
81

Chapter 5

GridSim: A Toolkit for Modeling and Simulation of Grid
Resource Management and Scheduling

This chapter presents the design and implementation of GridSim, a toolkit for modelling and simulation of
resources and application scheduling in large-scale parallel and distributed computing environments. The
requirements for simulating complex systems are identified. We discuss various mechanisms used by
GridSim to support the simulation of Grid entities—resources, users, application tasks, and
schedulers/brokers—and their characteristics using discrete events. GridSim supports the creation of
repeatable and controllable Grid environments for quicker performance evaluation of scheduling strategies
under different scenarios such as varying number of resources and users with different requirements. A
recipe for developing application scheduling simulators using the GridSim toolkit is presented at the end.

5.1 Introduction
In order to demonstrate the effectiveness of resource brokers and associated scheduling algorithms, their
performance needs to be evaluated under different scenarios such as varying the number of resources and
users with different requirements. In a real Grid environment, it is hard and perhaps even impossible to
perform scheduler performance evaluation in a repeatable and controllable manner for different
scenarios—the availability of resources and their load continuously varies with time and it is impossible for
an individual user/domain to control activities of other users in different administrative domains.

The designers of resource management and scheduling systems and algorithms for large-scale
distributed computing systems need a simple framework for deterministic modeling and simulation of
resources and applications to evaluate their design strategies and algorithms. When access to ready-to-use
testbed infrastructure is not available, building it is expensive and time consuming. Also, even if the testbed
is available, it is limited to a few resources and domains; and testing scheduling algorithms for scalability
and adaptability, and evaluating scheduler performance for various applications and resource scenarios is
harder to trace and resource intensive. Researchers and educators in Grid computing have also recognized
the importance and the need for such a toolkit for modeling and simulation environments [61]. We have
developed a Java-based discrete-event Grid simulation toolkit called GridSim. The toolkit supports
modeling and simulation of heterogeneous Grid resources (both time- and space-shared), users and
application models. It provides primitives for creation of application tasks, mapping of tasks to resources,
and their management. To demonstrate suitability of the GridSim toolkit, we have simulated a Nimrod-G
like Grid resource broker and evaluated the performance of deadline and budget constrained cost- and time-
minimization scheduling algorithms.

Our interest in building a simulation environment arose from the need for performing a detailed
evaluation of deadline and budget constraint scheduling algorithms implemented within the Nimrod-G
broker [100]. We performed many experiments using the Nimrod-G broker for scheduling task farming
applications on the WWG (World-Wide Grid) [111] testbed resources with small configuration (like 2
hours deadline and 10 machines for a single user). The ability to experiment with a large number of Grid
scenarios was limited by the number of resources that were available in the WWG testbed. Also, it was
impossible to perform repeatable evaluation of scheduling strategies as the availability, allocation, and
usage of resources changed with time. Also conducting performance evaluation on a real Grid tested for a

82

number of different scenarios is resource intensive and time consuming task, which can be drastically
minimized by using discrete event simulation techniques.

The GridSim toolkit supports modeling and simulation of a wide range of heterogeneous resources, such
as single or multiprocessors, shared and distributed memory machines such as PCs, workstations, SMPs,
and clusters managed by time or space-shared schedulers. That means, GridSim can be used for modeling
and simulation of application scheduling on various classes of parallel and distributed computing systems
such as clusters, Grids, and P2P networks. The resources in clusters are located in a single administrative
domain and managed by a single entity whereas, in Grid and P2P systems, resources are geographically
distributed across multiple administrative domains with their own management policies and goals. Another
key difference between cluster and Grid/P2P systems arises from the way application scheduling is
performed. The schedulers in cluster systems focus on enhancing overall system performance and utility, as
they are responsible for the whole system. Whereas, schedulers in Grid/P2P systems called resource
brokers, focus on enhancing performance of a specific application in such a way that its end-users
requirements are met.

The rest of this chapter is organized as follows. Section 5.2 discusses related work with highlights on
unique features that distinguish our toolkit from other packages. The GridSim architecture and internal
components that make up GridSim simulations are discussed in Section 5.3. Section 5.4, discusses how to
build GridSim based scheduling simulations. The final section summarizes the chapter along with
comments on adoption and usage of the GridSim toolkit.

5.2 Related Work
Simulation has been used extensively for modeling and evaluation of real world systems, from business
process and factory assembly line to computer systems design. Accordingly, over the years, modeling and
simulation has emerged as an important discipline and many standard and application-specific tools and
technologies have been built. They include simulation languages (e.g., Simscript [15]), simulation
environments (e.g., Parsec [90]), simulation libraries (SimJava [29]), and application specific simulators
(e.g., OMNet++ network simulator [5]). While there exists a large body of knowledge and tools, there are
very few tools available for application scheduling simulation in Grid computing environments. The
notable ones are: Bricks [62], MicroGrid [46], Simgrid [43], and our GridSim toolkit.

The Bricks simulation system [62], developed at the Tokyo Institute of Technology in Japan, helps in
simulating client-server like global computing systems that provide remote access to scientific libraries and
packages running on high performance computers. It follows centralized global scheduling methodology as
opposed to our work in which each application scheduling is managed by the users’ own resource broker.

The MicroGrid emulator [46], undertaken in the University of California at San Diego (UCSD), is
modeled after Globus. It allows execution of applications constructed using Globus toolkit in a controlled
virtual Grid emulated environment. The results produced by emulation can be precise, but modeling
numerous applications, Grid environments, and scheduling scenarios for realistic statistical analysis of
scheduling algorithms is time consuming as applications run on emulated resources. Also, scheduling
algorithms designers generally work with application models instead of constructing actual applications.
Therefore, MicroGrid’s need for an application constructed using Globus imposes significant development
overhead. However, when an actual system is implemented by incorporating scheduling strategies that are
evaluated using simulation, the MicroGrid emulator can be used as a complementary tool for verifying
simulation results with real applications.

The Simgrid toolkit [43], developed in the University of California at San Diego (UCSD), is a
C language based toolkit for the simulation of application scheduling. It supports modeling of resources
that are time-shared and the load can be injected as constants or from real traces. It is a powerful system
that allows creation of tasks in terms of their execution time and resources with respect to a standard
machine capability. Using Simgrid APIs, tasks can be assigned to resources depending on the scheduling
policy being simulated. It has been used for a number of real studies, and demonstrates the power of
simulation. However, because Simgrid is restricted to a single scheduling entity and time-shared systems, it
is difficult to simulate multiple competing users, applications, and schedulers, each with their own policies
when operating under market like Grid computing environment, without extending the toolkit substantially.
Also, many large-scale resources in the Grid environment are space-shared machines and they need to be

83

supported in simulation. Hence, our GridSim toolkit extends the ideas in existing systems and overcomes
their limitations accordingly.

Finally, we have chosen to implement GridSim in Java by leveraging SimJava’s [29] basic discrete
event simulation infrastructure. This feature is likely to appeal to educators and students since Java has
emerged as a popular programming language for network computing.

5.3 GridSim: Grid Modeling and Simulation Toolkit
The GridSim toolkit provides a comprehensive facility for simulation of different classes of heterogeneous
resources, users, applications, resource brokers, and schedulers. It can be used to simulate application
schedulers for single or multiple administrative domain(s) distributed computing systems such as clusters
and Grids. Application schedulers in Grid environment, called resource brokers, perform resource
discovery, selection, and aggregation of a diverse set of distributed resources for an individual user. That
means, each user has his own private resource broker and hence, it can be targeted to optimize for the
requirements and objectives of its owner. Whereas schedulers, managing resources such as clusters in a
single administrative domain, have complete control over the policy used for allocation of resources. That
means, all users need to submit their jobs to the central scheduler, which can be targeted to perform global
optimization such as higher system utilization and overall user satisfaction depending on resource
allocation policy or optimize for high priority users.

5.3.1 Key Features

Salient features of the GridSim toolkit include the following:

• It allows modeling of heterogeneous types of resources.

• Resources can be modeled operating under space- or time-shared mode.

• Resource capability can be defined (in the form of MIPS as per SPEC benchmark).

• Resources can be located in any time zone.

• Weekends and holidays can be mapped depending on resource’s local time to model non-Grid
(local) workload.

• Resources can be booked for advance reservation.

• Applications with different parallel application models can be simulated.

• Application tasks can be heterogeneous and they can be CPU or I/O intensive.

• There is no limit on the number of application jobs that can be submitted to a resource.

• Multiple user entities can submit tasks for execution simultaneously in the same resource, which
may be time-shared or space-shared. This feature helps in building schedulers that can use
different market-driven economic models for selecting services competitively.

• Network speed between resources can be specified.

• It supports simulation of both static and dynamic schedulers.

• Statistics of all or selected operations can be recorded and they can be analyzed using GridSim
statistics analysis methods.

5.3.2 System Architecture

We employed a layered and modular architecture for Grid simulation to leverage existing technologies and
manage them as separate components. A multi-layer architecture and abstraction for the development of
GridSim platform and its applications is shown in Figure 5.1. The first layer is concerned with the scalable
Java’s interface and the runtime machinery, called JVM (Java Virtual Machine), whose implementation is
available for single and multiprocessor systems including clusters [146]. The second layer is concerned
with a basic discrete-event infrastructure built using the interfaces provided by the first layer. One of the
popular discrete-event infrastructure implementations available in Java is SimJava [29]. Recently a
distributed implementation of SimJava is also made available. The third layer is concerned with modeling
and simulation of core Grid entities such as resources, information services, and so on; application model,
uniform access interface, and primitives application modeling and framework for creating higher level
entities. The GridSim toolkit focuses on this layer that simulates system entities using the discrete-event

84

services offered by the lower-level infrastructure. The fourth layer is concerned with the simulation of
resource aggregators called Grid resource brokers or schedulers. The final layer focuses on application and
resource modeling with different scenarios using the services provided by the two lower-level layers for
evaluating scheduling and resource management policies, heuristics, and algorithms. In this section, we
briefly discuss SimJava model for discrete events (a second-layer component) and focus mainly on the
GridSim (the third-layer) design and implementation. The resource broker simulation and performance
evaluation is highlighted in the next two sections.

Basic Discrete Event Simulation Infrastructure

Virtual Machine (Java, cJVM, RMI)

PCs ClustersWorkstations

. . .

SMPs Distributed Resources

GridSim Toolkit

Application
Modeling

Information
Services

Resource
Allocation

Grid Resource Brokers or Schedulers

Statistics

Resource Modeling and Simulation (with Time and Space shared schedulers)

Job
Management

ClustersSingle CPU ReservationSMPs Load Pattern

Application
Configuration

Resource
Configuration

User
Requirements

Grid
Scenario

Network

SimJava Distributed SimJava

Resource
Entities

Output

Application, User, Grid Scenario’s Input and Results

Figure 5.1: A modular architecture for GridSim platform and components.

5.3.3 SimJava Discrete Event Model

SimJava [29] is a general-purpose discrete event simulation package implemented in Java. Simulations in
SimJava contain a number of entities each of which runs in parallel in its own thread. An entity’s behaviour
is encoded in Java using its body() method. Entities have access to a small number of simulation primitives:

• sim_schedule() sends event objects to other entities via ports;
• sim_hold() holds for some simulation time;
• sim_wait() waits for an event object to arrive.

These features help in constructing a network of active entities that communicate by sending and receiving
passive event objects efficiently.

The sequential discrete event simulation algorithm, in SimJava, is as follows. A central object
Sim_system maintains a timestamp ordered queue of future events. Initially all entities are created and their
body() methods are put in run state. When an entity invokes a simulation function, the Sim_system object
halts that entity’s thread and places an event on the future queue to signify processing the function. When
all entities have halted, Sim_system pops the next event off the queue, advances the simulation time

85

accordingly, and restarts entities as appropriate. This continues until no more events are generated. If the
Java virtual machine supports native threads, then all entities starting at exactly the same simulation time
may run concurrently.

5.3.4 GridSim Entities

GridSim supports entities for simulation of single processor and multiprocessor, heterogeneous resources
that can be configured as time or space shared systems. It allows setting their clock to different time zones
to simulate geographic distribution of resources. It supports entities that simulate networks used for
communication among resources. During simulation, GridSim creates a number of multi-threaded entities,
each of which runs in parallel in its own thread. An entity’s behavior needs to be simulated within its
body() method, as dictated by SimJava.

Jobs
Appli
cation

Scheduler

User #i Broker #i Output

Input

Output

Input

Resource #j

Job In Queue

Job Out Queue
Process
Queue

Output

Input

Resource
List

Information
Service

Internet

Report
W

riter #i
Sta

tis
tic

s

Rec
or

der
#i

Sta
tis

tic
s

Rec
or

der
#i

Shutdown
Signal

M
anager #i

Figure 5.2: A flow diagram in GridSim based simulations.

A simulation environment needs to abstract all the entities and their time dependent interactions in the
real system. It needs to support the creation of user-defined time dependent response functions for the
interacting entities. The response function can be a function of the past, current, or both states of entities.
GridSim based simulations contain entities for the users, brokers, resources, information service, statistics,
and network based I/O as shown in Figure 5.2. The design and implementation issues of these GridSim
entities are discussed below:
User – Each instance of the User entity represents a Grid user. Each user may differ from the rest of the

users with respect to the following characteristics:

• Types of job created e.g., job execution time, number of parametric replications, etc.,

• Scheduling optimization strategy e.g., minimization of cost, time, or both,

• Activity rate e.g., how often it creates new job,

• Time zone, and

• Absolute deadline and budget, or

86

• D-and B-factors, deadline and budget relaxation parameters, measured in the range [0,1] express
deadline and budget affordability of the user relative to the application processing requirements
and available resources.

Broker – Each user is connected to an instance of the Broker entity. Every job of a user is first submitted to
its broker and the broker then schedules the parametric tasks according to the user’s scheduling policy.
Before scheduling the tasks, the broker dynamically gets a list of available resources from the global
directory entity. Every broker tries to optimize the policy of its user and therefore, brokers are expected
to face extreme competition while gaining access to resources. The scheduling algorithms used by the
brokers must be highly adaptable to the market’s supply and demand situation.

Resource – Each instance of the Resource entity represents a Grid resource. Each resource may differ from
the rest of resources with respect to the following characteristics:

• Number of processors;

• Cost of processing;

• Speed of processing;

• Internal process scheduling policy e.g., time shared or space shared;

• Local load factor; and

• Time zone.
The resource speed and the job execution time can be defined in terms of the ratings of standard
benchmarks such as MIPS and SPEC. They can also be defined with respect to the standard machine.
Upon obtaining the resource contact details from the Grid information service, brokers can query
resources directly for their static and dynamic properties.

Grid Information Service – It provides resource registration services and maintains a list of resources
available in the Grid. This service can be used by brokers to discover resource contact, configuration,
and status information.

Input and Output –The flow of information among the GridSim entities happen via their Input and Output
entities. Every networked GridSim entity has I/O channels, which are used for establishing a link
between the entity and its own Input and Output entities. Note that the GridSim entity and its Input
and Output entities are threaded entities i.e., they have their own execution thread with body() method
that handle the events. The GridSim model for communication between entities is illustrated in Figure
5.3. The use of separate entities for input and output enables a networked entity to model full duplex
and multi-user parallel communications. The support for buffered input and output channels associated
with every GridSim entity provides a simple mechanism for an entity to communicate with other
entities and at the same time enables the modeling of a communication delay transparently.

5.3.5 Application Model

GridSim does not explicitly define any specific application model. It is up to the developers (of schedulers
and resource brokers) to define them. We have experimented with a task-farming application model.
However, it is possible to use GridSim to model other parallel application models such as process
parallelism, DAGs (Directed Acyclic Graphs), divide and conquer etc., described in [70].

In GridSim, each independent task may require varying processing time and input files size. Such tasks
can be created and their requirements are defined through Gridlet objects. A Gridlet is a package that
contains all the information related to the job and its execution management details such as the job length
expressed in MI (million instructions), disk I/O operations, the size of input and output files, and the job
originator. These basic parameters help in determining execution time, the time required to transport input
and output files between users and remote resources, and returning the processed Gridlets back to the
originator along with the results. The GridSim toolkit supports a wide range of Gridlet management
protocols and services that allow schedulers to map a Gridlet to a resource and manage it through out the
life cycle.

87

EA

Output_EA

Input_EA

EB

Output_EB

Input_EB

body()

Send(output, data, EB)
…
…

body()

body()

…

…
body() …

body()

…

body()

Receive(input, data, EA)
…
…

Timed Event Delivery

data, t2

(Deliver data @ t2)

EA

Output_EA

Input_EA

EB

Output_EB

Input_EB

body()

Send(output, data, EB)
…
…

body()

body()

……

……
body() ……

body()

……

body()

Receive(input, data, EA)
…
…

Timed Event Delivery

data, t2

(Deliver data @ t2)

Figure 5.3: Entity communication model via its Input and Output entities.

5.3.6 Interaction Protocols Model

The protocols for interaction between GridSim entities are implemented using events. In GridSim, entities
use events for both service requests and service deliveries. The events can be raised by any entity to be
delivered immediately or with specified delay to other entities or itself. The events that are originated from
the same entity are called internal events and those originated from the external entities are called external
events. Entities can distinguish these events based on the source identification associated with them. The
GridSim protocols are used for defining entity services. Depending on the service protocols, the GridSim
events can be further classified into synchronous and asynchronous events. An event is called synchronous
when the event source entity waits until the event destination entity performs all the actions associated with
the event (i.e., the delivery of full service). An event is called asynchronous when the event source entity
raises an event and continues with other activities without waiting for its completion. When the destination
entity receives such events or service requests, it responds back with results by sending one or more events,
which can then take appropriate actions. It should be noted that external events could be synchronous or
asynchronous, but internal events need to be raised as asynchronous events only to avoid deadlocks.

A complete set of entities in a typical GridSim simulation and the use of events for simulating
interaction between them are shown in Figure 5.4 and Figure 5.5. Figure 5.4 emphasizes the interaction
between a resource entity that simulates time-shared scheduling and other entities. Figure 5.5 emphasizes
the interaction between a resource entity that simulates space-shared system and other entities. In this
section we briefly discuss the use of the events for simulating Grid activities.

88

User1 Grid
Broker Entity

Grid Resource
Entity

(Register Resource)

Grid Information
Service Entity

Grid Shutdown
Entity

(Get Resource List)

(Get Resource Characteristics)

(Submit Gridlet1)

(Gridlet1 Finished)

(Submit Gridlet3)

(Submit Gridlet2) [1st, 2nd, 3rd time
predicted completion
time of Gridlet1]

[Gridlet2
completion event](Gridlet2 Finished)

[Gridlet3
completion event](Gridlet3 Finished)

(I am Done)

[If all Users
are “Done”]

(Terminate)

(Get Resource
List)

(Terminate)

Grid Statistics
Entity

(Record My Statistics)

Grid User1
Entity

(Submit
Expt.)

(Done
Expt.)

Report
Writer Entity

(Create Report)

(Get Stat)

(Done)

(Terminate)
(Asynchronous Event)

(Synchronous Event)

The delivery of the most recently
scheduled internal asynchronous
event to indicate the Gridlet
completion.

Internal asynchronous event is
ignored since the arrival of
other events has changed the
resource scenario.

Figure 5.4: An event diagram for interaction between a time-shared resource and other entities.

The GridSim entities (user, broker, resource, information service, statistics, shutdown, and report writer)
send events to other entities to signify the request for service, deliver results, or raise internal actions. Note
that GridSim implements core entities that simulate resource, information service, statistics, and shutdown
services. These services can be used to simulate users, brokers, and an optional report writer for creating
statistical reports at the end of a simulation. The event source and destination entities must agree upon the
protocols for service request and delivery. The protocols for interaction between the user-defined and core
entities are pre-defined.

When GridSim starts, the resource entities register themselves with the Grid Information Service (GIS)
entity, by sending events. This resource registration process is similar to GRIS (Grid Resource Information
Server) registering with GIIS (Grid Index Information Server) in Globus system. Depending on the user
entity’s request, the broker entity sends an event to the GIS entity, to signify a query for resource discovery.
The GIS entity returns a list of registered resources and their contact details. The broker entity sends events
to resources with request for resource configuration and properties. They respond with dynamic
information such as resources cost, capability, availability, load, and other configuration parameters. These
events involving the GIS entity are synchronous in nature.

Depending on the resource selection and scheduling strategy, the broker entity places asynchronous
events for resource entities in order to dispatch Gridlets for execution—the broker need not wait for a
resource to complete the assigned work. When the Gridlet processing is finished, the resource entity
updates the Gridlet status and processing time and sends it back to the broker by raising an event to signify
its completion.

The GridSim resources use internal events to simulate resource behavior and resource allocation. The
entity needs to be modeled in such a way that it is able to receive all events meant for it. However, it is up
to the entity to decide on the associated actions. For example, in time-shared resource simulations (see
Figure 5.4) internal events are scheduled to signify the completion time of a Gridlet, which has the smallest
remaining processing time requirement. Meanwhile, if an external event arrives, it changes the share
resource availability for each Gridlet. That means the most recently scheduled event may not necessarily
signify the completion of a Gridlet. The resource entity can discard such internal events without processing.
The use of internal events for simulating resources is discussed in detail in Section 5.3.7.

89

User1 Grid
Broker Entity

Grid Resource
Entity

(Register Resource)

Grid Information
Service Entity

Grid Shutdown
Entity

(Get Resource List)

(Get Resource Characteristics)

(Submit Gridlet1)
[Gridlet1 completion
event]

(Gridlet1 Finished)

(Submit Gridlet3)

(Submit Gridlet2)

[Gridlet2
completion event]

(Gridlet2 Finished)

[Gridlet3
completion event]

(Gridlet3 Finished)

(I am Done)

[If all Users
are “Done”]

(Terminate)

(Get Resource
List)

(Terminate)

Grid Statistics
Entity

(Record My Statistics)

Grid User1
Entity

(Submit
Expt.)

(Done
Expt.)

Report
Writer Entity

(Create Report)

(Get Stat)

(Done)

(Terminate)(Asynchronous Event)

(Synchronous Event)
Internal Asynchronous Event:
scheduled and delivered to
indicate the completion of
Gridlet.

Figure 5.5: An event diagram for interaction between a space-shared resource and other entities.

5.3.7 Resource Model – Simulating Multitasking and Multiprocessing

In the GridSim toolkit, we can create Processing Elements (PEs) with different speeds (measured in either
MIPS or SPEC-like ratings). Then, one or more PEs can be put together to create a machine. Similarly, one
or more machines can be put together to create a Grid resource. Thus, the resulting Grid resource can be a
single processor, shared memory multiprocessors (SMP), or a distributed memory cluster of computers.
These Grid resources can simulate time- or space-shared scheduling depending on the allocation policy. A
single PE or SMP type Grid resource is typically managed by time-shared operating systems that use
round-robin scheduling policy (see Figure 5.8) for multitasking. The distributed memory multiprocessing
systems (such as clusters) are managed by queuing systems, called space-shared schedulers, that execute a
Gridlet by running it on a dedicated PE (see Figure 5.11) when allocated. The space-shared systems use
resource allocation policies such as first-come-first-served (FCFS), back filling, shortest-job-first served
(SJFS), and so on. It should also be noted that resource allocation within high-end SMPs could also be
performed using the space-shared schedulers.

Multitasking and multiprocessing systems allow concurrently running tasks to share system resources
such as processors, memory, storage, I/O, and network by scheduling their use for very short time intervals.
A detailed simulation of scheduling tasks in the real systems would be complex and time consuming.
Hence, in GridSim, we abstract these physical entities and simulate their behavior using process oriented,
discrete event “interrupts” with time interval as large as the time required for the completion of a smallest
remaining-time job. The GridSim resources can send, receive, or schedule events to simulate the execution
of jobs. It schedules self-events for simulating resource allocation depending on the scheduling policy and
the number of jobs in queue or in execution.

Let us consider the following scenario to illustrate the simulation of Gridlets execution and scheduling
within a GridSim resource. A resource consists of two shared or distributed memory PEs each with MIPS
rating of 1, for simplicity. Three Gridlets that represent jobs with processing requirements equivalent to 10,
8.5, and 9.5 MI (million instructions) arrive in simulation times 0, 4, and 7 respectively. The way GridSim
schedules jobs to PEs is shown schematically in Figure 5.8 for time-shared resources and Figure 5.11 for
space-shared resources.

90

Simulation of Scheduling in Time-Shared Resources

The GridSim resource simulator uses internal events to simulate the execution and allocation of PEs share
to Gridlet jobs. When jobs arrive, time-shared systems start their execution immediately and share
resources among all jobs. Whenever a new Gridlet job arrives, we update the processing time of existing
Gridlets and then add this newly arrived job to the execution set. We schedule an internal event to be
delivered at the earliest completion time of smallest job in the execution set. It then waits for the arrival of
events.

A complete algorithm for simulation of time-share scheduling and execution is shown in Figure 5.6. If a
newly arrived event happens to be an internal event whose tag number is the same as the most recently
scheduled event, then it is recognized as a job completion event. Depending on the number of Gridlets in
execution and the number of PEs in a resource, GridSim allocates appropriate amount of PE share to all
Gridlets for the event duration using the algorithm shown in Figure 5.7. It should be noted that Gridlets
sharing the same PE would get an equal amount of PE share. The completed Gridlet is sent back to its
originator (broker or user) and removed from the execution set. GridSim schedules a new internal event to
be delivered at the forecasted earliest completion time of the remaining Gridlets.

Figure 5.6: An event handler for simulating time-shared resource scheduling.

Figure 5.8 illustrates the simulation of time-share scheduling algorithm and the Gridlets’ execution.
When Gridlet1 arrives at time 0, it is mapped to PE1 and an internal event to be delivered at the time 10 is
scheduled since the predicted completion time is still 10. At time 4, Gridlet2 arrives and it is mapped to the
PE2. The completion time of Gridlet2 was predicted as 12.5 and the completion time of Gridlet1 is still 10
since both of them are executing on different PEs. A new internal event is scheduled, which will still be
delivered at time 10. At time 7, Gridlet3 arrives, which is mapped to the PE2. It shares the PE time with
Gridlet2. At time 10, an internal event is delivered to the resource to signify the completion of the
Gridlet1, which is then sent back to the broker. At this moment, as the number of Gridlets equal the number
of PEs, they are mapped to different PEs. An internal event to be delivered at time 14 is scheduled to
indicate the predicted completion time of Gridlet2. As simulation proceeds, an internal event is delivered at
time 14 and Gridlet2 is sent back to the broker. An internal event to be delivered at time 18 is scheduled to
indicate the predicted completion time of Gridlet3. Since there were no other Gridlets submitted before this
time, the resource receives an internal interrupt at time 18, which signifies the completion of Gridlet3. A

Algorithm: Time-Shared Grid Resource Event Handler ()
1. Wait for an event

2. If the external and Gridlet arrival event, then:
BEGIN /* a new job has arrived */

a. Allocate PE Share for Gridlets Processed so far
b. Add arrived Gridlet to Execution_Set
c. Forecast completion time of all Gridlets in Execution_Set
d. Schedule an event to be delivered at the smallest completion time

END
3. If event is internal and its tag value is the same as the recently scheduled internal event

tag,
BEGIN /* a job finish event */

a. Allocate PE Share of all Gridlets processed so far
b. Update finished Gridlet’s PE and Wall clock time parameters and send it back

to the broker
c. Remove finished Gridlet from the Execution_Set and add to Finished_Set
d. Forecast completion time of all Gridlets in Execution_Set
e. Schedule an event to be delivered at the smallest completion time

END

4. Repeat the above steps until the end of simulation event is received

91

schematic representation of Gridlets arrival, internal events delivery, and sending them back to the broker is
shown in Figure 5.4. The comparison between the arrival, execution start, execution finish, and elapsed
time of Gridlets when deployed on time and space shared resources is shown in Table 5.1.

Figure 5.7: PE share allocation to Gridlet in time-shared GridSim resource.

PE1

PE2

G1

G2

G3

G1

G2
G2

G2

G3
G3

P1-G2P1-G1 P3-G2 P1-G3P2-G3

Time
G1

G1: Gridlet1 Arrives

G1FG3

G1F: Gridlet1 Finishes

G2 G2F G3F

Gridlet1 (10 MIPS)

Gridlet2 (8.5 MIPS)

Gridlet3 (9.5 MIPS) P2-G2: Gridlet2 finishes at the 2nd prediction time.

P1-G2: Gridlet2 didn’t finish at the 1st prediction time.

Tasks on
PEs/CPUs

2 6 9 12 16 19 2622

P2-G2

Figure 5.8: Modeling time-shared multitasking and multiprocessing based on an event scheme.

Algorithm: PE_Share_Allocation(Duration)

1. Identify total MI per PE for the duration and the number of PE that process one extra Gridlet

TotalMIperPE = MIPSRatingOfOnePE()*Duration

MinNoOfGridletsPerPE = NoOfGridletsInExec / NoOfPEs

NoOfPEsRunningOneExtraGridlet = NoOfGridletsInExec % NoOfPEs

2. Identify maximum and minimum MI share that Gridlet get in the Duration

If(NoOfGridletsInExec <= NoOfPEs), then:

MaxSharePerGridlet = MinSharePerGridlet = TotalMIperPE

MaxShareNoOfGridlets = NoOfGridletsInExec

Else /* NoOfGridletsInExec > NoOfPEs */

MaxSharePerGridlet = TotalMIperPE/ MinNoOfGridletsPerPE

MinSharePerGridlet = TotalMIperPE/(MinNoOfGridletsPerPE+1)

MaxShareNoOfGridlets = (NoOfPEs - NoOfPEsRunningOneExtraGridlet)* MinNoOfGridletsPerPE

92

Table 5.1: A scheduling statistics scenario for time- and space-shared resources in GridSim.

Time-Shared Resource Space-Shared Resource

Grilets
Number

Length
(MI)

Arrival
Time

(a)

Start
Time

(s)

Finish
Time

(f)

Elapsed
Time

(f-a)

Start
Time

(s)

Finish
Time

(f)

Elapsed
Time

(f-a)

G1 10 0 0 10 10 0 10 10

G2 8.5 4 4 14 10 4 12.5 8.5

G3 9.5 7 7 18 11 10 19.5 12.5

Simulation of Scheduling in Space-Shared Resources

The GridSim resource simulator uses internal events to simulate the execution and allocation of PEs to
Gridlet jobs. When a job arrives, space-shared systems start its execution immediately if there is a free PE
available, otherwise, it is queued. During the Gridlet assignment, job-processing time is determined and
event is scheduled for delivery at the end of execution time. Whenever the Gridlet job finishes and the
internal event is delivered to signify the completion of scheduled Gridlet job, the resource simulator frees
the PE allocated to it and then checks if there are any other jobs waiting in the queue. If there are jobs
waiting in the queue, then it selects a suitable job depending on the policy and assigns to the PE, which is
free.

A complete algorithm for simulation of space-share scheduling and execution is shown in Figure 5.9. If
a newly arrived event happens to be an internal event whose tag number is the same as the most recently
scheduled event, then it is recognized as a Gridlet completion event. If there are Gridlets in the submission
queue, then depending on the allocation policy (e.g., the first Gridlet in the queue if FCFS policy is used),
GridSim selects suitable Gridlets from the queue and assigns it to the PE or a suitable PE if more than one
PE is free. See Figure 5.11 for illustration of the allocation of PE to Gridlets. The completed Gridlet is sent
back to its originator (broker or user) and removed from the execution set. GridSim schedules a new
internal event to be delivered at the completion time of the scheduled Gridlet job.

Figure 5.9: An event handler for simulating space-shared resource scheduling.

Algorithm: Space-Shared Grid Resource Event Handler ()
1. Wait for event and Identity Type of Event received
2. If it external and Gridlet arrival event, then:

BEGIN /* a new job arrived */

• If the number of Gridlets in execution are less than the number of PEs in the resource, then,
Allocate_PE_to_the_Gridlet() /* It should schedule an Gridlet completion event */

• If not, Add Gridlet to the Gridlet_Submitted_Queue
END

3. If event is internal and its tag value is the same recently scheduled internal event tag,
BEGIN /* a job finish event */

• Update finished Gridlet’s PE and Wall clock time parameters and send it back to the broker

• Set the status of PE to FREE

• Remove finished Gridlet from the Execution_Set and add to Finished_Set

• If Gridlet_Submitted_Queue has Gridlets in waiting, then
Choose the Gridlet to be Processed() /* e.g., first one in Q if FCFS policy is used */
Allocate_PE_to_the_Gridlet() /* It should schedule an Gridlet completion event */

END
4. Repeat the above steps until the end of simulation event is received

93

Figure 5.10: PE allocation to the Gridlets in space-shared GridSim resource.

Figure 5.11 illustrates the simulation of space-share scheduling algorithm and Gridlets’ execution. When
Gridlet1 arrives at time 0, it is mapped to PE1 and an internal event to be delivered at the time 10 is
scheduled since the predicted completion time is still 10. At time 4, Gridlet2 arrives and it is mapped to the
PE2. The completion time of Gridlet2 is predicted as 12.5 and the completion time of Gridlet1 is still 10
since both of them are executing on different PEs. A new internal event to be delivered at time 12.5 is
scheduled to signify the completion of Gridlet2. At time 7, Gridlet3 arrives. Since there is no free PE
available on the resource, it is put into the queue. The simulation continues i.e., GridSim resource waits for
the arrival of a new event. At time 10 a new event is delivered which happens to signify the completion of
Gridlet1, which is then sent back to the broker. It then checks to see if there are any Gridlets waiting in the
queue and chooses a suitable Gridlet (in this case as Gridlet2 is based on FCFS policy) and assign the
available PE to it. An internal event to be delivered at time 19.5 is scheduled to indicate the completion
time of Gridlet3 and then waits for the arrival of new events. A new event is delivered at the simulation
time 12.5, which signifies the completion of the Gridlet2, which is then sent back to the broker. There is no
Gridlet waiting in the queue, so it proceeds without scheduling any events and waits for the arrival of the
next event. A new internal event arrives at the simulation time 19.5, which signifies the completion of
Gridlet3. This process continues until resources receive an external event indicating the termination of
simulation. A schematic representation of Gridlets arrival, internal events delivery, and sending them back
to the broker is shown in Figure 5.5.

G1

G2

G3

G1 G3

G2 G3

P1-G1 P1-G2 P1-G3

Time
G1

G1: Gridlet1 Arrives

G1FG3

G1F: Gridlet1 Finishes

G2 G2F G3F

Gridlet1 (10 MIPS)

Gridlet2 (8.5 MIPS)

Gridlet3 (9.5 MIPS)
P1-G2: Gridlet2 finishes as per the 1st Predication

Tasks on
PEs/CPUs

2 6 9 12 16 19 2622

PE1

PE2

Figure 5.11: Modeling space-shared multiprocessing based on an event scheme.

Algorithm: Allocate_PE_to_the_Gridlet(Gridlet gl)
1. Identify a suitable Machine with Free PE

2. Identify a suitable PE in the machine and Assign to the Gridlet

3. Set Status of the Allocated PE to BUSY

4. Determine the Completion Time of Gridlet and Set an internal event to be delivered at the
completion time

94

For every Grid resource, the non-Grid (local) workload is estimated based on typically observed load
conditions depending on the time zone of the resource. The network communication speed between a user
and the resources is defined in terms of a data transfer speed (baud rate).

5.3.8 GridSim Java Package Design

A class diagram hierarchy of the gridsim package, represented using unified modeling language (UML)
notation, is shown in Figure 5.12. The specification of each class contains up to three parts: attributes,
methods, and internal classes. In the class diagram, attributes and methods are prefixed with characters
“+”, “-”, and “#” indicating access modifiers public, private, and protected respectively. The gridsim
package implements the following classes:

class gridsim.Input – This class extends the eduni.simjava.Sim_entity class. This class defines a
port through which a simulation entity receives data from the simulated network. It maintains an event
queue to serialize the data-in-flow and delivers to its parent entity. Simultaneous inputs can be
modeled using multiple instances of this class.

class gridsim.Output – This class is very similar to the gridsim.Input class and it defines a port
through which a simulation entity sends data to the simulated network. It maintains an event queue to
serialize the data-out-flow and delivers to the destination entity. Simultaneous outputs can be modeled
by using multiple instances of this class.

class gridsim.GridSim – This is the main class of Gridsim package that must be extended by
GridSim entities. It inherits event management and threaded entity features from the
eduni.simjava.Sim_entity class. The GridSim class adds networking and event delivery features, which
allows synchronous or asynchronous communication for service access or delivery. All classes that
extend the GridSim class must implement a method called “body()”, which is automatically invoked
since it is expected to be responsible for simulating entity behavior. The entities that extend the
GridSim class can be instantiated with or without networked I/O ports. A networked GridSim entity
gains communication capability via the objects of GridSim’s I/O entity classes gridsim.Input and
gridsim.Output classes. Each I/O entity will have a unique name assuming each GridSim entity that the
user creates has unique name. For example, a resource entity with name “Resource2” will have an
input entity whose name is prefixed with “Input_”, making input entity full name as
“Input_Resource2”, which is expected to be unique. The I/O entities are concurrent entities, but they
are visible within GridSim entity and are able to communicate with other GridSim entities by sending
messages.
The GridSim class supports methods for simulation initialization, management, and flow control. The
GridSim environment must be initialized to setup simulation environment before creating any other
GridSim entities at the user level. This method also prepares the system for simulation by creating
three GridSim internal entities—GridInformationService, GridSimShutdown, and GridStatistics. As
explained in Section 5.3.2, the GridInformationService entity simulates the directory that dynamically
keeps a list of resources available in the Grid. The GridSimShutdown entity helps in wrapping up a
simulation by systematically closing all the opened GridSim entities. The GridStatistics entity provides
standard services during the simulation to accumulate statistical data. Invoking the GridSim.Start ()
method starts the Grid simulation. All the resource and user entities must be instantiated in between
invoking the above two methods.
The GridSim class supports static methods for sending and receiving messages between entities
directly or via network entities, managing and accessing handle to various GridSim core entities, and
recording statistics.

class gridsim.PE – It is used to represent CPU/Processing Element (PE) whose capability is defined
in terms of MIPS rating.

class gridsim.PEList – It maintains a list of PEs that make up a machine.

class gridsim.Machine – It represents a uniprocessor or shared memory multiprocessor machine.

95

Figure 5.12: A class hierarchy diagram of GridSim package.

96

class gridsim.MachineList – An instance of this class simulates a collection of machines. It is up
to the GridSim users to define the connectivity among the machines in a collection. Therefore, this
class can be instantiated to model simple LAN to cluster to WAN.

class gridsim.ResourceCharacteristics –It represents static properties of a resource such as
resource architecture, OS, management policy (time or space shared), cost, and time zone at which the
resource is located along resource configuration.

class gridsim.GridResource – It extends the GridSim class and gains communication and
concurrent entity capability. An instance of this class simulates a resource with properties defined in an
object of the gridsim.ResourceCharacteristics class. The process of creating a Grid
resource is as follows: first create PE objects with a suitable MIPS/SPEC rating, second assemble
them together to create a machine. Finally, group one or more objects of the Machine to form a
resource. A resource having a single machine with one or more PEs is managed as a time-shared
system using round robin scheduling algorithm. A resource with multiple machines is treated as a
distributed memory cluster and is managed as a space-shared system using first-come first served
scheduling policy or its variants.

class gridsim.GridSimStandardPE – It defines MIPS rating for a standard PE or enables the
users to define their own MIPS/SPEC rating for a standard PE. This value can be used for creating PEs
with relative MIPS/SPEC rating for GridSim resources and creating Gridlets with relative processing
requirements.

class gridsim.ResourceCalendar – This class implements a mechanism to support modeling
local load on Grid resources that may vary according to the time zone, time, weekends, and holidays.

class gridsim.GridInformationService – A GridSim entity that provides Grid resource
registration, indexing and discovery services. The Grid resources register their readiness to process
Gridlets by registering themselves with this entity. GridSim entities such as the resource broker can
contact this entity for resource discovery service, which returns a list of registered resource entities and
their contact address. For example, scheduling entities use this service for resource discovery.

class gridsim.Gridlet – This class acts as job package that contains job length in MI, the length of
input and out data in bytes, execution start and end time, and the originator of job. Individual users
model their application by creating Gridlets for processing them on Grid resources assigned by
scheduling entities (resource brokers).

class gridsim.GridletList – It can be used to maintain a list of Gridlets and supports methods
for organizing them.

class gridsim.GridSimTags – It contains various static command tags that indicate a type of
action that needs to be undertaken by GridSim entities when they receive events. The different types of
tags supported in GridSim along with comments indicating possible purpose are shown in Figure 5.13.

public class GridSimTags {
public static final double SCHEDULE_NOW = 0.0; // 0.0 indicates NO delay
public static final int END_OF_SIMULATION = -1;
public static final int INSIGNIFICANT = 0; // ignore tag
public static final int EXPERIMENT = 1; // User <-> Broker
public static final int REGISTER_RESOURCE = 2; // GIS -> ResourceEntity
public static final int RESOURCE_LIST = 3; // GIS <-> Broker
public static final int RESOURCE_CHARACTERISTICS = 4; // Broker <-> ResourceEntity
public static final int RESOURCE_DYNAMICS = 5; // Broker <-> ResourceEntity
public static final int GRIDLET_SUBMIT = 6; // Broker -> ResourceEntity
public static final int GRIDLET_RETURN = 7; // Broker <- ResourceEntity
public static final int GRIDLET_STATUS = 8; // Broker <-> ResourceEntity
public static final int RECORD_STATISTICS = 9; // Entity -> GridStatistics
public static final int RETURN_STAT_LIST = 10; // Entity <- GridStatistics
public static final int RETURN_ACC_STATISTICS_BY_CATEGORY = 11;
public static final int DEFAULF_BAUD_RATE = 9600; // Default Baud Rate for entities

}

Figure 5.13: Global tags in GridSim package.

97

class gridsim.ResGridlet – It represents a Gridlet submitted to the resource for processing. It
contains Gridlet object along with its arrival time and the ID of machine and PE allocated to it. It acts
as a placeholder for maintaining the amount of resource share allocated at various times for simulating
time-shared scheduling using internal events.

class gridsim.GridStatistics – This is a GridSim entity that records statistical data reported by
other entities. It stores data objects with their label and timestamp. At the end of simulation, the user-
defined report-writer entity can query recorded statistics of interest for report generation.

class gridsim.Accumulator – The objects of this class provide a placeholder for maintaining
statistical values of a series of data added to it. It can be queried for mean, sum, standard deviation, and
the largest and smallest values in the data series.

class gridsim.GridSimShutdown – This is a GridSim entity that waits for termination of all User
entities to determine the end of simulation. It then signals the user-defined report-writer entity to
interact with GridStatistics entity to generate report. Finally, it signals the end of simulation to other
GridSim core entities.

class gridsim.GridSimRandom – This class provides static methods for incorporating randomness
in data used for any simulation. Any predicted/estimated data, e.g., number of Gridlets used by an
experiment, execution time and output size of a Gridlet etc., need to be mapped to real-world data by
introducing randomness to reflect the uncertainty that is present in the prediction/estimation process
and the randomness that exists in the nature itself. The execution time of a Gridlet on a particular
resource, for example, can vary depending on the local load, which is not covered by the scope of
GridSim to simulate.
The real(d, fL, fM) method of this class maps the predicted/estimated value d to a random real-world
value between (1- fL)×d to (1+ fM)×d, using the formula d×(1 - fL + (fL + fM)×rd) where 0.0 ≤ fL, fM ≤
1.0 and rd is a uniformly distributed double value between 0.0 and 1.0. This class also maintains
different values of fL and fM factors for different situations to represent different level of uncertainty
involved.

5.4 Building Simulations with GridSim
To simulate Grid resource brokers using the GridSim toolkit, the developers need to create new entities that
exhibit the behavior of Grid users and scheduling systems. The user-defined entities extend the GridSim
base class to inherit the properties of concurrent entities capable of communicating with other entities using
events. The high-level steps involved in modeling resources and applications, and simulating brokers using
the GridSim toolkit are discussed below. The simulation of a Nimrod-G like economic Grid broker and
evaluation of deadline and budget constrained scheduling algorithms are presented in the next chapter.

In this section we present a recipe for simulating application scheduling, with sample code clips, to
demonstrate how GridSim can be used to simulate a Grid environment to evaluate schedulers:

• First, we need to create Grid resources of different capability and configuration (a single or
multiprocessor with time/space-shared resource manager) similar to those used in application
scheduling on the World-Wide Grid (WWG) testbed. We also need to create users with different
requirements (application and quality of service requirements). A sample code for creating a Grid
environment is given in Figure 5.14.

98

public static void CreateSampleGridEnvironement(int no_of_users, int no_of_resources,
double B_factor, double D_factor, int policy, double how_long, double seed) {
Calendar now = Calendar.getInstance();

String ReportWriterName = "MyReportWriter";
GridSim.Init(no_of_users, calender, true, eff, efp, ReportWriterName);

String[] category = {"*.USER.TimeUtilization", "*.USER.GridletCompletionFactor",
"*.USER.BudgetUtilization"};

// Create Report Writer Entity and category indicates types of information to be recorded.
new ReportWriter(ReportWriterName, no_of_users, no_of_resources, ReportFile, category,

report_on_next_row_flag);

// Create Resources
for(int i=0; i<no_of_resources; i++) {

// Create PEs
PEList peList = new PEList();
for(int j=0; j<(i*1+1); j++)

peList.add(new PE(0, 100));

// Create machine list
MachineList mList = new MachineList();
mList.add(new Machine(0, peList));

// Create a resource containing machines
ResourceCharacteristics resource = new ResourceCharacteristics("INTEL", "Linux",

mList, ResourceCharacteristics.TIME_SHARED, 0.0, i*0.5+1.0);
LinkedList Weekends = new LinkedList();
Weekends.add(new Integer(Calendar.SATURDAY));
Weekends.add(new Integer(Calendar.SUNDAY));
LinkedList Holidays = new LinkedList(); // no holiday is set!

// Setup resource as simulated entity with a name (e.g. "Resource_1").
new GridResource("Resource_"+i, 28000.0, seed, resource,

0.0, 0.0, 0.0, Weekends, Holidays);
}
Random r = new Random(seed);
// Create Application, Experiment, and Users
for(int i=0; i<no_of_users; i++)
{

Random r = new Random(seed*997*(1+i)+1);
GridletList glList = Application1(r); // it creates Gridlets and returns their list
Experiment expt = new Experiment(0, glList, policy, true, B_factor, D_factor);
new UserEntity("U"+i, expt, 28000.0, how_long, seed*997*(1+i)+1, i, user_entity_report);

}
// Perform Simulation
GridSim.Start();

}

Figure 5.14: A sample code segment for creating Grid resource and user entities in GridSim.

• Second, we need to model applications by creating a number of Gridlets (that appear similar to
Nimrod-G jobs) and define all parameters associated with jobs as shown in Figure 5.15. The
Gridlets need to be grouped together depending on the application model.

Figure 5.15: The Gridlet method in GridSim.

• Then, we need to create a GridSim User entity that creates and interacts with the resource broker
scheduling entity to coordinate execution experiment. It can also directly interact with GIS and
resource entities for Grid information and submitting or receiving processed Gridlets, however, for
modularity sake, we encourage the implementation of a separate resource broker entity by
extending the GridSim class.

• Finally, we need to implement a resource broker entity that performs application scheduling on
Grid resources. A sample code for implementing the broker is shown in Figure 5.16. First, it
accesses the Grid Information Service (GIS), and then inquires the resource for its capability
including cost. Depending on processing requirements, it develops schedule for assigning Gridlets
to resources and coordinates the execution. The scheduling policies can be systems-centric like
those implemented in many Grid systems such as Condor or user-centric like the Nimrod-G
broker’s quality of service (QoS) driven application scheduling algorithms [105].

Gridlet gl = new Gridlet(Gridlet_id, Gridlet_length, GridletFileSize,
GridletOutputSize);

99

class Broker extends GridSim {
private Experiment experiment;
private LinkedList ResIDList;
private LinkedList BrokerResourceList;

public Broker(String name, double baud_rate)
{

super(name, baud_rate);
GridletDispatched = 0;
GridletReturned = 0;
Expenses = 0.0;
MaxGridletPerPE = 2;

}

... // Gridlet scheduling flow code at the Grid Resource Broker level

public void body() {

Sim_event ev = new Sim_event();
// Accept User Commands and Process
for(sim_get_next(ev); ev.get_tag()!=GridSimTags.END_OF_SIMULATION; sim_get_next(ev))
{

experiment = (Experiment) ev.get_data();
int UserEntityID = ev.get_src();

// Record Experiment Start Time.
experiment.SetStartTime();

// Set Gridlets’ OwnerID as this BrokerID so that Resources knows where to return them.
for(int i=0; i<experiment.GetGridletList().size(); i++)
((Gridlet) experiment.GetGridletList().get(i)).SetUserID(get_id());

// RESOURCE DISCOVERY
ResIDList = (LinkedList) GetGridResourceList();

// RESOURCE TRADING and SORTING
// SCHEDULING
while (glFinishedList.size() < experiment.GetGridletList().size())
{
if((GridSim.Clock()>=experiment.GetDeadline())||(Expenses>=experiment.GetBudget()))

break;

scheduled_count = ScheduleAdviser();
dispatched_count = Dispatcher();
received_count = Receiver();

// Heurisitics for deciding hold condition
if(dispatched<=0 && received<=0 && glUnfinishedList.size()>0)
{

double deadline_left = experiment.GetDeadline()-GridSim.Clock();
GridSimHold(Math.max(deadline_left*0.01, 1.0));

}
}

}
... // Code for actual scheduling policy
... // Code for dispatch policy
}
}

Figure 5.16: A sample code segment for creating a Grid resource broker in GridSim.

5.5 Summary and Comments
We discussed an object-oriented toolkit, called GridSim, for distributed resource modeling and scheduling
simulation. GridSim simulates time- and space-shared resources with different capabilities, time zones, and
configurations. It supports different application models that can be mapped to resources for execution by
developing simulated application schedulers. We have discussed the architecture and components of the
GridSim toolkit along with steps involved in creating GridSim based application-scheduling simulators.

The implementation of GridSim toolkit in Java is an important contribution since Java provides a rich
set of tools that enhance programming productivity, application portability, and a scalable runtime
environment. As the JVM (Java Virtual Machine) is available for single, multiprocessor shared or
distributed machines such as clusters, GridSim scales with them due to its concurrent implementation.
Also, we were able to leverage the existing basic discrete-event infrastructure from SimJava while
implementing the GridSim toolkit.

100

We have used the GridSim toolkit to develop a Nimrod-G like economic Grid resource broker simulator
and evaluated the performance of a number of scheduling algorithms based on deadline and budget based
constraints (see the next chapter). The results are promising and demonstrate the suitability of GridSim for
developing simulators for scheduling in parallel and distributed systems. Furthermore, GridSim is gaining
rapid acceptance as a tool for simulation and performance evaluation of computational Grids and Grid
schedulers. It is in use at several academic institutions and commercial enterprises all over the world
including California Institute of Technology, University of Southern California, University of Illinois at
Urbana-Champaign, San Diego Supercomputing Centre, Carnegie Melon University, University of
Adelaide, Manchester University, CERN (European Organisation for Nuclear Research), University of
Paderborn, Hong Kong University, National University of Singapore, Sun Microsystems, C-DOT (Centre
for Development of Telematics), IBM (International Business Machines), Unisys, HP (Hewlett and
Packard), Compaq, British Telecom, and WorldCom.

Software Availability
The GridSim toolkit software with source code can be downloaded from the project website:

http://www.buyya.com/gridsim/

