each user may differ from the rest of the
users with respect to the following characteristics:

* Typesof job created e.g., job execution time, number of parametric replications, etc.,
e Scheduling optimization strategy e.g., minimization of cost, time, or both,

e Activity rate e.g., how often it creates new job,

e Time zone, and

e Absolute deadline and budget, or

85

« D-and B-factors, deadline and budget relaxation parameters, measured in the range [0,1] express
deadline and budget affordability of the user relative to the application processing requirements
and available resources.

Broker — Each user is connected to an instance of the Broker entity. Every job of a user isfirst submitted to
its broker and the broker then schedules the parametric tasks according to the user’s scheduling policy.
Before scheduling the tasks, the broker dynamically gets a list of available resources from the global
directory entity. Every broker tries to optimize the policy of its user and therefore, brokers are expected
to face extreme competition while gaining access to resources. The scheduling algorithms used by the
brokers must be highly adaptable to the market’s supply and demand situation.

Resour ce — Each instance of the Resource entity represents a Grid resource. Each resource may differ from
the rest of resources with respect to the following characteritics:

e Number of processors,

¢ Cost of processing;

e Speed of processing;

e Internal process scheduling policy e.g., time shared or space shared;
e Loca load factor; and

e Timezone.

The resource speed and the job execution time can be defined in terms of the ratings of standard
benchmarks such as MIPS and SPEC. They can aso be defined with respect to the standard machine.
Upon obtaining the resource contact details from the Grid information service, brokers can query
resources directly for their static and dynamic properties.

Grid Information Service — It provides resource registration services and maintains a list of resources
available in the Grid. This service can be used by brokers to discover resource contact, configuration,
and status information.

Input and Output —The flow of information among the GridSim entities happen via their Input and Output
entities. Every networked GridSim entity has I/O channels, which are used for establishing a link
between the entity and its own Input and Output entities. Note that the GridSim entity and its Input
and Output entities are threaded entitiesi.e., they have their own execution thread with body() method
that handle the events. The GridSim model for communication between entitiesisillustrated in Figure
5.3. The use of separate entities for input and output enables a networked entity to model full duplex
and multi-user parallel communications. The support for buffered input and output channels associated
with every GridSim entity provides a simple mechanism for an entity to communicate with other
entities and at the same time enables the modeling of a communication delay transparently.

5.3.5 Application Model

GridSim does not explicitly define any specific application model. It is up to the developers (of schedulers
and resource brokers) to define them. We have experimented with a task-farming application model.
However, it is possible to use GridSim to model other paralel application models such as process
parallelism, DAGs (Directed Acyclic Graphs), divide and conquer etc., described in [70].

In GridSim, each independent task may require varying processing time and input files size. Such tasks
can be created and their requirements are defined through Gridlet objects. A Gridlet is a package that
contains al the information related to the job and its execution management details such as the job length
expressed in MI (million instructions), disk 1/O operations, the size of input and output files, and the job
originator. These basic parameters help in determining execution time, the time required to transport input
and output files between users and remote resources, and returning the processed Gridlets back to the
originator along with the results. The GridSim toolkit supports a wide range of Gridlet management
protocols and services that alow schedulers to map a Gridlet to a resource and manage it through out the
life cycle.

86

body()

Send(output, data, Eg) Receive(input, data, E,)

_nput-.Eg

data, t2

Timed Event Delivery

Figure5.3: Entity communication model viaitsInput and Output entities.

5.3.6 Interaction Protocols Model

The protocols for interaction between GridSim entities are implemented using events. In GridSim, entities
use events for both service requests and service deliveries. The events can be raised by any entity to be
delivered immediately or with specified delay to other entities or itself. The events that are originated from
the same entity are called internal events and those originated from the external entities are called external
events. Entities can distinguish these events based on the source identification associated with them. The
GridSim protocols are used for defining entity services. Depending on the service protocols, the GridSim
events can be further classified into synchronous and asynchronous events. An event is called synchronous
when the event source entity waits until the event destination entity performs all the actions associated with
the event (i.e., the delivery of full service). An event is called asynchronous when the event source entity
raises an event and continues with other activities without waiting for its completion. When the destination
entity receives such events or service requests, it responds back with results by sending one or more events,
which can then take appropriate actions. It should be noted that external events could be synchronous or
asynchronous, but internal events need to be raised as asynchronous events only to avoid deadlocks.

A complete set of entities in a typica GridSim simulation and the use of events for simulating
interaction between them are shown in Figure 5.4 and Figure 5.5. Figure 5.4 emphasizes the interaction
between a resource entity that simulates time-shared scheduling and other entities. Figure 5.5 emphasizes
the interaction between a resource entity that simulates space-shared system and other entities. In this
section we briefly discuss the use of the events for simulating Grid activities.

87

Grid User1| [User1 Grid Grid Information ‘G”d Shutdown‘ Grid Statistics Report
Entity Broker Entity Entit Service Entity Entity ‘ Entity riter Entity|
H} l m ~—(Register Resource)—>
I (Get Resource List) >
(Submit B =
Expt) [(Get Resource Characteristics) —p

[~ (Submit Gridletl)—————>

——(Submit Gridlet2)———— > [1%, 2d, 39 time

— P edicted completion

—_— pr X
(Submit Gridet3) time of Gridletl]
l&——(Gridlet1 Finished)
Gridlet2
(Gridlet2 Finished) ompletion event]
(Done) N Gridlet3
Expt) (Gridlet3 Finished) 2 ompletion event]
———(Record My Statistics) L
(1 am Done) A [
] (Get Resource
’_ < List) -

The delivery of the most recently (Terminate) :[ilrfe?!:Dgr?S’i
scheduled internal asynchronous m le(Terminate)
event to indicate the Gridlet (Create Report) >
completion. (Get Stat)——
Internal asynchronous event is ——(Synchronous Event) — .
. - : P (Done):
ignor ed since the arrival of
other events has changed the > —(Terminate 9|__L|
resource scenario. ’ (Asynchronous Event) =)

Figure5.4: An event diagram for interaction between atime-shared resource and other entities.

The GridSim entities (user, broker, resource, information service, statistics, shutdown, and report writer)
send events to other entities to signify the request for service, deliver results, or raise internal actions. Note
that GridSim implements core entities that simulate resource, information service, statistics, and shutdown
services. These services can be used to simulate users, brokers, and an optional report writer for creating
statistical reports at the end of a simulation. The event source and destination entities must agree upon the
protocols for service request and delivery. The protocols for interaction between the user-defined and core
entities are pre-defined.

When GridSim starts, the resource entities register themsel ves with the Grid Information Service (GIS)
entity, by sending events. This resource registration process is similar to GRIS (Grid Resource Information
Server) registering with GIIS (Grid Index Information Server) in Globus system. Depending on the user
entity’s request, the broker entity sends an event to the GIS entity, to signify a query for resource discovery.
The GIS entity returns a list of registered resources and their contact details. The broker entity sends events
to resources with request for resource configuration and properties. They respond with dynamic
information such as resources cost, capability, availability, load, and other configuration parameters. These
events involving the GIS entity are synchronous in nature.

Depending on the resource selection and scheduling strategy, the broker entity places asynchronous
events for resource entities in order to dispatch Gridlets for execution—the broker need not wait for a
resource to complete the assigned work. When the Gridlet processing is finished, the resource entity
updates the Gridlet status and processing time and sends it back to the broker by raising an event to signify
its completion.

The GridSim resources use internal events to simulate resource behavior and resource allocation. The
entity needs to be modeled in such a way that it is able to receive all events meant for it. However, it is up
to the entity to decide on the associated actions. For example, in time-shared resource simulations (see
Figure 5.4) internal events are scheduled to signify the completion time of a Gridlet, which has the smallest
remaining processing time requirement. Meanwhile, if an external event arrives, it changes the share
resource availability for each Gridlet. That means the most recently scheduled event may not necessarily
signify the completion of a Gridlet. The resource entity can discard such internal events without processing.
The use of internal events for simulating resources is discussed in detail in Section 5.3.7.

88

GridUser1] [User1Grid Grid Information Grid Shutdown| [Grid Statistics Report
Entity Broker Entity Entit Service Entity Entity Entity \Writer Entity]
H] l E] ——(Reygister Raouroe)%
[~ (Get Resource List) »
(submit | | o M >
Expt.) (Get Resource Characteristics) —»
[~ (Submit Gridletly—————>
[Gridletl completion
event]
~———(Submit Gridlet2) ——— >
™ (Submit Gridlet3y—————>
é_(Gndletl Finished) [Gridlet2
completion event]
(Gridlet2 Finishedy—————
[Gridlet3
completion event]
(Gridlet3 Finished)y———————-1
(Record My Statistics) [
(I am Done)] L
(Get Resource
’7 < List) -
(Terminate) [If all Users
. are “Done”]
(Terminate) (Create Report)=>
Internal Asynchronous Event: (Get Stat)
scheduled and delivered to (Synchronous Event) —
indicate the completion of (Done)
Gridlet. (Asynchronous Event) —=>> _—(Terminate)%t]

Figure5.5: An event diagram for interaction between a space-shared resour ce and other entities.

5.3.7 Resource Model — Simulating Multitasking and Multiprocessing

In the GridSim toolkit, we can create Processing Elements (PES) with different speeds (measured in either
MIPS or SPEC-like ratings). Then, one or more PEs can be put together to create a machine. Similarly, one
or more machines can be put together to create a Grid resource. Thus, the resulting Grid resource can be a
single processor, shared memory multiprocessors (SMP), or a distributed memory cluster of computers.
These Grid resources can simulate time- or space-shared scheduling depending on the allocation policy. A
single PE or SMP type Grid resource is typically managed by time-shared operating systems that use
round-robin scheduling policy (see Figure 5.8) for multitasking. The distributed memory multiprocessing
systems (such as clusters) are managed by queuing systems, called space-shared schedulers, that execute a
Gridlet by running it on a dedicated PE (see Figure 5.11) when allocated. The space-shared systems use
resource allocation policies such as first-come-first-served (FCFS), back filling, shortest-job-first served
(SJFS), and so on. It should also be noted that resource allocation within high-end SMPs could also be
performed using the space-shared schedulers.

Multitasking and multiprocessing systems allow concurrently running tasks to share system resources
such as processors, memory, storage, 1/0, and network by scheduling their use for very short time intervals.
A detailed simulation of scheduling tasks in the real systems would be complex and time consuming.
Hence, in GridSim, we abstract these physical entities and simulate their behavior using process oriented,
discrete event “interrupts” with time interval as large as the time required for the completion of a smallest
remaining-time job. The GridSim resources can send, receive, or schedule events to simulate the execution
of jobs. It schedules self-events for simulating resource allocation depending on the scheduling policy and
the number of jobs in queue or in execution.

Let us consider the following scenario to illustrate the simulation of Gridlets execution and scheduling
within a GridSim resource. A resource consists of two shared or distributed memory PEs each with MIPS
rating of 1, for simplicity. Three Gridlets that represent jobs with processing requirements equivalent to 10,
8.5, and 9.5 MI (million instructions) arrive in simulation times 0, 4, and 7 respectively. The way GridSim
schedules jobs to PEs is shown schematically in Figure 5.8 for time-shared resources and Figure 5.11 for
space-shared resources.

89

Simulation of Scheduling in Time-Shared Resources

The GridSim resource simulator uses internal events to simulate the execution and allocation of PEs share
to Gridlet jobs. When jobs arrive, time-shared systems start their execution immediately and share
resources among al jobs. Whenever a new Gridlet job arrives, we update the processing time of existing
Gridlets and then add this newly arrived job to the execution set. We schedule an internal event to be
delivered at the earliest completion time of smallest job in the execution set. It then waits for the arrival of
events.

A complete algorithm for simulation of time-share scheduling and execution is shown in Figure 5.6. If a
newly arrived event happens to be an internal event whose tag number is the same as the most recently
scheduled event, then it is recognized as a job completion event. Depending on the number of Gridlets in
execution and the number of PEs in a resource, GridSim allocates appropriate amount of PE share to all
Gridlets for the event duration using the algorithm shown in Figure 5.7. It should be noted that Gridlets
sharing the same PE would get an equal amount of PE share. The completed Gridlet is sent back to its
originator (broker or user) and removed from the execution set. GridSim schedules a new internal event to
be delivered at the forecasted earliest completion time of the remaining Gridlets.

Algorithm; Time-Shared Grid Resource Event Handler ()
1. Wait for an event

2. If the external and Gridlet arrival event, then:
BEGIN /* a new job has arrived */
a. Allocate PE Share for Gridlets Processed so far
b. Add arrived Gridlet to Execution_Set
c. Forecast completion time of all Gridlets in Execution_Set
d. Schedule an event to be delivered at the smallest completion time
END

3. If event is internal and its tag value is the same as the recently scheduled internal event
tag,
BEGIN /* a job finish event */
a. Allocate PE Share of all Gridlets processed so far

b. Update finished Gridlet’s PE and Wall clock time parameters and send it back
to the broker

c. Remove finished Gridlet from the Execution_Set and add to Finished_Set
d. Forecast completion time of all Gridlets in Execution_Set
. Schedule an event to be delivered at the smallest completion time

END
4. Repeat the above steps until the end of simulation event is received

Figure 5.6: An event handler for simulating time-shared resour ce scheduling.

Figure 5.8 illustrates the simulation of time-share scheduling algorithm and the Gridlets’ execution.
When Gridletl arrives at time 0, it is mapped to PE1 and an internal event to be delivered at the time 10 is
scheduled since the predicted completion time is still 10. At time 4, Gridlet2 arrives and it is mapped to the
PE2. The completion time of Gridlet2 was predicted as 12.5 and the completion time of Gridletl is still 10
since both of them are executing on different PEs. A new internal event is scheduled, which will still be
delivered at time 10. At time 7, Gridlet3 arrives, which is mapped to the PE2. It shares the PE time with
Gridlet2. At time 10, an internal event is delivered to the resource to signify the completion of the
Gridletl, which is then sent back to the broker. At this moment, as the number of Gridlets equal the number
of PEs, they are mapped to different PEs. An internal event to be delivered at time 14 is scheduled to
indicate the predicted completion time of Gridlet2. As simulation proceeds, an internal event is delivered at
time 14 and Gridlet2 is sent back to the broker. An internal event to be delivered at time 18 is scheduled to
indicate the predicted completion time of Gridlet3. Since there were no other Gridlets submitted before this
time, the resource receives an internal interrupt at time 18, which signifies the completion of Gridlet3. A

90

schematic representation of Gridlets arrival, internal events delivery, and sending them back to the broker is
shown in Figure 5.4. The comparison between the arrival, execution start, execution finish, and elapsed
time of Gridlets when deployed on time and space shared resources is shown in Table 5.1.

Algorithm; PE_Share_Allocation(Duration)

1. Identify total M| per PE for the duration and the number of PE that process one extra Gridlet
TotalMIperPE = MIPSRatingOfOnePE()*Duration
MinNoOfGridletsPerPE = NoOfGridletsinExec / NoOfPEs
NoOfPEsRunningOneExtraGridlet = NoOfGridletslnExec % NoOfPEs
2. Identify maximum and minimum M| share that Gridlet get in the Duration
If(NoOfGridletslnExec <= NoOfPES), then:
MaxSharePerGridlet = MinSharePerGridlet = TotalMIperPE
MaxShareNoOfGridlets = NoOfGridletsI nExec
Else/* NoOfGridletsinExec > NoOfPEs */
MaxSharePerGridlet = Total M perPE/ MinNoOfGridletsPerPE
MinSharePerGridlet = Total M| perPE/(MinNoOfGridletsPerPE+1)
MaxShareNoOfGridlets = (NoOfPEs - NoOfPEsRunningOneExtraGridlet)* MinNoOfGridletsPerPE

Figure5.7: PE shareallocation to Gridlet in time-shared GridSim resour ce.

Taskson ‘/ X ‘/ ‘/ X X

PES/CPUs PI-Gl PL-G2 P3-G2 P2-G3 P2-G2 P1-G3

vob v '

PE2 $
PE1 $

»
T T T T T il

T 2 T 6T 9l 12l 16|£3FI19I 22 .26

Gl G2 G3 GIF G2F Time

Gridietl (10 MIPS) GL Gridletl Arrives

G1F: Gridletl Finishes

Gridiet2 (8.5 MIPS) x P1-G2: Gridlet2 didn’t finish at the 1% prediction time.
Gridiet3 (9.5MIPS) JPZ-GZ: Gridlet2 finishes at the 2 prediction time.

Figure5.8: Modeling time-shared multitasking and multiprocessing based on an event scheme.

91

Table5.1:

A scheduling statistics scenario for time- and space-shared resourcesin GridSim.

Time-Shared Resource Space-Shared Resour ce
, Arrival Start Finish | Elapsed | Start | Finish | Elapsed
Crilets Length Time Time | Time Time Time | Time | Time
Number M1)
(@ (s ®) (f-a) (s ®) (f-a)
Gl 10 10 10 0 10 10
G2 8.5 14 10 4 125 8.5
G3 9.5 18 11 10 195 12.5

Simulation of Scheduling in Space-Shared Resources

The GridSim resource simulator uses interna events to simulate the execution and allocation of PEs to
Gridlet jobs. When ajob arrives, space-shared systems start its execution immediately if there is a free PE
available, otherwise, it is queued. During the Gridlet assignment, job-processing time is determined and
event is scheduled for delivery at the end of execution time. Whenever the Gridlet job finishes and the
internal event is delivered to signify the completion of scheduled Gridlet job, the resource simulator frees
the PE allocated to it and then checks if there are any other jobs waiting in the queue. If there are jobs
waiting in the queue, then it selects a suitable job depending on the policy and assigns to the PE, which is
free.

A complete algorithm for simulation of space-share scheduling and execution is shown in Figure 5.9. If
a newly arrived event happens to be an internal event whose tag number is the same as the most recently
scheduled event, then it is recognized as a Gridlet completion event. If there are Gridlets in the submission
queue, then depending on the allocation policy (e.g., the first Gridlet in the queue if FCFS policy is used),
GridSim selects suitable Gridlets from the queue and assigns it to the PE or a suitable PE if more than one
PE isfree. See Figure 5.11 for illustration of the allocation of PE to Gridlets. The completed Gridlet is sent
back to its originator (broker or user) and removed from the execution set. GridSim schedules a new
internal event to be delivered at the completion time of the scheduled Gridlet job.

Algorithm: Space-Shared Grid Resource Event Handler ()
1. Wait for event and Identity Type of Event received
2. If it external and Gridlet arrival event, then:

BEGIN /* anew job arrived */

« |f the number of Gridlets in execution are less than the number of PEs in the resource, then,
Allocate PE to the Gridlet() /* It should schedule an Gridlet completion event */

« |f not, Add Gridlet to the Gridlet_Submitted Queue
END
3. If eventisinternal and itstag value is the same recently scheduled internal event tag,
BEGIN /* ajob finish event */
e Update finished Gridlet’s PE and Wall clock time parameters and send it back to the broker
e Set the status of PE to FREE
* Remove finished Gridlet from the Execution_Set and add to Finished_Set
e If Gridlet_Submitted_Queue has Gridlets in waiting, then
Choose the Gridlet to be Processed() /* e.g., first one in Q if FCFS policy is used */
Allocate_PE_to_the_Gridlet() /* It should schedule an Gridlet completion event */
END
4. Repeat the above steps until the end of simulation event is received

Figure5.9: An event handler for simulating space-shar ed resour ce scheduling.

92

Algorithm: Allocate PE_to_the Gridlet(Gridlet gl)

1. ldentify asuitable Machine with Free PE

2. ldentify asuitable PE in the machine and Assign to the Gridlet

3. Set Status of the Allocated PE to BUSY

4. Determine the Completion Time of Gridlet and Set an internal event to be delivered at the

completion time

Figure5.10: PE allocation to the Gridletsin space-shared GridSim resour ce.

Figure 5.11 illustrates the simulation of space-share scheduling algorithm and Gridlets’ execution. When
Gridletl arrives at time 0, it is mapped to PE1 and an internal event to be delivered at the time 10 is
scheduled since the predicted completion time is still 10. At time 4, Gridlet2 arrives and it is mapped to the
PE2. The completion time of Gridlet2 is predicted as 12.5 and the completion time of Gridletl is still 10
since both of them are executing on different PEs. A new internal event to be delivered at time 12.5 is
scheduled to signify the completion of Gridlet2. At time 7, Gridlet3 arrives. Since there is no free PE
available on the resource, it is put into the queue. The simulation continues i.e., GridSim resource waits for
the arrival of a new event. At time 10 a new event is delivered which happens to signify the completion of
Gridletl, which is then sent back to the broker. It then checks to see if there are any Gridlets waiting in the
queue and chooses a suitable Gridlet (in this case as Gridlet2 is based on FCFS policy) and assign the
available PE to it. An internal event to be delivered at time 19.5 is scheduled to indicate the completion
time of Gridlet3 and then waits for the arrival of new events. A new event is delivered at the simulation
time 12.5, which signifies the completion of the Gridlet2, which is then sent back to the broker. There is no
Gridlet waiting in the queue, so it proceeds without scheduling any events and waits for the arrival of the
next event. A new internal event arrives at the simulation time 19.5, which signifies the completion of
Gridlet3. This process continues until resources receive an external event indicating the termination of
simulation. A schematic representation of Gridlets arrival, internal events delivery, and sending them back
to the broker is shown in Figure 5.5.

A

Taskson ‘/ 6/

PEsS/CPUs P1-G1 P1-G2 P1-G3

!

PE2 $
PE1 $

T T
T 2 T 6 T 9 L 12¢ 16 19¢ 22 26
Gl G2 G3 GIF G2k G3F

Gridietl (10 MIPS) GL Gridlet1 Arrives

GI1F: Gridletl Finishes

Gridlet2 (8.5MIPS)

P1-G2: Gridlet2 finishes as per the 1% Predication
S

Figure 5.11: Modeling space-shared multiprocessing based on an event scheme.

93

For every Grid resource, the non-Grid (local) workload is estimated based on typically observed load
conditions depending on the time zone of the resource. The network communication speed between a user
and the resources is defined in terms of a data transfer speed (baud rate).

5.3.8 GridSim Java Package Design

A class diagram hierarchy of the gridsim package, represented using unified modeling language (UML)
notation, is shown in Figure 5.12. The specification of each class contains up to three parts: attributes,
methods, and internal classes. In the class diagram, attributes and methods are prefixed with characters
“7 w7 and “#” indicating access modifiers public, private, and protected respectively. The gridsim
package implements the following classes:

class gridsi mIlnput — This class extends the eduni.simjava.Sim_entity class. This class defines a
port through which a simulation entity receives data from the simulated network. It maintains an event
queue to seriadize the data-in-flow and delivers to its parent entity. Simultaneous inputs can be
modeled using multiple instances of this class.

class gridsimQutput - Thisclassisvery similar to the gridsim.Input class and it defines a port
through which a simulation entity sends data to the simulated network. It maintains an event queue to
serialize the data-out-flow and delivers to the destination entity. Simultaneous outputs can be modeled
by using multiple instances of this class.

class gridsimGidSim - Thisis the main class of Gridsim package that must be extended by
GridSim entities. It inherits event management and threaded entity features from the
eduni.simjava.Sim_entity class. The GridSim class adds networking and event delivery features, which
alows synchronous or asynchronous communication for service access or delivery. All classes that
extend the GridSim class must implement a method called “body()”, which is automatically invoked
since it is expected to be responsible for simulating entity behavior. The entities that extend the
GridSim class can be instantiated with or without networked /O ports. A networked GridSim entity
gains communication capability via the objects of GridSim’s 1/O entity classes gridsim.Input and
gridsim.Output classes. Each 1/0 entity will have a unique name assuming each GridSim entity that the
user creates has unique name. For example, a resource entity with name “Resource2” will have an
input entity whose name is prefixed with “Input_”, making input entity full name as
“Input_Resource2”, which is expected to be unique. The I/O entities are concurrent entities, but they
are visible within GridSim entity and are able to communicate with other GridSim entities by sending
messages.

The GridSim class supports methods for simulation initialization, management, and flow control. The
GridSim environment must be initialized to setup simulation environment before creating any other
GridSim entities at the user level. This method also prepares the system for simulation by creating
three GridSim internal entities—GridInformationService, GridSimShutdown, and GridStatistics. As
explained in Section 5.3.2, the GridInformationService entity simulates the directory that dynamically
keeps a list of resources available in the Grid. The GridSimShutdown entity helps in wrapping up a
simulation by systematically closing all the opened GridSim entities. The GridStatistics entity provides
standard services during the simulation to accumulate statistical data. Invoking the GridSim.Start ()
method starts the Grid simulation. All the resource and user entities must be instantiated in between
invoking the above two methods.

The GridSim class supports static methods for sending and receiving messages between entities
directly or via network entities, managing and accessing handle to various GridSim core entities, and
recording statistics.

class gridsi m PE - Itisused to represent CPU/Processing Element (PE) whose capability is defined
in terms of MIPS rating.

class gridsi m PELi st — It maintainsalist of PEsthat make up a machine.
cl ass gridsi m Machi ne — It represents a uniprocessor or shared memory multiprocessor machine.

94

ETTCT IS (T ik |3 IS (T | e ct’-f
L EUET

Furpaul San_pinl ’ sk S
Fomalpud Saim_ =il (b b o 05 S
I TTME Patirie] gl P el hna sl s -l ral Wac feikbis!
-t b F 1) Licsakaan ol i P el ddin - alie ahon _podes il

sl idrpul O Evdi fs P lay adearmlab e cugind Faiduca il STuniel oo dauik

ard i alDak Oade Qi Kb _quaau Fa s RIL ral A DRPS R sk

[) S irl ata gt P diius rTIRE_SHARED 1=l
LERmEnAmE Fnrg) QKb s i FasoiakL sl rSPRCE_SHAREL mie1
s amE S hagd_ise dauhie L gl 6 Tan aul b relvarE RESERWGTkIH mik |
ATemara prinpa i Enk e ep) sad sLiel gl LUl R hararpEnsprecairhijan
Hrabge) vd LMk nl cEHD] ind) v
lekiapamrars baniean canTalL U kG w0 |
L mybyponGl dQde [k ~FNOR e snrsname 5 hagd_ e daghy v rhG Sing
tini 1 il gal e Jrar rigds i “baaek) ward =] L kA5 Shing
L D -Frareselndemal Baend s Gm_eaend) oo s Hachne sy Hachnelie]
ClnkG gouhike +TodsLaxdn) drabde e PPl ind
S mH ek irakon doubiereos] M T meEnAn doghis) WEhaies i Tme2on a0 dauhke
-t 0 ek -Lpd N e kel sP i s smSar) v v WIFERAnm M FEQ N
A5 enkEnkktlame Slinnde by doghke SodSmTan nbaos FrearagiafF miehT men i bl s voad i WEER AN e P E maar hared
A5 encEnkhtlarme Slimn e Les dahlke SodSmTan midala kil v « S hd et e pmpd el g ven s s HFERAnnG n|
A5 entkEnRhD ind de s bl CarsimT g vl v AT |5 TR T, TS [AT ORI Imead el ennlh daghis |
A5enEnRRID nd e vy dra bl G mT A i dNs Chier o vSparsghane Al alPEiznd el Gl LM IRE £ n
Foenkder]_par T _ped gl droble FacSimT g ind) v -G ke F ke gl R ke fewasd LR anI P s PR
A5endides|_pord 5m_pod dela drable, CodSimT g ind dada Chier [; | s FosFeiRecs doghle
ARererseEarrd Chperpl Chier| WS s nsF i dragble
FRereraeEaend Chpersoaire_pan 5m_pod) Qe “Besapeind
Frndeizuhmikgl ol eesorce i nhboas

AR rers) Dodie]
ArEndeCanakgl Fnd e e d nhoas
v~ Enphtlame () Shng

L n rl n
AN ridadam 'l oL o 1 vl 6 | | Lk ral LukirdLs1 Laithsa L vl
L Iizpragn| ind L L L] Wil W Lt e
Litn o rareEn nd
englimehylrwnEnd b g n|
A5 ha Mo T Erdibplesang [T]
5 b S b SEri D W « YTy -
+re o Resaure Lisit) LnkedLis R o
s RRrn e b ienedy s sndgre_w] i) Fes e e b s lened -m:u&n'l’:a:mm:amu Wl ~FPEE Lrakanshw
Frsruirefrmamu LELL T : " T
A - LIS KD T i K] -1 T T IUE FUY
Farord 5k il mgeny Shnn dals drabiey s " vl TaeRaiss, Laskin sir o3 1k paoiEan
:g:;::ﬂ::::::::xg:::xﬁ;‘;ﬂm mat s i “PEM MNFZRARg Ak
sRearnedSlabaly £iradegeny Sl dals hralesn) veard s, EAuAT (ML ST PRk PSR g e v
RN e L T g s HFERANNG n|
LR A0 L + R SIS hakean
L Kl bl G FRShMF) v
[T T A T e riapaLku G din WG diulie LR EILLITI= TR R
- aLh Liied i ng_od _ugng ml _lera_larknn dahls LEdES el ind
~aulFik Furnirmikn Fipoarfa ke Sy _mpre _failoe_w dragkie
“aliks Lmikidbst EnRS S e s Slinn r less_larknn_e doubie
“aliba il _Ug_Livd LonkidLsl AT LA I T T _fainr_wdrabie
“alabe_f ul _iy_Lu LinkSL fil R _imlnr_e dauhks
TR e EF]
sl prainig Fogd] | e ik
LA e ame S| 8 ke o 1 11 3 M TS Tl itk :::.:.l:;.gr:m
SEREIAER T Ame S il en an S — LL L] Ada g
saccurmataie i sdegoey Snm ol [A Sh il S _pinl
v AL F Ay S AL Dbk wind <L 1ad il ::EE:::&:i::W:::Wi
.:mgu?:u 1l 5L S P i daunel ~FhRme kasakiwshxﬂ
vFeer £ i 11 dratde R
LR rt e G L R Al nss Gam ma] Gralkd sl dahle | Joabie Lzl;ﬂmg:.:lemkwrﬁhwn
Cadin Do Ui i Dl e Can i A 1 6l * ek 2
Caidin Ds o K elip Wl RS T] i ik
] rSi UL mils A161 & akagpiy S
Cadin Ds o abapry LTIl] ET g Sl
Tireas (P o Do Dt -Ada S
AR AKF S Ly T a0
PRI T g int aaie it
[l rSH e Pl ea_rl il U Py m— T
IR G S Sl i anT ol Lf-elalam:hlrewu?ut 2k dua — 11
anma i Uik rEAE s ST e e g] creal vord dafker doukd rECHELAILE hcii uduiigel
<lmNr TR L 4 O DA S Evac P anidnal kK T ...: -l . 1dutie rEMD JOF SMULGTRIN nik.1
R TR HIT YR P LETEIELIELT P TR O T] th) v FESRIHFICART wisl]
A hme_ il rCarRawalin FERMENT iii= 1 .
-FE_Rl i rEArRAES] Ry o E'Ef %
: PR KL 1 T LR r : 1l
cRe s rigidie] Cnded) - | ma] [T T rRESILELE CHAP o TERET S
sSdDumachne_didFE_didiy -, -MI.!:LMHI'.PUTMHI:IUNDM il a DRl TRESILEL thﬁ
i W hm e [| - :E;Ti:;gﬁfﬁlﬁlﬁ:uﬂf ‘Lfi_5124 oy TGEDLET SOBwT mimt
HErPEIDG ml el LA FEADLET RETURTL s f
L RemurrgLarqgh ok W bR T) o o D - : d
il nira [T ol b LK1 sdas Chierlbale _see larg rEROLET _STETUS msE
shndsieCncsPirchadSof anim = "FECCRL GTATIETILE pikdt
wi P Tirmer] draghie e zaann Tires dragbie i:: ':";I‘; “FETLRH, ETal_UET skl
v i T Al [I1] ik
5""""‘2"":“':‘:*""““‘* R . TFE -.ELNF_.wL graqinteq;-rﬂ)
e FmishT med dahi Ty | sLEFmF Ban PATE i-EA0 |
“reFandiekc Caded
-l
-FESFELAI LmikirdLsi TR
S _edn ik .?ﬂ:;r:e:;j nd FE 5 FELISD PELKI IM:“H A N1 | S PE
“Salls (1941t prbrn “'_:Emum BN —— PSR b = 00
-non S il L FE 2] FELIE] e NFER A | PEALE ~5eiRaprag WP SR, sy ird
+5m_iim_podipad Sm_ney L WFERngG | e F P ECH) il riti An NN |
vmakhiesen] Sm_swend hpalean vBrsizefind e Orderenpih Ll Temeinger Joybics govhie

Figure5.12: A class hierarchy diagram of GridSim package.

95

class gridsi m Machi neLi st — Aninstance of this class simulates a collection of machines. It isup
to the GridSim users to define the connectivity among the machines in a collection. Therefore, this
class can be instantiated to model simple LAN to cluster to WAN.

cl ass gridsi m ResourceCharacteri stics —Itrepresents static properties of a resource such as
resource architecture, OS, management policy (time or space shared), cost, and time zone at which the
resource is located along resource configuration.

class gridsim GidResource — It extends the GridSim class and gains communication and
concurrent entity capability. An instance of this class simulates a resource with properties defined in an
object of the gri dsi m Resour ceCharacteristics class. The process of creating a Grid
resource is as follows: first create PE objects with a suitable MIPS/SPEC rating, second assemble
them together to create a machine. Finally, group one or more objects of the Machine to form a
resource. A resource having a single machine with one or more PEs is managed as a time-shared
system using round robin scheduling algorithm. A resource with multiple machines is treated as a
distributed memory cluster and is managed as a space-shared system using first-come first served
scheduling policy or its variants.

class gridsim G i dSi nt andar dPE - It defines MIPS rating for a standard PE or enables the
users to define their own MIPS/SPEC rating for a standard PE. This value can be used for creating PEs
with relative MIPS/SPEC rating for GridSim resources and creating Gridlets with relative processing
requirements.

class gridsi m Resour ceCal endar — This class implements a mechanism to support modeling
local load on Grid resources that may vary according to the time zone, time, weekends, and holidays.

class gridsimGidlnformati onService - A GridSim entity that provides Grid resource
registration, indexing and discovery services. The Grid resources register their readiness to process
Gridlets by registering themselves with this entity. GridSim entities such as the resource broker can
contact this entity for resource discovery service, which returns alist of registered resource entities and
their contact address. For example, scheduling entities use this service for resource discovery.

class gridsimGidl et —Thisclass acts asjob package that contains job length in MI, the length of
input and out data in bytes, execution start and end time, and the originator of job. Individual users
model their application by creating Gridlets for processing them on Grid resources assigned by
scheduling entities (resource brokers).

class gridsim GidletList —Itcanbeused to maintain alist of Gridlets and supports methods
for organizing them.

class gridsim GidSi nifags — It contains various static command tags that indicate a type of

action that needs to be undertaken by GridSim entities when they receive events. The different types of
tags supported in GridSim along with comments indicating possible purpose are shown in Figure 5.13.

public class GidSinTags {
public static final double SCHEDULE_ NOWN= 0.0; // 0.0 indicates NO del ay
public static final int END OF_SI MLLATION = -1;
public static final int INSIGNIFICANT = O; // ignore tag
public static final int EXPERIMENT = 1; // User <-> Broker
public static final int REG STER RESOURCE = 2; // G'S -> ResourceEntity
public static final int RESOURCE_LIST = 3; // G S <-> Broker
public static final int RESOURCE_CHARACTERI STICS = 4; // Broker <-> ResourceEntity
public static final int RESOURCE_DYNAM CS = 5; // Broker <-> ResourceEntity
public static final int GRIDLET_SUBMT = 6; // Broker -> ResourceEntity
public static final int GRIDLET_RETURN = 7; // Broker <- ResourceEntity
public static final int GRIDLET_STATUS = 8; // Broker <-> ResourceEntity
public static final int RECORD STATISTICS = 9; // Entity -> GidStatistics
public static final int RETURN_STAT LIST = 10; // Entity <- GidStatistics
public static final int RETURN_ACC STATI STI CS_BY_CATEGORY = 11;
public static final int DEFAULF_BAUD RATE = 9600; // Default Baud Rate for entities

Figure5.13: Global tagsin GridSim package.

96

class gridsimResGidlet — It represents a Gridlet submitted to the resource for processing. It
contains Gridlet object along with its arrival time and the ID of machine and PE allocated to it. It acts
as a placeholder for maintaining the amount of resource share allocated at various times for simulating
time-shared scheduling using internal events.

class gridsimGidStatistics—ThisisaGridSim entity that records statistical data reported by
other entities. It stores data objects with their label and timestamp. At the end of simulation, the user-
defined report-writer entity can query recorded statistics of interest for report generation.

class gridsi mAccumnul at or — The objects of this class provide a placeholder for maintaining
statistical values of a series of data added to it. It can be queried for mean, sum, standard deviation, and
the largest and smallest values in the data series.

class gridsi m G idSi mShut down — This is a GridSim entity that waits for termination of all User
entities to determine the end of simulation. It then signals the user-defined report-writer entity to
interact with GridStatistics entity to generate report. Finally, it signals the end of simulation to other
GridSim core entities.

class gridsi m GidSi mRandom- This class provides static methods for incorporating randomness
in data used for any simulation. Any predicted/estimated data, e.g., number of Gridlets used by an
experiment, execution time and output size of a Gridlet etc., need to be mapped to real-world data by
introducing randomness to reflect the uncertainty that is present in the prediction/estimation process
and the randomness that exists in the nature itself. The execution time of a Gridlet on a particular
resource, for example, can vary depending on the local load, which is not covered by the scope of
GridSim to simulate.
The real(d, f, fy) method of this class maps the predicted/estimated value d to a random real-world
value between (1- f)xd to (1+ fyy)xd, using the formula dx(1 - f_ + (f_ + fyy)xrd) where 0.0 < f,, fy <
1.0 and rd is a uniformly distributed doubl e value between 0.0 and 1.0. This class also maintains
different values of f_ and fy, factors for different situations to represent different level of uncertainty
involved.

5.4 Building Simulations with GridSim

To simulate Grid resource brokers using the GridSim toolkit, the developers need to create new entities that
exhibit the behavior of Grid users and scheduling systems. The user-defined entities extend the GridSim
base class to inherit the properties of concurrent entities capable of communicating with other entities using
events. The high-level steps involved in modeling resources and applications, and simulating brokers using
the GridSim toolkit are discussed below. The simulation of a Nimrod-G like economic Grid broker and
evaluation of deadline and budget constrained scheduling algorithms are presented in the next chapter.

In this section we present a recipe for simulating application scheduling, with sample code clips, to
demonstrate how GridSim can be used to simulate a Grid environment to evaluate schedulers:

« First, we need to create Grid resources of different capability and configuration (a single or
multiprocessor with time/space-shared resource manager) similar to those used in application
scheduling on the World-Wide Grid (WWG) testbed. We also need to create users with different
requirements (application and quality of service requirements). A sample code for creating a Grid
environment is given in Figure 5.14.

97

public static void CreateSanpl eGidEnvironenment (i nt no_of _users, int no_of_resources,
doubl e B_factor, double D factor, int policy, double how_|ong, double seed) {
Cal endar now = Cal endar. getlnstance();

String ReportWiterName = "MyReportWiter";
GidSimlInit(no_of _users, calender, true, eff, efp, ReportWiterNane);

String[] category = {"*.USER Ti meUtilization", "*.USER Gidl et Conpl etionFactor",
"*.USER. Budget Utilization"};

/1l Create Report Witer Entity and category indicates types of information to be recorded.
new Report Wi ter(ReportWiterNane, no_of_users, no_of_resources, ReportFile, category,
report_on_next_row flag);

/1 Create Resources
for(int i=0; i<no_of_resources; i++) {
Il Create PEs
PELi st peList = new PEList();
for(int j=0; j<(i*1+1); j++)
peLi st. add(new PE(O, 100));

Il Create machine |ist
Machi neLi st nLi st = new Machi neList();
nLi st.add(new Machi ne(0, peList));

/1 Create a resource containing nachines

ResourceCharacteristics resource = new ResourceCharacteristics("INTEL", "Linux",
nLi st, ResourceCharacteristics.TIME_SHARED, 0.0, i*0.5+1.0);

Li nkedLi st Weekends = new Li nkedLi st ();

Weekends. add(new I nt eger (Cal endar . SATURDAY)) ;

Weekends. add(new I nt eger (Cal endar . SUNDAY)) ;

Li nkedLi st Hol i days = new LinkedList(); // no holiday is set!

/1l Setup resource as sinulated entity with a name (e.g. "Resource_1").
new G i dResource("Resource_"+i, 28000.0, seed, resource,
0.0, 0.0, 0.0, Wekends, Holidays);

}
Random r = new Randon{seed);
/1 Create Application, Experinent, and Users
for(int i=0; i<no_of_users; i++)
{

Random r = new Randon(seed*997*(1+)+1);

GidletList glList = Applicationl(r); // it creates Gidlets and returns their list

Experinent expt = new Experiment(0, glList, policy, true, B factor, D factor);

new UserEntity("U'+i, expt, 28000.0, how_|ong, seed*997*(1+i)+1, i, user_entity_report);
}
/1 Perform Simulation
GidSimStart();

}

Figure5.14: A sample code segment for creating Grid resource and user entitiesin GridSim.

e Second, we need to model applications by creating a number of Gridlets (that appear similar to
Nimrod-G jobs) and define al parameters associated with jobs as shown in Figure 5.15. The
Gridlets need to be grouped together depending on the application model.

Gidlet g = new Gidlet(Gidlet_id, Gidlet_length, GidletFileSize,
Gridl et Qut put Si ze) ;

Figure5.15: The Gridlet method in GridSim.

e Then, we need to create a GridSim User entity that creates and interacts with the resource broker
scheduling entity to coordinate execution experiment. It can also directly interact with GIS and
resource entities for Grid information and submitting or receiving processed Gridlets, however, for
modularity sake, we encourage the implementation of a separate resource broker entity by
extending the GridSim class.

« Findly, we need to implement a resource broker entity that performs application scheduling on
Grid resources. A sample code for implementing the broker is shown in Figure 5.16. First, it
accesses the Grid Information Service (GIS), and then inquires the resource for its capability
including cost. Depending on processing requirements, it develops schedule for assigning Gridlets
to resources and coordinates the execution. The scheduling policies can be systems-centric like
those implemented in many Grid systems such as Condor or user-centric like the Nimrod-G
broker’s quality of service (QoS) driven application scheduling algorithms [105].

98

class Broker extends GidSim{
private Experinent experinent;
private LinkedList ReslDList;
private LinkedList BrokerResourcelist;

public Broker(String name, double baud_rate)
{

super (nanme, baud_rate);

Gridl et Di spatched = 0;

GridletReturned = 0;

Expenses = 0.0;

MaxGri dl et Per PE = 2;

./l Gidl et scheduling flow code at the Gid Resource Broker |evel
public void body() {

Simevent ev = new Simevent();

/1 Accept User Conmands and Process

for(simget_next(ev); ev.get_tag()!=GidSi nTags. END_OF_SI MULATI ON; si m get_next (ev))
{

experinent = (Experinent) ev.get_data();
int UserEntitylD = ev.get_src();

/] Record Experiment Start Tine.
experiment. SetStartTime();

// Set Gridlets” OwnerlID as this BrokerID so that Resources knows where to return them.
for(int i=0; i<experiment.GetGidl etList().size(); i++)
((Gidlet) experiment.GetGidletList().get(i)).SetUserlD(get_id());

/1 RESOURCE DI SCOVERY
Resl DLi st = (LinkedList) GetG&idResourcelist();

/1 RESOURCE TRADI NG and SORTI NG
/1 SCHEDULI NG
whil e (gl FinishedList.size() < experinment.CGetGridletList().size())

i f((GidSimdock()>=experinment. GetDeadline())]|]|(Expenses>=experinent. GetBudget()))
br eak;

schedul ed_count = Schedul eAdvi ser () ;
di spat ched_count = Di spatcher();
recei ved_count = Receiver();

/1 Heurisitics for deciding hold condition
i f(di spatched<=0 && received<=0 && gl Unfi ni shedLi st. si ze()>0)

doubl e deadline_left = experinent.GetDeadline()-GidSimdock();
Gri dSi nHol d(Mat h. max(deadl i ne_l eft*0.01, 1.0));
}
}

/1 Code for actual scheduling policy
/1 Code for dispatch policy

}

}

Figure5.16: A sample code segment for creating a Grid resource broker in GridSim.

5.5 Summary and Comments

We discussed an object-oriented toolkit, called GridSim, for distributed resource modeling and scheduling
simulation. GridSim simulates time- and space-shared resources with different capabilities, time zones, and
configurations. It supports different application models that can be mapped to resources for execution by
developing simulated application schedulers. We have discussed the architecture and components of the
GridSim toolkit along with stepsinvolved in creating GridSim based application-scheduling simulators.

The implementation of GridSim toolkit in Java is an important contribution since Java provides a rich
set of tools that enhance programming productivity, application portability, and a scalable runtime
environment. As the JVM (Java Virtual Machine) is available for single, multiprocessor shared or
distributed machines such as clusters, GridSim scales with them due to its concurrent implementation.
Also, we were able to leverage the existing basic discrete-event infrastructure from SimJava while
implementing the GridSim toolkit.

99

We have used the GridSim toolkit to develop a Nimrod-G like economic Grid resource broker simulator
and evaluated the performance of a number of scheduling algorithms based on deadline and budget based
constraints (see the next chapter). The results are promising and demonstrate the suitability of GridSim for
developing simulators for scheduling in parallel and distributed systems. Furthermore, GridSim is gaining
rapid acceptance as a tool for simulation and performance evaluation of computational Grids and Grid
schedulers. It is in use at severa academic institutions and commercia enterprises all over the world
including California Institute of Technology, University of Southern California, University of Illinois at
Urbana-Champaign, San Diego Supercomputing Centre, Carnegie Melon University, University of
Adelaide, Manchester University, CERN (European Organisation for Nuclear Research), University of
Paderborn, Hong Kong University, National University of Singapore, Sun Microsystems, C-DOT (Centre
for Development of Telematics), IBM (International Business Machines), Unisys, HP (Hewlett and
Packard), Compag, British Telecom, and WorldCom.

Software Availability

The GridSim toolkit software with source code can be downloaded from the project website:
http://ww. buyya. cont gri dsi m

100

