
9

Chapter 2

Grid Technologies and Resource Management Systems

This chapter presents an overview of Grid technologies with major emphasis on resource management
and scheduling systems. It discusses some of the important technological advances that have led to the
emergence of Grid computing. It presents the taxonomy of Grid resource management systems, briefly
followed by a survey of some representative example systems.

2.1 Introduction
The last decade has seen a substantial increase in commodity computer and network performance, mainly
as a result of faster hardware and more sophisticated software. Nevertheless, there are still problems in the
fields of science, engineering, and business, which cannot be effectively dealt with using the current
generation of supercomputers. In fact, due to their size and complexity, these problems are often resource
(computational and data) intensive and consequently entail the use of a variety of heterogeneous resources
that are not available in a single organisation.

The ubiquity of the Internet as well as the availability of powerful computers and high-speed network
technologies as low-cost commodity components is rapidly changing the computing landscape and society.
These technology opportunities have led to the possibility of using wide-area distributed computers for
solving large-scale problems, leading to what is popularly known as Grid computing [48]. The term Grid is
chosen as an analogy to the electric power Grid that provides consistent, pervasive, dependable, transparent
access to electricity, irrespective of its source. Such an approach to network computing is known by several
names: metacomputing, scalable computing, global computing, Internet computing, and more recently
Peer-to-Peer (P2P) computing [4].

Grids enable the sharing, selection, and aggregation of a wide variety of resources including
supercomputers, storage systems, data sources, and specialized devices (see Figure 2.1) that are
geographically distributed and owned by different organizations for solving large-scale computational and
data intensive problems in science, engineering, and commerce.

The concept of Grid computing started as a project to link geographically dispersed supercomputers, but
now it has grown far beyond its original intent. The Grid infrastructure can benefit many applications,
including collaborative engineering, data exploration, high throughput computing, distributed
supercomputing, and service-oriented computing. Moreover, due to the rapid growth of the Internet and
Web, there has been a growing interest in Web-based distributed computing, and many projects have been
started and aim to exploit the Web as an infrastructure for running coarse-grained distributed and parallel
applications. In this context, the Web has the capability to act as a platform for parallel and collaborative
work as well as a key technology to create a pervasive and ubiquitous Grid-based infrastructure.

Grid applications (typically multi-disciplinary and large-scale processing applications) often couple
resources that cannot be replicated at a single site, or may be globally located for other practical reasons
(see Figure 2.1). These are some of the driving forces behind the foundation of global Grids. In this light,
the Grid allows users to solve larger-scale problems by pooling together resources that could not be
coupled easily before. Hence, the Grid is not only a computing infrastructure, for large applications, it is a
technology that can bond and unify remote and diverse distributed resources ranging from meteorological
sensors to data vaults, and from parallel supercomputers to personal digital organizers. As such, it will



10

provide pervasive services to all users that need them.

Figure 2.1: Towards Grid computing: A conceptual view.

A Grid can be viewed as a seamless, integrated computational and collaborative environment and a high
level view of activities within the Grid. The users interact with the Grid resource broker for solving
problems, which in turn performs resource discovery, scheduling, and processing application jobs on the
distributed Grid resources.

2.2 Major Technological Milestones: Enabling Grid and P2P Computing
The major technological advancements from 1960 to date in computing and networking technologies that
led to the emergence of P2P and Grid computing is shown in Figure 2.2. There has been the rise and fall of
different systems. In 1960, mainframes mainly from IBM were serving the needs of computing users, but a
decade later DEC introduced less expensive minicomputers that took over mainframes market share.
During the 1980s, vector computers (e.g., Crays) and later parallel computers (e.g., MPP systems) were
serving the needs of grand challenging applications. We briefly discuss technological milestones in
networking followed by computing.

The communication infrastructure for computational Grids is the Internet, that began as a modest
research network, supported by the Advanced Research Projects Agency (ARPA) of the US Defense
Department. The ARPA’s effort started as a response to the USSR’s launch of Sputnik, the first artificial
earth satellite in 1957 [119]. The ARPANET with four nodes was first established in 1969 at the University
of California at Los Angeles, Stanford Research Institute, University of California Santa Barbara (UCSB),
and University of Utah during the September, October, November, and December months respectively. By
the mid-1970s, the ARPANET Internet work embraced more than 30 universities, military sites and
government contractors and its user base expanded to include the larger computer science research
community. Bob Metcalfe's Harvard PhD Thesis outlines the idea for the Ethernet in 1973 that came into
existence in 1976 [114]. Vint Cerf and Bob Kahn proposed the Transmission Control Program (TCP) in
1974, which was split into TCP/IP in 1978. By 1983, the network still consisted of a network of several
hundred computers on only a few local area networks. In 1985, the National Science Foundation (NSF)
arranged with ARPA to support a collaboration of supercomputing centers and computer science
researchers across the ARPANET. In 1989, responsibility and management for the ARPANET, was
officially passed from military interests to the academically oriented NSF. Much of the Internet's etiquette
and rules for behavior were established during this time. The Internet Engineering Task Force (IETF) was
formed during 1986 as a loosely self-organized group of people who contribute to the engineering and
evolution of Internet technologies [123].



11

1960 1970 1975 1980 1985 1990 1995 2000

T
ec

hn
ol

og
ie

s
In

tr
od

uc
ed

* ARPANET

* Email
* Ethernet

* TCP/IP
* IETF

* Internet Era * WWW Era

* Mosaic

* XML

* PC Clusters
* Crays * MPPs

* Mainframes

* HTML
* W3C

* P2P

* Grids

* XEROX PARC worm
C

O
M

PU
T

IN
G

N
ET

W
O

R
K

IN
G

* Web Services

* Minicomputers * PCs

* WS Clusters

* PDAs
* Workstations

* HTC

Figure 2.2: Major milestones in networking and computing technologies from the year 1960 onwards.

The invention of the Web [129] in 1989 by Tim Berners-Lee of CERN, Switzerland, for sharing
information with ease has fueled a major revolution in computing. It provided the means for creating and
organizing documents (using HTML language) with links and accessing them online transparently,
irrespective of their location (using http protocols, browsers, and servers). The World-Wide Web
consortium (W3C) [143] formed in 1994 is engaged in developing new standards for information
interchange such as XML (eXtended Markup Language) Web services for providing remote access to
software and applications as a service.

In the early 1970s when computers were first linked by networks, the idea of harnessing unused CPU
cycles was born [136]. A few early experiments with distributed computing—including a pair of programs
called Creeper and Reaper—ran on the Internet's predecessor, the ARPAnet. In 1973, the Xerox Palo Alto
Research Center (PARC) installed the first Ethernet network and the first fully-fledged distributed
computing effort was underway. Scientists at PARC developed a program called “worm” that routinely
cruised about 100 Ethernet-connected computers. They envisioned their worm migrating from one machine
to another to harness idle resources for beneficial purposes. The worm would roam throughout the PARC
network, replicating itself in each machine's memory. Each worm used idle resources to perform a
computation and had the ability to reproduce and transmit clones to other nodes of the network. With the
worms, developers distributed graphic images and shared computations for rendering realistic computer
graphics.

Since 1990, with the maturation and ubiquity of the Internet and Web technologies along with the
availability of powerful computers and system area networks as commodity components, distributed
computing scaled to a new global level. The availability of powerful PCs and workstations, and high-speed
networks (e.g., Gigabit Ethernet) as commodity components has led to the emergence of clusters [92]
serving the needs of high performance computing (HPC) users. The ubiquity of the Internet and Web
technologies along with the availability of many low-cost and high-performance commodity clusters within
many organizations has prompted the exploration of aggregating distributed resources for solving large
scale problems of multi-institutional interest. This has led to the emergence of computational Grids and
P2P networks for sharing distributed resources. The Grid community is generally focused on aggregation of
distributed high-end machines such as clusters, whereas the P2P community (e.g., SETI@Home [141]) is
looking into sharing low-end systems, such as PCs connected to the Internet and contents (e.g., exchange
music files via Napster and Gnutella networks). Given the number of projects and forums [74][91] started
all over the world in early 2000, it is clear that interest in the research, development, and deployment of
Grid and P2P computing technologies, tools, and applications is rapidly growing.

Already application domains like Monte Carlo simulations and parameter sweep applications (e.g.,
ionization chamber calibration [19], drug design [106], operations research, electronic CAD, and ecological
modeling), where large processing problems can easily be divided into sub-problems and solved
independently, are taking great advantage of Grid computing.



12

2.3 Grid Computing Environments

2.3.1 Resource Management Challenges

The Grid environment contains heterogeneous resources, local management systems (single system image
OS, queuing systems, etc.) and policies, and applications (scientific, engineering, and commercial) with
varied requirements (CPU, I/O, memory, and/or network intensive). The producers (also called resource
owners) and consumers (who are the users) have different goals, objectives, strategies, and demand patterns
[99]. More importantly, both resources and end-users are geographically distributed with different time
zones. A number of approaches for resource management architectures have been proposed and the
prominent ones are: centralized, decentralized, and hierarchical.

In managing the complexities present in large-scale Grid-like systems, traditional approaches are not
suitable as they attempt to optimize system-wide measures of performance. Traditional approaches use
centralized policies that need complete state information and a common resource management policy, or
decentralized consensus based policy. Due to the complexity in constructing successful Grid environments,
it is impossible to define an acceptable system-wide performance matrix and common fabric management
policy. Therefore, hierarchical and decentralized approaches are suitable for Grid resource and operational
management [99]. Within these approaches, there exist different economic models for management and
regulation of supply-and-demand for resources [103]. The Grid resource broker mediates between
producers and consumers (see Figure 2.3). The resources are Grid enabled by deploying low-level
middleware systems on them. The core middleware deployed on producer’s Grid resources supports the
ability to handle resource access authorization and permits only authorized users to access them. The user-
level and core middleware on consumer's resources supports the ability to create Grid enabled applications
or necessary tools to support the execution of legacy applications on the Grid. Upon authenticating to the
Grid, consumers interact with resource brokers for executing their applications on remote resources. The
resource broker takes care of resource discovery, selection, aggregation, data and program transportation,
initiating execution on remote resources and gathering results.

Grid Resource Broker

Resource Broker

Application

Grid Information Service

Grid Resource Broker

databasedatabaseR2
R3

RN

R1

R4

R5

R6

Grid Information Service

Figure 2.3: A high-level view of the Grid and interaction between its entities.

For the operation of a computational Grid, the broker discovers properties of resources that the user can
access through the Grid information server(s), negotiates with (Grid-enabled) resources or their agents
using middleware services, maps tasks to resources (scheduling), stages the application and data for
processing (deployment) and finally gathers results [100]. It is also responsible for monitoring application
execution progress along with managing changes in the Grid infrastructure and resource failures. There are
a number of projects, worldwide, actively exploring the development of various Grid computing system
components, services, and applications.



13

2.3.2 Grid Components

This section briefly highlights some of the general principles that underlie the construction of the Grid. In
particular, the idealized design features that are required by a Grid to provide users with a seamless
computing environment are discussed. Four main aspects characterise a Grid:

• Multiple Administrative Domains and Autonomy: Grid resources are geographically distributed across
multiple administrative domains and owned by different organizations. The autonomy of resource
owners needs to be honored along with their local resource management and usage policies.

• Heterogeneity: A Grid involves a multiplicity of resources that are heterogeneous in nature and will
encompass a vast range of technologies.

• Scalability: A Grid might grow from a few integrated resources to millions. This raises the problem of
potential performance degradation. Consequently, applications that require a large number of
geographically located resources must be designed to be latency and bandwidth tolerant.

• Dynamicity or Adaptability: In a Grid, resource failure is the rule rather than the exception. In fact,
with so many resources in a Grid, the probability of some resource failing is high. Resource managers
or applications must tailor their behavior dynamically and use the available resources and services
efficiently and effectively.

The steps necessary to realize a Grid include:

• The integration of individual software and hardware components into a combined networked resource
(e.g., a single system image cluster).

• The deployment of:

o Low-level middleware to provide a secure and transparent access to resources.

o User-level middleware and tools for application development and the aggregation of
distributed resources.

• The development and optimization of distributed applications to take advantage of the available
resources and infrastructure.

The Grid is made up of a number of components from enabling resources to end user applications. A
layered architecture of the Grid is shown in Figure 2.4. The key components of a Grid are:

• Grid Fabric: This consists of all the globally distributed resources that are accessible from
anywhere on the Internet. These resources could be computers (such as PCs, SMPs, clusters)
running a variety of operating systems (such as UNIX or Windows), as well as resource
management systems such as LSF (Load Sharing Facility), Condor, PBS (Portable Batch System)
or SGE (Sun Grid Engine), storage devices, databases, and special scientific instruments such as a
radio telescope or particular heat sensor.

• Core Grid Middleware: This offers core services such as remote process management, co-
allocation of resources, storage access, information registration and discovery, security, and
aspects of Quality of Service (QoS) such as resource reservation and trading.

• User-Level Grid Middleware: This includes application development environments,
programming tools, and resource brokers for managing resources and scheduling application tasks
for execution on global resources.

• Grid Applications and Portals: Grid applications are typically developed using Grid-enabled
languages and utilities such as MPI (message-passing interface) or Nimrod parameter specification
language. An example application, such as a parameter simulation or a grand-challenge problem,
would require computational power, access to remote data sets, and may need to interact with
scientific instruments. Grid portals offer Web-enabled application services, where the users can
submit and collect results for their jobs on remote resources through the Web.



14

Networked Resources across Organizations

Computers Networks Data Sources Scientific InstrumentsStorage Systems

Local Resource Managers

Operating Systems Queuing Systems Internet ProtocolsLibraries & App Kernels

Distributed Resources Coupling Services

Information QoSProcess

Development Environments and Tools

Languages/Compilers Libraries Debuggers Web tools

Resource Management, Selection, and Aggregation (BROKERS)

Applications and Portals

Prob. Solving Env.Scientific
…CollaborationEngineering Web enabled Apps

Trading

…

…

…

…

FABRIC

APPLICATIONS

SECURITY LAYER

Security Data

CORE
MIDDLEWARE

USER LEVEL
MIDDLEWARE

Monitors

Networked Resources across Organizations

Computers Networks Data Sources Scientific InstrumentsStorage Systems

Local Resource Managers

Operating Systems Queuing Systems Internet ProtocolsLibraries & App Kernels

Distributed Resources Coupling Services

Information QoSProcess

Development Environments and Tools

Languages/Compilers Libraries Debuggers Web tools

Resource Management, Selection, and Aggregation (BROKERS)

Applications and Portals

Prob. Solving Env.Scientific
…CollaborationEngineering Web enabled Apps

Trading

…

…

…

…

FABRIC

APPLICATIONS

SECURITY LAYER

Security Data

CORE
MIDDLEWARE

USER LEVEL
MIDDLEWARE

Monitors

Figure 2.4: A layered Grid architecture and components.

2.3.3 Grid Computing Projects

There are many international Grid projects worldwide, which are hierarchically categorized as integrated
Grid systems, core middleware, user-level middleware, and applications driven efforts (see Table 1). A
listing of the majority of projects in Grid computing worldwide along with pointers to their websites can be
found in [91][72]. Selected projects are further grouped into country/continents and discussed in [74].

Table 1: Hierarchical organization of major Grid efforts.

Category Project Organisation Remarks

NetSolve U. Tennessee
A programming and runtime system for
accessing high-performance libraries and
resources transparently.

Ninf AIST, Japan Functionality is similar to NetSolve.
ST-ORM UPC, Barcelona A scheduler for distributed batch systems.
MOL Paderborn U. A scheduler for distributed batch systems.
Albatross Vrije U. Object oriented programming system.

PUNCH Purdue U.
A portal computing environment and service for
applications.

Javelin UCSB Java-based programming and runtime system.

XtremWeb Paris-Sud U. A global computing environment

MILAN Arizona and NY
Aims to provide end-to-end services for
transparent utilization and management of
networked resources

DISCWorld U. of Adelaide
A distributed information-processing
environment.

Integrated Grid
Systems

Unicore Germany
Java-based environment for accessing remote
supercomputers.



15

Cosm Mithral A toolkit building P2P applications.

Globus ANL and ISI
Globus provides uniform and secure
environment for accessing remote
computational and storage resources.

GRACE Monash U.
A distributed computational economy

framework for service oriented Grid
computing.

GridSim Monash U. A toolkit for Grid simulation.

JXTA Sun Microsystems
A Java-based framework and infrastructure for
P2P computing.

Legion U. of Virginia
A Grid operating system providing transparent
access to distributed resources.

Core
Middleware

P2P Accelerator Intel
A basic infrastructure for creating P2P
applications for .NET platform.

AppLeS UCSD Application specific scheduler.

Condor-G U. of Wisconsin A wide area job processing system.
User-level
Middleware:
Schedulers

Nimrod-G Monash U.
Economic-based Grid resource broker for
parameter sweep/task farming applications.

MPICH-G
Northern Illinois
U.

MPI implementation on Globus.

Nimrod parameter
programming tools

Monash U.
A declarative language parametric
programming.

MetaMPICH RWTH, Aachen MPI programming and runtime environment.

Cactus

Max Planck
Institute for
Gravitational
Physics

A framework for writing parallel applications.
It is developed using the MPICH-G and
Globus.

GrADS Rice U. Grid application development tools.

User-level
Middleware:

Programming
Environments

GridPort SDSC Tools for creating computing portals.

European Data
Grid

CERN
High Energy Physics, Earth Observation,
Biology

GriPhyN UCF and ANL High Energy Physics

PPDG Caltech and ANL High Energy Physics

Virtual Laboratory
Monash U and
WEHI

Molecular modeling for drug design

HEPGrid Melbourne U High Energy Physics applications

NEESGrid NCSA Earthquake Engineering

Geodise Southampton U. Aerospace Design Optimisation

Fusion Grid Princeton/ANL/ Magnetic fusion

IPG NASA Aerospace

Applications
and
application
driven Grid
efforts

Active Sheets
Monash, QUT, &
DSTC

Spread sheet processing



16

Earth System Grid
LLNL, ANL,
&NCAR

Climate Modeling

Virtual Instruments UCSD Neuroscience

National Virtual
Observatory

Johns Hopkins U.
& Caltech

Access to distributed astronomical databases and
processing.

Grids can be used to solve grand challenge problems in areas such as biophysics, chemistry, biology,
scientific instrumentation [19], drug design [110], tomography [127], high energy physics [64], data
mining, financial analysis, nuclear simulations, material science, chemical engineering, environmental
studies, climate modeling [6], weather prediction, molecular biology, structural analysis, mechanical
CAD/CAM and astrophysics. Although wide-area distributed supercomputing has been a popular
application of the Grid, there are a large number of other applications that can benefit from the Grid [140]
[75].

2.4 Resource Management Systems Taxonomy
Depending on the focus and application target, the Grid Resource Management Systems (RMSs) are
broadly classified into Computational Grids, Data Grids, and Service Grids. In [65], a taxonomy for Grid
resource management systems is developed, which classifies resource management systems by
characterizing different attributes as summarized in Table 2.2. The taxonomy focuses on the type of Grid
system, machine organization, resource model characterization, and scheduling characterization.

Table 2.2: Taxonomy of Grid resource management systems.

Attributes of Resource Management
Systems

Taxonomy

Grid Type (Service focus) Computational Grids, Data Grids, Service Grids

Machine organization
Flat, cell (flat cells and hierarchical cells),
hierarchical

Resource model Schema, Object model (fixed or extensible)

Namespace organization Relational, Hierarchical, Graph

QoS Soft, Hard, None

Resource Information Store Network Directory and Distributed Objects

Resource discovery Query and Agents

Resource Info Dissemination Batch/Period (push or pull), Online/On-demand

Scheduler organization Centralised, Hierarchical, Decentralised

Scheduling policy System-Centric, User Centric

State estimation
Predictive (Heuristics, Pricing models, machine
learning) and Non-Predictive

Rescheduling Periodic, Event Driven

The organization of the machines in the Grid affects the communication patterns of the RMS and thus
determines the scalability of the resultant architecture. In a flat organization all machines can directly
communicate with each other. In a hierarchal organization machines at the same level can directly
communicate with the machines directly above them or below them, or peer to them in the hierarchy. The
fan out below a machine in the hierarchy is not relevant to the classification. Most current Grid systems use
this organization since it has proven scalability. In a cell structure, the machines within the cell
communicate between themselves using a flat organization. Designated machines within the cell function



17

as boundary elements that are responsible for all communication outside the cell (e.g., a cluster with a
master node directly accessible from outside and manages internal nodes).

The resource model determines how applications and the RMS describe and manage Grid resources. In a
schema based approach the data that comprises a resource is described in a description language along with
some integrity constraints (e.g., Condor ClassAd). In the object model extensible approach the resource
model provides a mechanism to extend the definition of the object model managed by the RMS (e.g.,
Legion object model [2]). The resource namespace influences the design of the resource management
protocols and affects the discovery methods. The quality of service (QoS) allows users to specify the level
of service they are expecting from a resource and an RMS. The resource information store, which is
updated based on the dissemination model, provides Grid information services. The brokers can discover
resources by querying the information store.

The Grid scheduling systems can be classified into centralized, hierarchical, and decentralized. As the
resource availability in the Grid changes with time, the scheduling systems need to be adaptive. This is
achieved by evaluating the current schedule (state estimation) based on predictive techniques, and then
developing a new schedule (rescheduling) to meet the users requirements. The re-scheduling can be
initiated periodically or whenever some event occurs (e.g., a notification of job completion).

2.5 Mapping Taxonomy to Some Grid Resource Management Systems
There are many existing Grid computing projects currently underway. They include Globus, Legion,
NetSolve, AppLeS, and Condor. This section provides a brief description of each system and then classifies
the resource management system attributes according to our taxonomy. A summary of architectural design
choices made by a few popular Grid resource management systems is shown in Table 2.3. The Nimrod-G
resource broker, developed in this thesis, has been included to facilitate an effective comparison of its
features and design choices with related systems.

Table 2.3: Grid resource management systems and their architecture choices.

System Grid Type Organization
Resource: model, namespace, QoS,
information store, discovery,
dissemination.

Scheduling: organisation, state-
estimation, rescheduling, and
policy.

AppLeS Computational
Grid
(scheduling)

Hierarchical Uses resource model provided by the
underlying Globus, Legion, or
NetSolve middleware services

Decentralized scheduler,
predictive heuristic state
estimation, online rescheduling,
fixed application oriented policy
(system-centric)

DataGrid Data Grid

Computational
Grid

Hierarchical Extensible schema model, hierarchical
namespace, no QoS, LDAP network
directory store, distributed query-based
discovery, periodic push dissemination.

Hierarchical schedulers,
predictive heuristic state
estimation, online rescheduling,
extensible scheduling policy

Condor Computational
Grid

Flat Extensible schema model, hybrid
namespace, no QoS, other network
directory store, centralized query based
discovery, periodic push dissemination

Cooperative/Centralized
scheduler

Globus Grid Toolkit Hierarchical
Cells

Extensible schema model, hierarchical
namespace, soft QoS, LDAP network
directory store, distributed query based
discovery, periodic push dissemination

Hierarchical scheduler, ad-hoc
extensible policy

Javelin Computational
Grid

Hierarchical Fixed object model, graph namespace,
soft QoS, other network directory store,
distributed query based discovery,
periodic push dissemination

Decentralized scheduler, fixed
application oriented policy

Legion Computational
Grid

Flat

Hierarchical

Extensible object model, graph
namespace, soft QoS, object model
store, distributed query-based
discovery, periodic pull dissemination.

Hierarchical scheduler, ad-hoc
extensible scheduling policies

MOL Computational
Grid

Hierarchical
Cells

Extensible schema model, hierarchical
namespace, no QoS, object model store,

Decentralized scheduler,
extensible ad-hoc scheduling



18

distributed query based discovery,
periodic push dissemination

policies

NetSolve Computational
& Service Grid

Hierarchical Extensible schema model, hierarchical
namespace, soft QoS, centralized
query-based discovery, periodic push
dissemination.

Decentralized scheduler, fixed
application oriented policy

Ninf Computational
& Service Grid

Hierarchical Extensible schema model, relational
namespace, no QoS, centralized query
based resource discovery, periodic push
for dissemination.

Decentralized scheduler

PUNCH Computational
& Service Grid

Hierarchical Extensible schema model, hybrid
namespace, soft QoS, distributed query-
based discovery, periodic push
dissemination.

Decentralized scheduler, machine
learning, fixed system oriented
policy

Nimrod-G Computational
& Service Grid

Hierarchical
Cells

Uses resource model provided by the
underlying Globus or Legion
middleware services and extends with
computational economy approach

Decentralized scheduler,
predictive pricing models, event
driven rescheduling, fixed
application oriented scheduling
policy

2.5.1 AppLeS: A Network Enabled Scheduler

The AppLeS [28] (Application Level Scheduling) project at the University of California, San Diego
primarily focuses on developing scheduling agents for individual applications on production computational
Grids. It uses the services of Network Weather Service (NWS) to monitor changes in performance of
resources dynamically. AppLeS agents use static and dynamic application and system information while
selecting a viable set of resources and resource configurations. It interacts with other resource management
systems such as Globus, Legion, and NetSolve to implement application tasks. The applications have
embedded AppLeS agents and thus become self-schedulable on the Grid. The concept of AppLeS has been
applied to many application areas including Magnetohydrodynamics [44], Gene Sequence Comparison, and
Tomography [127].

Another effort within AppLeS project framework is the development of AppLeS templates. It is similar
to Nimrod-G framework and resource broker, but it does not support quality of services-driven scheduling
since it does not take Grid economy into consideration.

As the focus of AppLeS project is on scheduling, it follows the resource management model supported
by the underlying Grid middleware systems. An AppLeS scheduler is central to the application that
performs mapping of jobs to resources, but the local resource schedulers perform the actual execution of
application units similar to Nimrod-G. AppLeS schedulers do not offer QoS support and build on a
resource model supported by an underlying system. AppLeS can be considered to have a predictive
heuristic state estimation model with online rescheduling and application oriented scheduling policies.

2.5.2 Condor: Cycle Stealing Technology for High Throughput Computing

Condor [79][54] is a high-throughput computing environment developed at the University of Wisconsin at
Madison, USA. It can manage a large collection of computers such as PCs, workstations, and clusters that
are owned by different individuals. Although it is popularly known for harnessing idle computers CPU
cycles (cycle stealing), it can be configured to share resources. The Condor environment follows a layered
architecture and offers powerful and flexible resource management services for sequential and parallel
applications. The Condor system pays special attention to the computer owner’s rights and allocates their
resources to the Condor pool as per the usage conditions defined by resource owners. Through its unique
remote system call capabilities, Condor preserves the job’s originating machine environment on the
execution machine, even if the originating and execution machines do not share a common file system
and/or user ID scheme. Condor jobs with a single process are automatically check-pointed and migrated
between workstations as needed to ensure eventual completion. The Condor has been extended to support
submission of jobs to resources Grid-enabled using Globus services [57].

Condor can have multiple Condor pools and each pool follows a flat machine organization. The Condor
collector, which provides the resource information store, listens for advertisements of resource availability.



19

A Condor resource agent runs on each machine periodically advertising its services to the collector.
Customer agents advertise their requests for resources to the collector. The Condor matchmaker queries
the collector for resource discovery that it uses to determine compatible resource requests and offers. The
agents are then notified of their compatibility. The compatible agents then contact each other directly and,
if they are satisfied, then the customer agent initiates computation on the resource.

Resource requests and offers are described in the Condor classified advertisement (ClassAd) language
[115]. ClassAds use a semi-structured data model for resource description. Thus, no specific schema is
required by the matchmaker allowing it to work naturally in a heterogeneous environment. The ClassAd
language includes a query language as part of the data model, allowing advertising agents to specify their
compatibility by including constraints in their resource offers and requests.

The matchmaker performs scheduling in a Condor pool. The matchmaker is responsible for initiating
contact between compatible agents. Customer agents may advertise resource requests to multiple pools
with a mechanism called flocking, allowing a computation to utilize resources distributed across different
Condor pools.

The Condor system has recently been enhanced to support creation of personal condor pools. It allows
the user to include their Globus-enabled nodes into the Condor pool to create a “personal condor” pool
along with public condor pool nodes. The Grid nodes that are included in a personal condor pool are only
accessible to the user who created the pool.

Condor can be considered as a computational Grid with a flat organization. It uses an extensible schema
with a hybrid namespace. It has no QoS support and the information store is a network directory that does
not use X.500/LDAP technology. Resource discovery is achieved through centralized queries with periodic
push dissemination. The scheduler is centralized.

2.5.3 Data Grid

CERN, the European Organization for Nuclear Research, and the High-Energy Physics (HEP) community
have established an International Data Grid project [139] with intent to apply the work to other scientific
communities such as Earth Observation and Bioinformatics. The project objectives are to establish a
research network for data Grid technology development, demonstrate data Grid effectiveness through the
large-scale real world deployment of end-to-end application experiments, and to demonstrate the ability to
use low-cost commodity components to build, connect, and manage large general-purpose, data intensive
computer clusters.

The Data Grid project focuses on the development of middleware services in order to enable a
distributed analysis of physics data. The core middleware system is the Globus toolkit with extensions for
data Grids. Data in the order of several Petabytes will be distributed in a hierarchical fashion to multiple
sites worldwide. Global namespaces are required to handle the creation, access, distribution, and replication
of data items. Special workload distribution facilities will balance analysis of jobs in the Grid to maximize
the throughput from several hundred physicists. Application and user access monitoring will be used to
optimize data distribution.

The Data Grid project has a hierarchical machine organization with less data stored at lower levels of the
hierarchy. CERN, which is Tier 0, stores almost all relevant data with several Tier 1 regional centers in
Italy, France, UK, USA, and Japan supporting smaller amounts of data. It has an extensible schema based
resource model with a hierarchical namespace organization. It does not offer any QoS and the resource
information store is expected to be based on an LDAP network directory. Resource dissemination is
batched and periodically pushed to other parts of the Grid. Resource discovery in the Data Grid is
decentralized and query based. The scheduler uses a hierarchical organization with an extensible
scheduling policy.

2.5.4 Globus: A Toolkit for Grid Computing

Globus [49] provides a software infrastructure that enables applications to view distributed heterogeneous
computing resources as a single virtual machine. The Globus project is an American multi-institutional
research effort that seeks to enable the construction of computational Grids. Currently the Globus
researchers are working together with the High-Energy Physics and the Climate Modeling community to
build a data Grid [1]. A central element of the Globus system is the Globus Toolkit, which defines the basic



20

services and capabilities required for constructing computational Grids. The toolkit consists of a set of
components that implement basic services, such as security, resource location, resource management, data
management, resource reservation, and communications. The toolkit provides a bag of services from which
developers of specific tools or applications can select, to meet their own particular needs. Globus is
constructed as a layered architecture in which higher-level services can be developed using the lower level
core services [63]. Its emphasis is on the hierarchical integration of Grid components and their services.
This feature encourages the usage of one or more lower level services in developing higher-level services.

Resource and status information is provided via an LDAP-based network directory called
Metacomputing Directory Services (MDS) [122]. MDS consists of two components, Grid Index
Information Service (GIIS) and Grid Resource Information Service (GRIS). GRIS implements a uniform
interface for querying resource providers on a Grid for their current configuration, capabilities, and status.
GIIS pulls the information from multiple GRIS services and integrates it into a single coherent resource
information database. The resource information providers use a push protocol to update GRIS.

Thus MDS follows both push and pull protocols for resource dissemination. Higher-level tools such as
resource brokers can perform resource discovery by querying MDS using LDAP protocols. The MDS
namespace is organized hierarchically in the form of a tree structure. Globus offers QoS in the form of
resource reservation. Globus provides scheduling components as part of its toolkit approach but does not
supply scheduling policies relying instead on higher-level schedulers. Globus services have been used in
developing many global schedulers, including Nimrod-G, AppLeS, and Condor/G.

2.5.5 Javelin

Javelin [82] is a Java based infrastructure for internet-wide parallel computing. The three key components
of Javelin system are the clients or applications, hosts, and brokers. A client is a process seeking computing
resources, a host is a process offering computing resources, and a broker is a process that coordinates the
allocation of computing resources. Javelin supports piecework and branch-and-bound models of
computation. In the piecework model, adaptively parallel computations are decomposed into a set of sub-
computations. The sub-computations are each autonomous in terms of communication, apart from
scheduling work and communicating results. This model is suitable for parameter sweep or master-worker
applications such as ray tracing and Monte Carlo simulations. The latest Javelin system, Javelin 2.0,
supports branch-and-bound computations. It achieves scalability and fault-tolerance by integrating
distributed deterministic work stealing with a distributed deterministic eager scheduler. An additional
fault-tolerance mechanism is implemented for replacing hosts that have failed or retreated.

The Javelin system can be considered a computational Grid for high-throughput computing. It has a
hierarchical machine organization where each broker manages a tree of hosts. Resources are simple fixed
objects with a tree namespace organization. The resources are simply the hosts that are attached to a broker.

Any host that wants to be part of Javelin contacts JavelinBNS system, a Javelin information backbone
that maintains the list of available brokers. The host then communicates with brokers, chooses a suitable
broker, and then becomes part of the broker-managed resources. Thus the information store is a network
directory implemented by JavelinBNS. Hosts and brokers update each other as a result of scheduling work.
Thus, Javelin uses demand resource dissemination. The broker manages the host-tree or resource
information through a heap-like data structure. Resource discovery uses the decentralized query based
approach since queries are handled by the distributed set of brokers.

Javelin follows a decentralized approach in scheduling, using work stealing and a fixed application
oriented scheduling policy. Whenever a host completes an assigned job, it requests work from peers and
thus load balancing is achieved.

2.5.6 Legion: A Grid Operating System

Legion [121] is an object-based metasystem or Grid operating system developed at the University of
Virginia. Legion provides the software infrastructure so that a system of heterogeneous, geographically
distributed, high performance machines can seamlessly interact. Legion provides application users with a
single, coherent, virtual machine. The Legion system is organized into classes and metaclasses.

Legion objects represent all components of the Grid. Legion objects are defined and managed by their
class object or metaclass. Class objects create new instances, schedule them for execution, activate or



21

deactivate the object, and provide state information to client objects. Each object is an active process that
responds to method invocations from other objects within the system. Objects can be deactivated and saved
to persistent storage. An object is reactivated automatically when another object wants to communicate
with them. Legion defines an API for object interaction, but does not specify the programming language or
communication protocol.

Although Legion appears as a complete vertically integrated system, its architecture follows the
hierarchical model. It uses an object based information store organization through the Collection objects.
Collections periodically pull resource state information from host objects. Host objects track load and users
can call the individual host directly to get the resource information. Information about multiple objects is
aggregated into Collection objects. Users or system administrators can organize collections into suitable
arrangements. Currently, there is a global collection named “/etc/Collection” for the system that tracks
HostObjects and VaultObjects which embody the notion of persistent storage. The users or their agents can
obtain information about resources by issuing queries to a Collection.

All Classes in Legion are organized hierarchically with LegionClass at the top and the host and vault
classes at the bottom. It supports a mechanism to control the load on hosts. It provides resource reservation
capability and the ability for application level schedulers to perform periodic or batch scheduling. Legion
resource management architecture is hierarchical with decentralized scheduling policies. Legion supplies
default system oriented scheduling policies, but it allows policy extensibility through resource brokers.
That is, application level schedulers such as Nimrod-G [105] and AppLeS [44] can change Legion default
scheduling policies with user-centric policies.

2.5.7 MOL: Metacomputing Online Kernel

The MOL initiative is developing technologies that aim at utilizing multiple WAN-connected high
performance systems as a computational resource for solving large-scale problems that are intractable on a
single supercomputer. One of the key components of MOL toolbox is the MOL-Kernel [58]. It offers basic
generic infrastructure and core services for robust resource management that can be used to construct
higher-level services, tools and applications. The MOL-Kernel manages the resources of an institution’s
computing centers, provides a dynamic infrastructure for interconnecting these institutions, manages
network faults, and provides access points for users.

The MOL-Kernel follows a three-tier architecture consisting of resource abstraction, management, and
access layers containing resource modules, center management modules (CMM), and access modules
respectively. The resource modules encapsulate metacomputing resources such as computing devices,
scientific devices, applications and databases. All resource modules in a center are coordinated by CMM.
This module is responsible for keeping its resources in a consistent state and makes them accessible outside
of an institution. It acts as a gatekeeper and controls the flow of data between the center resources and
external networks.

There is usually one CMM per institution, but it is possible to have multiple CMM in the case of large
organizations. Failure of MOL-Kernel components results in only one institute becoming inaccessible. As
long as a single CMM is available, the MOL-kernel remains operational. That means, organizations can
leave or enter the metacomputing environment as they wish. The MOL-Kernel dynamically reconfigures
itself to include or exclude the corresponding resources. In the MOL-kernel, CMM consistency is achieved
by using a transaction-oriented protocol on top of virtual shared memory objects associated with each
CMM. In order to make the global state available at all entry points, mirrored instances of shared active
objects are maintained at each CMM. Whenever the state of a shared object changes, the new information
is automatically distributed to the corresponding mirror instances. Extension of the MOL-Kernel is
provided via typed messages and event handlers. Events are generated by user interaction with an access
module or resource state changes. Messages are routed to either predefined or dynamically loaded custom
event handlers.

The MOL follows a service Grid model with hierarchical cell-based machine organization. It adopts the
schema based resource model and hierarchical name space organization. The global state is maintained in
shared objects of each CMM (i.e., object based resource information storage). The resources and services
themselves announce their initial presence to MOL (push protocol in information dissemination). The
access modules/schedulers perform resource discovery and scheduling by querying shared objects.
Although the resource model is schema based, its primary mode is service based. For example, if users



22

request an application (e.g. CFD-simulation) with a certain quality of service. MOL then finds those
computers, which have this application installed, and asks them "which of you are powerful enough to
provide the requested quality of service?" (i.e., decentralized scheduler). It then selects one or more to
execute the request.

2.5.8 NetSolve: A Network Enabled Computational Kernel

Netsolve [41] is a client-agent-server paradigm based network enabled application server. It is designed to
solve computational science problems in a distributed environment. The Netsolve system integrates
network resources and provides a desktop application interface. The intent of Netsolve is to hide parallel
processing complexity from user applications and deliver parallel processing power to desktop users.
Netsolve clients can be written in C, Fortran, Matlab, or use Web pages to interact with the server. A
Netsolve server can use any scientific package to provide its computational software. All component
communications use TCP/IP. Netsolve provides resource discovery, fault tolerance, and load balancing.

The Netsolve system follows the service Grid model with hierarchical cell-based machine organization.
The Netsolve-agents act as an information repository and maintain the record of resources available in the
network. As a new node comes up, information such as its location and its services are sent to the Netsolve
agent. Thus, the Netsolve Agent uses push resource dissemination. The Netsolve agent also acts as a
resource broker and performs resource discovery and scheduling. The user requests are passed to an agent
that identifies the best resource, initiates computations on that resource, and returns the results. Agents may
request the assistance of other Agents in identifying the best resources and scheduling. Thus Netsolve has
decentralized scheduler organization.

2.5.9 Ninf: A Network Enabled Server

Ninf is a client server based network infrastructure for global computing [45] similar to NetSolve. It allows
access to multiple remote compute and database servers. Ninf clients access remote computational
resources from languages such as C and Fortran using the Ninf client library. The Ninf client library calls
can be synchronous or asynchronous in nature. The key components of the Ninf system are the Ninf client
library, the Ninf metaserver, and the Ninf remote libraries. Ninf applications invoke Ninf library functions
that generate requests. Requests are sent to the Ninf metaserver that maintains the information of Ninf
servers in the network using an LDAP directory. The Ninf metaserver allocates resources on the
appropriate servers for load balancing or scheduling. Ninf computational resources register details of
available library services with the Ninf metaserver thus using a push protocol for resource dissemination.
Ninf follows a flat model in machine organization, schema for resource model, and relational name space
organization. The Ninf metaserver performs resource brokering, but the actual scheduling is done using
extensible policies.

2.5.10 PUNCH: The Purdue University Network Computing Hubs

PUNCH [85][86] is a middleware testbed that provides operating system services in a network-based
computing environment. The PUNCH infrastructure allows seamless management of applications, data,
and machines distributed across wide-area networks. Users can run applications via standard Web browsers
without requiring application changes.

PUNCH employs a hierarchically distributed architecture with several layers. A computing portal
services layer provides Web-based access to a distributed, network-computing environment. This layer
primarily deals with content management and user-interface issues. A network OS layer provides
distributed process management and data browsing services. An application middleware layer allows the
infrastructure to interoperate with other application-level support systems such as PVM [137] and MPI
[138]. A virtual file system layer consists of services that provide local access to distributed data in an
application-transparent manner. Finally, an OS middleware layer interfaces with local OS services
available on individual machines or clusters of machines. The layers interoperate with a distributed
resource management system and a predictive performance modeling sub-system in order to make
intelligent resource allocation decisions.

2.5.11 Nimrod-G Grid Resource Broker

Nimrod-G [100][105] is a Grid resource broker that allows managing and steering task farming



23

applications on computational Grids. It uses an economic model for resource management and scheduling.
Users formulate parameter studies using a declarative parametric modeling language or GUI with the
experiment being run on the Grid. Nimrod-G provides resource discovery, resource trading, scheduling,
resource staging on Grid nodes, result gathering, and final presentation to the user. Nimrod-G uses GRACE
services to dynamically trade with resource owner agents to select appropriate resources. GRACE enabled
Nimrod-G has been used for scheduling parameter sweep application jobs on the WWG testbed resources
[98].

Nimrod-G follows the hierarchical and computational market model in resource management [105]. It
uses the services of Grid middleware systems such as Globus and Legion for resource discovery and uses
either a network directory or object model based data organization. It supports resource reservation and
QoS through the computational economy services of the GRACE infrastructure. The users specify QoS
requirements such as the deadline, budget, and preferred optimisation strategy. The Grid resource
capability estimation is performed through heuristics and historical load profiling. Scheduling policy is
application oriented and is driven by user defined requirements such as deadline and budget limitations.
The load balancing is performed through periodic rescheduling.

2.6 Summary and Comments
There are currently a large number of projects and diverse range of new and emerging Grid developmental
approaches being pursued. These systems range from Grid frameworks to application testbeds, and from
collaborative environments to batch submission mechanisms.

There are many approaches and models [108] for developing Grid resource management systems. The
systems we surveyed have for the most part focused on either a computational Grid or a service Grid. The
only data Grid project that we have surveyed is the CERN Data Grid, which is in the initial stages of
development. The other category of system is the Grid scheduler such AppLeS that is integrated with
another Grid RMS such as Globus or Legion. These combinations are then used to create application
oriented computational Grids with a certain degree of QoS. However, it can be observed that the existing
Grid systems follow system centric approach to resource management. Among the various Grid scheduling
systems, it can be observed that the Nimrod-G broker developed in this thesis is the only system that
supports resource allocation and application scheduling algorithms driven by users’ quality of service
requirements.


