
24

Chapter 3

Service-Oriented Grid Architecture for Distributed
Computational Economies

This chapter identifies challenges in managing resources in a Grid computing environment and proposes
computational economy as a metaphor for effective management of resources and application scheduling.
To realize this, we propose a framework called Grid Architecture for Computational Economy (GRACE)
that leverages the existing technologies and provides additional services for resource trading and
aggregation. We present related systems, both historical and emerging, for cooperative and competitive
trading of resources such as CPU cycles, storage, and network bandwidth. The chapter discusses the use of
real-world economic models and strategies such as commodity market, posted prices, bargaining,
tendering, auction, proportional resource sharing, and cooperative bartering for resource management and
scheduling within the GRACE framework. For each model, high-level protocols and strategies, that can be
used by both resource owners and consumers to meet their respective objectives and goals, will be
highlighted.

3.1 Introduction
Computational Grids [48] and Peer-to-Peer (P2P) [4] computing systems are emerging as a new paradigm
for solving large-scale problems in science, engineering, and commerce. They enable the sharing and
aggregation of millions of resources (e.g., SETI@Home [141]) geographically distributed across
organizations and administrative domains. They comprise heterogeneous resources (PCs, work-stations,
clusters, and supercomputers), fabric management systems (single system image OS, queuing systems, etc.)
and policies, and applications (scientific, engineering, and commercial) with varied requirements (CPU,
I/O, memory, and/or network intensive). The resources are owned by different organizations with their own
management policies, usage and cost models for different users at different times. Also, the availability of
resources and the load on them dynamically varies with time.

In such Grid environments, the producers (resource owners) and consumers (resource users) have
different goals, objectives, strategies, and supply-and-demand patterns. More importantly both resources
and end-users are geographically distributed with different time zones. In managing such complex
environments, traditional approaches to resource management, that attempt to optimize system-wide
measure of performance, cannot be employed. Traditional approaches use centralized policies that need
complete state information and a common fabric management policy, or a decentralized consensus based
policy. Due to the complexity in constructing a Grid environment, it is impossible to define an acceptable
system-wide performance matrix and common fabric management policy [22]. (The concepts discussed in
this chapter apply to both P2P and Grid systems although we can argue about some of their technical,
social, and political differences. However, the term Grid will be used for simplicity and brevity).

We propose and explore the use of an economic framework, called Grid Architecture for Computational
Economy (GRACE), for managing resources and scheduling applications in Grid computing environments.
The economic approach provides a fair basis in successfully managing the decentralization and
heterogeneity that is present in human economies. Competitive economic models provide
algorithms/policies and tools for resource sharing or allocation in Grid systems. These models can be based
on bartering or prices. In the bartering-based model, all participants need to own resources and trade

25

resources by exchanges (e.g., storage space for CPU time). In the price-based model, the resources have a
price, based on the demand, supply, value, and the wealth in the economic system.

Most of the related systems for Grid resource management and scheduling (such as Legion [121],
Condor [79], AppLeS PST [28][42], NetSolve [41], PUNCH [85], and XtremWeb [32]) adopt a
conventional strategy, where a scheduling component decides which jobs are to be executed at which
resource based on cost functions driven by system-centric parameters. They aim to enhance the system
throughput, utilization, and complete execution at the earliest possible time rather than improving the utility
of application processing. They do not take resource access cost (price) into consideration, which means
that the value of processing applications at any time is treated the same, which is not the case in reality—
the value should be higher when there is a production schedule deadline. The end user does not want to pay
the highest price but wants to negotiate a particular price based on the demand, value, priority, and
available budget. In an economic-based approach, the scheduling decisions are made dynamically at
runtime and they are driven and directed by the end-users requirements. Whereas a conventional cost
model often deals with software and hardware costs for running applications, the economic model primarily
charges the end user for services that they consume based on the value they derive from it. Pricing based
on the demand of users and the supply of resources is the main driver in the competitive, economic market
model. Therefore, in the Grid environments, a user is in competition with other users and a resource owner
with other resource owners.

The main contribution of this chapter is to provide a generic distributed computational economy for
Grids along with system architecture and policies for resource management for different economic models.
Currently, the user community and the technology are still rather new and not well accepted and established
in commercial settings. However, we believe the Grid can become established in such settings by providing
incentive to both consumers and resource owners for being part of the Grid. Since the Grid uses the Internet
as a carrier for providing remote services, it is well positioned to create a cooperative problem solving
environment, and means for sharing computational and data resources in a seamless manner. Up to now,
the idea of using Grids for solving large computationally intensive applications has been more or less
restricted to the scientific community. However, even if, in the scientific community, the pricing aspect
seems to be of minor importance, funding agencies need to support the hardware and software
infrastructure for Grids. Economic models can help them manage and evaluate resource allocations to user
communities. For example, the system managers may impose quota limitations and value different
resources with a different number of tokens [56]. In such environments, resource consumers certainly
prefer to use economic driven schedulers to effectively utilize their tokens by using lightly loaded, cheaper
resources.

An economic approach to Grid computing introduces a number of new issues like resource trading and
quality of service-based scheduling in addition to those such as site autonomy, heterogeneous substrate,
policy extensibility, online control already addressed by existing Grid systems. To address these new
issues, the economy based Grid systems need to support the following:

• An Information and Market directory for publicizing Grid entities

• Models for establishing the value of resources

• Resource pricing schemes and publishing mechanisms

• Economic models and negotiation protocols

• Mediators to act as a regulatory agency for establishing resource value, currency standards, and
crisis handling.

• Accounting, Billing, and Payment Mechanisms

• Users’ Quality of Service (QoS) requirements driven brokering/scheduling systems.

In this chapter we identify the requirements of users (resource providers and consumers) in the Grid
economy and various resource management issues that need to be addressed in realizing such a Grid
system. We briefly discuss popular economic models for resource trading and present related work that
employs computational economy in resource management. We propose a scalable architecture and new
services for the Grid that provide mechanisms for addressing user requirements. The implementation of
computational economy with the Nimrod-G resource broker will be discussed in the next chapter.

26

3.2 Computational Economy and its Benefits
The current research and investment into computational Grids is motivated by an assumption that
coordinated access to diverse and geographically distributed resources is valuable. In this paradigm, we
need mechanisms that allow such coordinated access, but also sustainable, scalable models and policies that
promote precious Grid resource sharing. Based on the success of economic institutions in the real world as
a sustainable model for exchanging and regulating resources, goods and services, we propose a
computational economy framework. Among other things, this framework provides a mechanism to indicate
which users should receive priority.

Like all systems involving goals, resources, and actions, computations can be viewed in economic terms.
With the proliferation of networks, high-end computing systems architecture has moved from centralized
toward decentralized models of control and action; the use of economic driven market mechanisms would
be a natural extension of this development. The ability of trade and price mechanisms to combine local
decisions by diverse entities into globally effective characteristics, imply their value for organizing
computations in large systems such as Internet-scale computational Grids.

The need for an economy driven resource management and scheduling system comes from the answers
to the following questions:

• What comprises the Grid and who owns its resources?
• What motivates resource owners to contribute their resource to the Grid?
• Is it possible to have access to all resources in the Grid by contributing our resource?
• If not, how do we have access to all Grid resources?
• If we have access to resources through collaboration, are we allowed to use them for any other

purposes?
• Do resource owners charge the same or different price for different users?
• Is access cost the same for peak and off-peak hours?
• How can resource owners maximize their profit?
• How can users solve their problems within a minimum cost?
• How can a user get high priority over others?
• If the user relaxes the deadline by which results are required, can solution cost be reduced?

To date, individuals or organizations that have contributed resources to the Grid have been largely
motivated by the public good, prizes, fun, fame, or collaborative advantage. This is clearly evident from the
construction of private Grids (but on volunteer resources) or research test-beds such as Distributed.net [24],
SETI@Home [141], Condor pool [54], GUSTO [38], DAS (Distributed ASCI Supercomputer) [40], eGrid
[31], and World-Wide Grid [111]. The computational resource contributors to these test-beds are mostly
motivated by the aforementioned reasons. The chances of gaining access to such computational test-beds
for solving commercial problems are low. Furthermore, contributing resources to a testbed does not
guarantee access to all of the other resources in the testbed. For example, although we were part of the
GUSTO testbed, gaining automatic access to all of its resources was not possible. Unless we have some
kind of collaboration with contributors, it is difficult to get access to their resources. In this situation, we
believe that a model that encourages or offers incentive for resource owners to let their resources for others’
use can itself lead to computational economy. Also, as both resource owners and users want to maximize
their profit (i.e., the owners wish to earn more money and the users wish to solve their problems within a
minimum possible cost), the Grid computing environment needs to support this economy of computations.

Even commercial companies such as Entropia, ProcessTree, Popular Power, United Devices, and
Parabon are exploiting idle CPU cycles from desktop machines to build a commercial computational Grid
infrastructure based on P2P networks [97]. These companies are able to develop large-scale infrastructure
for Internet computing and use it for their own financial gain by charging for access to CPU cycles for their
customers, without offering fiscal incentive to all resource contributors. In the long run, this model does not
support the creation of a maintainable and sustainable infrastructure, as the resource contributors have no
incentive for their continued contribution. Therefore, a Grid economy seems a better model for managing
and handling requirements of both Grid providers and consumers. It can be observed that, even in
electricity Grids, bid-based electricity trading over the Internet has been adopted to develop competitive
forces in the electricity marketplace [53].

27

The Grid resource management systems must dynamically trade for the best resources based on a metric
of the price and performance available and schedule computations on these resources such that they meet
user requirements. The Grid middleware needs to offer services that help resource brokers and resource
owners to trade for resource access.

The benefits of economic-based resource management include the following:

• It helps in building a large-scale Grid as it offers incentive for resource owners to contribute their (idle)
resources for others to use and profit from it.

• It helps in regulating the supply and demand for resources.
• It offers an economic incentive for users to back off when solving low priority problems and thus

encourages the solution of time critical problems first.
• It removes the need for a central coordinator (during negotiation).
• It offers uniform treatment of all resources. That is, it allows trading of everything including

computational power, memory, storage, network bandwidth/latency [112], data, and devices or
instruments.

• It allows users to express their requirements and objectives.
• It helps in developing scheduling policies that are user-centric rather than system-centric.
• It offers an efficient mechanism for allocation and management of resources.
• It helps in building a highly scalable system as the decision-making process is distributed across all

users and resource owners.
• It supports a simple and effective basis for offering differentiated services for different applications at

different times.
• Finally, it places the power in the hands of both resource owners and users—they can make their own

decisions to maximize the utility and profit.

3.3 Requirements for Economic-based Grid Systems
We envision a future in which economically intelligent and economically motivated peer-to-peer and Grid-
like software systems will play an important role in establishing a distributed service-oriented computing
paradigm. To deliver greater value to users than traditional systems, economic-based resource management
systems need to provide mechanisms and tools that allow resource consumers (end users) and providers
(resource owners) to express their requirements and facilitate the realization of their goals. That is, they
need (i) the means to express their requirements, valuations, and objectives [value expression], (ii)
scheduling policies to translate them to resource allocations [value translation], and (iii) mechanisms to
enforce selection and allocation of differential services, and dynamic adaptation to changes in their
availability at runtime [value enforcement]. Similar requirements are raised [9] for market-based systems in
a single administrative domain environment such as clusters and they are limited to co-operative economic
models since they aim for social welfare. Grids need to use competitive economic models as different
resource providers and resource consumers have different goals, objectives, strategies, and requirements
that vary with time.

Essentially, resource consumers need a utility model—to allow them to specify resource requirements
and constraints. For example, the Nimrod-G broker allows the users to specify the deadline and budget
constraints along with optimisation parameters such as optimise for time [value expression]. They need
brokers that provide strategies for choosing appropriate resources [value translation] and dynamically
adapt to changes in resource availability at runtime to meet user requirements [value enforcement]. The
Nimrod-G broker, discussed in the next chapter, supports all these requirements. The resource owners need
mechanisms for price generation schemes to increase system utilization and protocols that help them offer
competitive services [value expression]. For the market to be competitive and healthy, coordination
mechanisms are required that help the market reach an equilibrium price—the price at which the supply of
a service equals the quantity demanded. Grid resources have their schedulers (e.g., OS or queuing system)
that allocate resources [value translation]. Some research systems support resource reservation in advance
(e.g., reserving a slot from time t1 to t2 using the Globus GARA [50] and bind a job to it) and allocate
resources during reserved time [value enforcement]. A number of research systems have explored QoS
based resource (e.g., CPU time and network bandwidth [112][3]) allocation in operating systems and
queuing systems, but the inclusion of QoS into mainstream systems has been slow paced (e.g., Internet
mostly uses the best effort allocation policy [71], but this is changing with IPv6 [7]).

28

3.4 Grid Architecture for Computational Economy (GRACE)
A distributed Grid Architecture for Computational Economy (GRACE) is shown in Figure 3.1. This
architecture is generic enough to accommodate different economic models used for resource trading for
determining the service access cost. The key components of the Grid include,

• Grid User with Applications (sequential, parametric, parallel, or collaborative applications)
• User-Level Middleware—Higher Level Services and Tools

• Programming Environments
• Grid Resource Brokers

• Core Grid Middleware (services resource trading and coupling distributed wide area resources)
• Grid Service Providers

Grid Node N

Grid Consumer

P
ro

g
ra

m
m

in
g

E
n

vi
ro

n
m

en
ts

Grid Resource Broker

Grid Service Providers

Grid Explorer

Schedule Advisor

Trade Manager

Job
Control
Agent

Deployment Agent

Trade Server

Resource Allocation

Resource
Reservation

R1

Misc. services

Information
Service

R2 Rm
…

Pricing
Algorithms

Accounting

Grid Node1

…

Grid Middleware
Services

…

…
Health
Monitor

Grid Market
Services

JobExec

Info ?

Secure

Trading

QoS

Storage

Sign-on

Grid Bank

A
p

p
lic

at
io

n
s

Figure 3.1: A generic Grid architecture for computational economy.

The two key players in market oriented computational Grids are resource providers (hereafter referred
as GSPs—Grid Service Providers) and resource consumers (hereafter referred as GRBs—Grid Resource
Broker that acts as a consumer’s representative or software agent). Both have their own expectations and
strategies for being part of the Grid. In the Grid economy, resource consumers adopt the strategy of solving
their problems within a required timeframe and budget. Resource providers adopt the strategy of obtaining
best possible return on their investment. The resource owners try to maximize their resource utilization by
offering a competitive service access cost in order to attract consumers. The users (resource consumers)
have an option of choosing the providers that best meet their requirements. If resource providers have local
users, they will try to recoup the best possible return on “idle/leftover” resources. In order to achieve this,
the Grid systems need to offer tools and mechanisms that allow both resource providers and consumers to
express their requirements. The Grid resource consumers interact with brokers to express their
requirements such as the budget that they are willing to invest for solving a given problem and a deadline, a
timeframe by which they need results. They also need capability to trade between these two requirements
and steer the computations accordingly. The GSPs need tools for expressing their pricing policies and
mechanisms that help them to maximize the profit and resource utilization. Various economic models,
ranging from commodity market to auction-based, can be adopted for resource trading in Grid computing
environments. The Grid resource management framework and strategies for these economic models is
discussed in Section 3.6.

GRACE provides services that help both resource owners and users maximize their objective functions.
The resource providers can contribute their resources to the Grid and charge for services. They can use

29

GRACE mechanisms to define their charging and access policies and the GRACE resource trader works
according to those policies. The users interact with the Grid by defining their requirements through high-
level tools such as resource brokers (also known as Grid schedulers). The resource brokers work for the
consumers and attempt to maximize user utility. They can use GRACE services for resource trading and
identifying GSPs that meets its requirements.

As mentioned earlier, our goal is to realize this Grid economy architecture by leveraging existing
technologies such as Globus and Legion and develop new services that are particularly missing in them.
Therefore, we mainly focus on two things: first, to develop middleware services for resource trading using
different economic models; second to use these services along with other middleware services in
developing advanced user-centric Grid resource brokers. The remainder of this section presents how we are
realizing the Grid economy vision and show co-existence of our modules with other systems.

3.4.1 Grid Resource Broker (GRB)

The resource broker acts as a mediator between the user and Grid resources using middleware services. It is
responsible for resource discovery, resource selection, binding of software, data, and hardware resources,
initiating computations, adapting to the changes in Grid resources and presenting the Grid to the user as a
single, unified resource. The resource broker consists of the following components:

• Job Control Agent (JCA): This is a persistent control engine responsible for shepherding a job
through the system. It coordinates with schedule adviser for schedule generation, handles actual
creation of jobs, maintenance of job status, interacting with clients/users, schedule advisor, and
dispatcher.

• Schedule Advisor (Scheduler): This is responsible for resource discovery (using the Grid explorer),
resource selection and job assignment (schedule generation) to ensure that the user requirements are
met.

• Grid Explorer (GE): This is responsible for resource discovery by interacting with the Grid-
information server and identifying the list of authorized machines, and keeping track of resource status
information.

• Trade Manager (TM): This works under the direction of resource selection algorithm (the schedule
advisor) to identify resource access costs. It uses market directory services and GRACE negotiation
services for trading with Grid service provides (i.e., their representative trade servers).

• Deployment Agent (DA): It is responsible for activating task execution on the selected resource as per
the scheduler’s instruction and periodically updates the status of task execution to JCA.
The Nimrod-G resource broker follows this architecture and offers functionalities that are expected from

economic-based grid scheduling systems. It allows the users to submit their application created using its
parameter specification language; and express their requirements and objectives in the form of: deadline,
budget with time or cost as the optimisation parameter [value expression]. The broker uses scheduling
algorithms to select resources dynamically at runtime depending on their availability, capability, and cost to
meet user requirements [value translation]. It continuously adapts to changes in resource availability
conditions by performance profiling (establishing job completion rate) and reschedules jobs appropriately
to ensure that users requirements are met [value enforcement].

3.4.2 GRACE Framework—Leveraging Globus Tools

The Grid middleware offers services that help in coupling a Grid user and remote resources through a
resource broker or Grid enabled application. It offers core services such as remote process management, co-
allocation of resources, storage access, directory information, security, authentication, and Quality of
Service (QoS) such as resource reservation for guaranteed availability and trading for minimizing
computational cost. Many of these services are already offered by Globus [49] components and they
include,

• Resource allocation and process management (GRAM).
• Resource Co-allocation services (DUROC)
• Unicast and multicast communications services (Nexus)
• Authentication and related security services (GSI)
• Distributed access to structure and state information (MDS)
• Status and Health Monitoring components (HBM)

30

• Remote access to data via sequential and parallel interfaces (GASS)
• Construction, caching, and location of executables (GEM)
• Advanced resource reservation (GARA)

A layered architecture for the realization of the GRACE framework is shown in Figure 3.2. It offers
Grid economy infrastructure that co-exists with or built on top of the existing middleware such as Globus:

• Applications (e.g., Molecular modelling for drug design as parameter sweep application)
• Problem solving environments built on schedulers (e.g., ActiveSheets [20] on Nimrod-G)
• Programming frameworks and development tools (e.g., Nimrod parameter specification

language[21])
• A resource broker (e.g., Nimrod-G)
• Various resource trading protocols
• A mediator for negotiating between users and Grid service providers (Grid Market Directory)
• A deal template for specifying resource requirements and services offers
• A trade server
• A pricing policy specification
• Accounting (e.g., QBank [124]) and payment management (GBank)

The new middleware services being proposed are designed to offer low-level services that co-exist with
Globus services and infrastructure. Higher-level services and tools such as the Nimrod-G Resource Broker,
which uses economic models suitable for meeting the user requirements, can use these core services.

Applicat ions

GRAM

Globus Security I nter face (GSI)

Local
Services

LSF

Condor GRD QBank

PBS

TCP

Solar isI r ixLinux

UDP

High- level Services and Tools

Cactus MPI - G

Nim rod- G Broker

CC+ +

GASS GTSGARA GBankGMD

eCash

JVM

DUROC

Core Services

Science Engineer ing Com m erce Porta ls Act iveSheet……

……

MDS

Higher Level Resource Aggregators

Nim rod Param et ric Language

Figure 3.2: GRACE framework realization within Globus context.

The Grid service providers specifically deal with the following components along with Globus
components:

• Grid Market Directory: (GMD): It allows resource owners to publish their services in order to attract
consumers.

• Grid Trade Server (GTS): This is a resource owner agent that negotiates with resource users and sells
access to resources. It aims to maximize the resource utility and profit for its owner. It consults pricing
policies during negotiation and directs the accounting system for recording resource consumption and
billing the user according to the agreed pricing policy.

31

• Pricing Policies: These define the prices that resource owners would like to charge users. The resource
owners may follow various policies to maximise their profit and resource utilisation and the price they
charge may vary with time and one user to another user. The pricing can also be driven by demand
and supply like in the real market environment. That is, in this commodity market model, pricing is
essentially determined by objective functions of service providers and users. The pricing policy can
also be based on auction. In this auction based economic model, pricing is driven by how much users
value the service and the highest bidder wins the access to Grid services.

• Resource Accounting and Charging components (such as GBank along with QBank) are responsible
for recording resource usage and bill the user as per the usage agreement between resource broker
(TM, a user agent) and trade server (resource owner agent).

The service providers publish their services through the Grid market directory (GMD). They use Grid
trading services’ declarative language for defining cost specification and their objectives such as access
price for various users for different times and durations, along with possibilities of offering discounts to
attract users during off-peak hours. The Grid trading server (GTS) can employ different economic models
in providing services. The simplest would be a commodity model wherein the resource owners define
pricing strategies including those driven by the demand and resource availability. The GTS can act as
auctioneer if the Auction-based model is used in deciding the service access price or an external auctioneer
service can be used.

3.4.3 Grid Open Trading Protocols and Deal Template

The resource trading protocols define the rules and format for exchanging commands between a GRACE
client (Trade Manager), which is part of the Grid broker and a Trade Server, which is part of the Grid
service providers. Figure 3.3 shows a sample multilevel negotiation protocol that both client and server
need to follow while trading for the cost of resource access [99]. The wire-level (low-level) details of these
protocols are skipped, as they are obvious.

Get Connected

Call for Bid(DT)Call for Bid(DT)

Reply to Bid (DT)

Negotiate Deal(DT)

Confirm Deal(DT, Y/N)

….

Cancel Deal(DT)

Change Deal(DT)

Get Disconnected

Trade Manager

Trade Server

Pricing Rules

DT - Deal Template:
- resource requirements (TM)
- resource profile (TS)
- price (any one can set)
- status

- change the above values
- negotiation can continue
- accept/decline
- validity period

API

Figure 3.3: GRACE Open Trading Protocols.

A finite state machine representation of multilevel negotiation protocols that both client and server need
to follow for the bargaining/tender model is shown in Figure 3.4. In this model, the broker’s Trade
Manager (TMs) contacts the resource owner’s Trade Server (TS) with a request for a quote. The TM

32

specifies resource requirements in a Deal Template (DT), which can be represented by a simple structure
with its fields corresponding to deal items or by a “Deal Template Specification Language”, similar to the
ClassAds mechanism employed by the Condor [54] system. The contents of DT include expected start time,
usage duration, memory, and storage requirements along with its initial offer. The TM looks into DT and
updates its contents and sends back to TS. This negotiation between TM and TS continues until one of
them indicates that its offer is final. Following this, the other party decides whether to accept or reject the
deal. If accepted, then both work as per the agreement mentioned in the deal. The overhead introduced by
the multilevel point-to-point protocol can be reduced when resource access prices are announced through
Grid information services (e.g., MDS) or market directory.

A number of interaction protocols for a business negotiation on the Internet have been presented in [78].
It highlights some commonalities in the structure of different price negotiation mechanisms such as fixed
price sales, auctions, and brokerages. These business negotiation models and protocols are also applicable
for our resource trading and we have explored such models and protocols in our resource management and
scheduling system.

Grid Open Trading APIs

The GRACE infrastructure supports generic Application Programming Interfaces (APIs) that can be used
by the Grid tools and application programmers to develop software supporting the computational economy.
The following trading APIs are C-like functions (high level view of trading protocols) that GRACE
clients/brokers can use to communicate with trading servers:

• grid_trade_connect(resource_id, tid)
• grid_request_quote(tid, DT)
• grid_trade_negotiate (tid, DT)
• grid_trade_confirm(tid, DT)
• grid_trade_cancel(tid, DT)
• grid_trade_change(tid, DT)

• grid_trade_reconnect(tid, resource_id)

• grid_trade_disconnect(tid)
where,

tid = Trade Identification code

DT = Deal Template

DT

Offer
TS

DT

DNDA

Offer
TM

< TM, Request for Resource >

<< TM, Update >>< TM, Ask Price >
<< TS, Update >>

< TM, Final Offer >< TS, Final Offer >

< TM, Accept > < TS, Reject >

<TM, Rej. >

<TS, Bid >

DT - Deal Template
TM - Trade Manager
TS - Trade Server
DA - Deal Accepted
DN - Deal Not accepted

Figure 3.4: A finite state representation of resource trading (for bargain model).

33

3.4.4 Pricing, Accounting, and Payment Mechanisms

In a computational Grid economy environment, both resource owners and users want to maximize their
benefits. As there will be many GSPs offering similar services, they need to have a competitive pricing
structure in order to attract users, efficiently utilize resources, and maximize profit. The resources
consumed by the user applications need to be accounted for and charged. Various payment mechanisms
need to be supported. The users can purchase resource access credits in advance or pay-after-usage. Each
GSP can maintain this by using systems like QBank or there can be global Grid-wide bank called GridBank
(GBank) that mediates payment for services accessed by the user. Figure 3.5 shows various components at
a GSP node and their interactions during resource trading, consumption, metering (measuring), billing, and
payment handling.

QBankQBank

Resource Manager44

IBM-LL/PBS/….

00

55 88

66 77

Compute Resources
clusters/SGI/SP/...

0. Make Deposits,
Transfers, Refunds,
Queries/Reports

1. Clients negotiates for
access cost.

2. Negotiation is performed
per owner defined policies.

3. If client is happy, TS informs
QB about access deal.

4. Job is Submitted
5. Check with QB for “go ahead”
6. Job Starts
7. Job Completes
8. Inform QB about resource

resource utilization.

Trade Server 3311

Pricing PolicyPricing Policy
22

DB@Each SiteDB@Each Site

GRID BankGRID Bank
(digital transactions)(digital transactions)00

Figure 3.5: An Interaction between GSP resource management components.

How to Determine the Price?

A simple pricing scheme is a fixed price model, but this does not work when the users place QoS demands
that vary with applications and time. In the context of software agents [36][60], many researchers have
investigated pricing schemes based on the supply and demand for resources and the QoS requirements. The
pricing schemes based on different parameters include,

• A flat price model (the same cost for applications and no QoS like in today’s Internet [71])
• Competitive economic models (e.g., auctions and contract-net)
• Usage timing (peak, off-peak, lunch time like pricing telephone services)
• Usage period and duration (short/long)
• Demand and supply (e.g., Smale model [126])
• Foresight-based [36] (i.e., an ability to model and predict responses by competitors)
• Loyalty of Customers (like Airlines favoring frequent flyers!)
• Historical data
• Advance agreement/contract with service provides
• Calendar based
• Bulk Purchase
• Voting in which trade unions decide pricing structure
• Resource capability as benchmarked in the capital market
• Application areas in which academic R&D or public good applications can be offered at cheaper

rate compared to commercial applications.

34

In [60], five different pricing strategies, ranging widely from ones that require perfect knowledge and
unlimited computational power to ones that require very little knowledge or computational capability, are
employed in two different buyer populations, namely quality-sensitive and price sensitive buyers. The
resulting collective dynamics have been investigated using a combination of analysis and simulation. In a
population of quality-sensitive buyers, all pricing strategies lead to a price equilibrium predicted by a game-
theoretic analysis. However, in a population of price-sensitive buyers, most pricing strategies lead to large-
amplitude cyclical price wars. These pricing strategies and issues are also applicable to the Grid and
strategies need to be designed such that the resource providers benefit through efficient resource utilization
and consumers will have the ability to trade-off between cost and timeframe in the Grid marketplace.

Service Items to be Charged and Accounted

User applications have different resource requirements depending on computations performed and
algorithms used in solving problems. Some applications can be CPU intensive while others can be I/O
intensive or a combination. For example, in CPU intensive applications it may be sufficient to charge only
for CPU time whilst offering free I/O operations. This scheme cannot be applied for I/O intensive
applications. Therefore, the consumption of the following resources needs to be accounted and charged:

• CPU - User time (consumed by user App.) and System time (consumed while serving user App.)
• Memory
• Maximum resident set size - page size
• Amount of memory used
• Page faults
• Storage used
• Network bandwidth consumption
• Signals received, context switches
• Software and Libraries accessed (particularly required for the emerging ASP world).
Access to each of these entities can be charged individually or in combination. Combined pricing

schemes need to have a costing matrix that takes a request for multiple resources in pricing. An economic
model proposed by Smale [126] allows formulation of such pricing schemes for resource allocation. G-
commerce [118] is one such framework investigating the use and enhancing the Smale model for devising
pricing strategies in the context of allocating resources for Grid users. By simulating hypothetical resource
consumers and resource producers, they measured the efficiency of resource allocation under two different
market conditions: commodities markets and auctions. By comparing the results of both market strategies
in terms of price stability, market equilibrium, consumer efficiency, and producer efficiency, the G-
commerce concludes that commodities markets are a better choice for controlling Grid resources than the
existing auction strategies.

Payment Mechanisms

A computational economy Grid framework needs to support various payment mechanisms. They include:

• Prepaid – Pay and use in which users need to buy credits in advance from GSPs or Grid Bank
• Use and pay later
• Pay as you go
• Grants based

Each GSP can bill their users directly and handle all payment processing issues themselves. This method
introduces a great burden for both providers and users in a large-scale Grid environment. This can be
simplified by having mediators like a scalable Grid Bank. The user brokers can (automatically) inform the
GSPs about the user Grid Bank account details for which they can charge directly or users can pay by other
electronic cash systems. This can be achieved by using digital currency mechanisms such as:

• NetCheque: [13] – Users registered with NetCheque accounting servers can write electronic cheques
and send them to service providers. When deposited, the balance is transferred from sender to receiver
account automatically.

• NetCash [34] – This supports anonymity and it uses the NetCheque system to clear payments between
currency servers.

• Paypal [89] – This is an example of a credit-card based automated mediator for payments processing.

35

• Tokens – This mechanism can be used when (a) resources are allocated based on grants; (b) resources
are bartered and used by earning or exchanging credits like in the MojoNation peer networks.

Such electronic payment mechanisms satisfy the diverse requirements of service providers and their users.
We believe that these payment mechanisms can be easily integrated into our Grid economy infrastructure.

3.5 Related Work
As in the conventional marketplace, the users’ community (GRBs) represents the demand, whereas the
resource owners’ community (GSPs) represents the supply. Consumers interact with their own brokers
(such as Nimrod-G) for managing and scheduling their computations on the Grid. The GSPs make their
resources Grid enabled by running software systems (such as Globus [49] and Legion [121]) along with
Grid Trading Services (GTS) to enable resource trading and execution of consumer requests directed
through GRBs. The interaction between GRBs and GSPs during resource trading is mediated through a
Grid Market Directory (GMD) (see Figure 3.6 to Figure 3.10). They use various economic models or
interaction protocols for deciding service access price.

Numerous economic models including microeconomic and macroeconomic principles for resource
management have been proposed in the literature [99][80][53][3][77][117]. Some of the commonly used
economic models that can be employed for managing resources in Grid environment, include:

• Commodity Market Model
• Posted Price Model
• Bargaining Model
• Tendering/Contract-Net Model
• Auction Model
• Bid-based Proportional Resource Sharing Model
• Cooperative Bartering Model
• Monopoly and Oligopoly

Various criteria used for judging effectiveness of a market model are [131]: social welfare (global good
of all), Pareto efficiency (global perspective), individual rationality (better off by participating in
negotiation), stability (mechanisms that cannot be manipulated, i.e., behave in the desired manner),
computational efficiency (protocols should not consume too much computation time), and distribution and
communication efficiency (communication overhead to capture a desirable global solution).

Several research systems (see Table 3.1) have explored the use of different economic models for trading
resources to manage resources in different application domains: CPU cycles, storage space, database query
processing, and distributed computing, They include Spawn [14], Popcorn [87], Java Market [144],
Enhanced MOSIX [145], JaWS [125], Xenoservers [23], D’Agents [55], Rexec/Anemone [8], Mojo Nation
[84], Mariposa [83], Mungi[33], Stanford Peers [10], G-Commerce [118], OCEAN [76], Nimrod-G [100],
and GridSim [95]. These systems have been targeted to manage single or multiple resources for application
domains as follows:

•Single domain computing systems: Enhanced MOSIX and Rexec/Anemone.
•Agent-based systems: Xenoservers and D’Agents.
•Distributed database management system: Mariposa
•Shared storage management system: Mungi.
•Storage Space Trading system: Stanford Peers
•Web-based distributed systems: Popcorn, Java Market, and JaWS.
•Multi-domain distributed Grid system: Nimrod-G and GridSim Resource Broker

Among the above, the three most recent systems are Stanford Peers, G-Commerce, and GridSim
Resource Broker and all of them happen to use simulation techniques to demonstrate distributed resource
trading. However, each have a different focus: the Stanford Peers project is exploring storage trading for
data replication; the G-Commerce project is exploring pricing strategies for selling access to resources; and
the GridSim project provides a general purpose Grid simulation toolkit and the economic resource broker
that allows exploration of quality of services driven algorithms for scheduling task and data parallel
applications in large-scale distributed environments.

36

Table 3.1: Computational economy based distributed resource management systems.

SYSTEM NAME ECONOMIC MODEL PLATFORM REMARKS

Mariposa [83]
(UC Berkeley)

Bidding (Tendering/
ContractNet). Pricing
based on load and
historical info.

Distributed
database.

It supports budget-based query
processing and storage
management.

Mungi [33]
(University of New
South Wales)

Commodity market
(renting storage space that
increases as available
storage runs low, forcing
users to release unneeded
storage.)

Storage servers.

It supports storage objects
based on bank accounts from
which rent is collected for the
storage occupied by objects. .

Popcorn [87]
(Hebrew
University)

Auction. (Highest bidder
gets access to resource and
it transfers credits from
buyer to the seller
account.)

Web browsers.
(Popcorn parallel
code runs within a
browser of CPU
cycles seller.)

Popcorn API-based parallel
applications need to specify a
budget for processing each of
its modules.

Java Market [144]
(Johns Hopkins
University)

QoS based computational
market. (The resource
owner receives f(j, t) award
for completing f in time t.)

Web browsers.
(JavaMarket runs
standard Java
Applets within a
browser).

One can sell CPU cycles by
pointing Java-enabled browser
to Portal & allow execution of
Applets.

Enhanced MOSIX
[145]
(Hebrew U., Israel)

Commodity market
(resource cost of each node
is known)

Clusters of
computers (Linux
PCs)

It supports process migration
such that overall cost of job
execution is kept low.

JaWS [125]
(University of
Crete)

Bidding (Tendering) Web browsers It is similar to Popcorn.

Xenoservers [23]
(University of
Cambridge)

Bidding (Proportional
resource sharing)

Single computer
Accounted execution of un-
trusted code.

D’Agents [55]
(Dartmouth
College)

Bidding (Proportional
resource sharing)

Single computer
or Mobile Agents

Agents bid function is
proportional to benefit.

Rexec/Anemone
[8] (UC Berkeley)

Bidding/Auction (for
proportional resource
sharing)

Clusters
(A market-based
Cluster Batch
Queue System)

Users assign utility value to
their application and system
allocates resources
proportionally.

Mojo Nation [84]

(Autonomous Zone
Industries, CA)

A Credit-based partnership
and/or bartering model.
(Contributors earn credits
by sharing storage and
spend them when required)

Network storage.

It is a content-sharing
community network. It
combines marketplace and
bartering approach for
file/resource sharing.

Spawn [14]
(Xerox PARC)

Second-price/Vickery
auction (uses sponsorship
model for funding money
to each task depending on
some requirements)

Network on
workstations.
Each WS executes
a single task per
time slice

It supports execution of
concurrent program expressed
in the form of hierarchy of
processes that expand and
shrink size depending on the
resource cost.

CSAR
Supercomputing
center [56]
(University of
Manchester)

Commodity market and
priority-based model (they
charge for CPU, memory,
storage, and human support
services)

MPPs, Crays, and
Clusters, and
Storage servers.

Any application can use this
service and QoS is
proportional to user priority
and scheduling mechanisms.

37

Nimrod-G [100]
(Monash
University)

It supports economy
models such as commodity
market, spot market, and
contract-net for price
establishment.

World Wide Grid
(having resource
Grid enabled
using middleware
systems like
Globus)

It is a real system that
supports deadline and budget
constrained algorithms for
scheduling task-farming and
data parallel applications on
world-wide distributed
resources depending on their
cost, power, availability and
users quality of service
requirements.

GridSim [95]
(Monash
University)

Currently, it supports
economic models similar
to those used in Nimrod-G,
but limited to them.

A Java-based
discrete event
toolkit for
simulating Grid
resources, users,
applications, and
brokers.

The economic Grid resource
broker supports deadline and
budget based time, cost, cost-
time, and conservative time
optimisation scheduling
algorithms.

G-Commerce [118]
(U. of California
Santa Barbara)

Commodity and auctions

Simulates
hypothetical
consumers and
produces.

It is exploring strategies for
pricing Grid resources to
enable resource trading.

OCEAN [76]
(U. of Florida)

Continuous double auction
A Java based
platform with
distributed PCs.

It is exploring the use of
continuous double auction for
trading computational
resources – in development.

Stanford Peers [10]
(Stanford
University)

Auctions with cooperative
bartering in a cooperative
sharing environment.

Simulates storage
trading for content
replication and
archiving.

It demonstrates distributed
resource trading policies based
on auctions by simulation – in
development.

Each of the resource management systems presented in Table 3.1 follows a single model for resource
trading. They have been designed with a specific goal in mind either for CPU or storage management. In
order to use some of these systems, applications have to be designed using their proprietary programming
models, which is generally discouraging, as applications need to be specifically developed for executing on
those systems. Also, resource trading and job management modules have been developed using monolithic
system architecture that limits their extensibility.

In the GRACE framework, we have separated these two concerns through a layered design approach to
support different middleware technologies that co-exist with trading strategies and user-level resource
brokers. The resource trading services are offered as core services and they can be used by different higher-
level services/tools such as resource brokers and resource-aware applications. Another key advantage of
Nimrod-G system is that it allows the execution of legacy applications on large wide-area distributed
systems.

Typically, in a Grid marketplace, the resource owners, and users can use any one or more of these
models or even combinations of them in meeting their objectives [98]. Both have their own expectations
and strategies for being part of the Grid. The resource consumers adopt the strategy of solving their
problems at low cost within a required timeframe. The resource providers adopt the strategy of obtaining
best possible return on their investment while trying to maximize their resource utilization by offering a
competitive service access cost in order to attract consumers. The resource consumers can choose providers
that best meet their requirements. The design and architecture for the development of Grid systems using
these economic models is discussed in Section 3.6.

Both GRBs and GSPs can initiate resource trading and participate in the interaction depending on their
requirements and objectives. GRBs may invite bids from a number of GSPs and select those that offer the
lowest service costs and meet their deadline and budget requirements. Alternatively, GSPs may invite bids
in an auction and offer services to the highest bidder as long as its objectives are met. Both GSPs and GRBs

38

have their own utility functions that must be satisfied and maximized. The GRBs perform a cost-benefit
analysis depending on the deadline (by which the results are required) and budget available (the amount of
money the user is willing to invest for solving the problem). The resource owners decide their pricing based
on various factors. They may charge different prices for different users for the same service or it can vary
depending on the specific user demands. Resources may have different prices based on environmental
influences such as the availability of larger core memory and better communication bandwidth with an
outside world.

Grid brokers (note that in a Grid environment each user has his/her own broker as his agent) may have
different goals (e.g., different deadlines and budgets), and each broker tries to maximize its own good
without concern for the global good. This needs to be taken into consideration in building automated
negotiation infrastructure. In a cooperative distributed computing or problem-solving environment (like
cluster computers), the system designers impose an interaction protocol (possible actions to take at
different points) and a strategy (a mapping from one state to another and a way to use the protocol). This
model aims for global efficiency as nodes cooperate towards a common goal. On the other hand, in Grid
systems, brokers and GSPs are provided with an interaction protocol, but they choose their own private
strategy (like in multi-agent systems), which cannot be imposed from outside. Therefore, the negotiation
protocols need to be designed assuming a non-cooperative, strategic perspective. In this case, the main
concern is what social outcomes follow given a protocol, which guarantees that each broker/GSP’s desired
local strategy is best for that broker/GSP and hence the broker/GSP will use it.

3.6 Economic Models in the Context of GRACE Framework
In the previous section we identified a few popular models that are used in human economies. In this
section we discuss the use of different economic models and propose architecture for realizing them. The
discussion on realizing negotiation protocols based on different economic models is kept as generic as
possible. This ensures that our proposed architecture is free from any specific implementation and provides
a general framework for any other Grid middleware and tools developers. Particular emphasis will be
placed on framework and heuristics that Grid resource brokers (G-Brokers) can employ for establishing a
service price depending on their customers’ requirements.

For each of the economic models, the economic model theory, its parameters and strategies are
discussed and then a possible solution is given for a current Grid environment and how they can be mapped
to existing Grid tools and architectures or what needs to be extended. In the classical economic theory there
are different models for specific environmental situations and computing applications. Since the end-user
interaction is the main interest of this chapter, we point out possible interactions with the broker.

3.6.1 Commodity Market (Flat or Supply-and-Demand Driven Pricing) Model

In the commodity market model, resource owners specify their service price and charge users according to
the amount of resource they consume. The pricing policy can be derived from various parameters and can
be flat or variable depending on the resource supply and demand. In general, services are priced in such a
way that supply and demand equilibrium is maintained. In the flat price model, once pricing is fixed for a
certain period, it remains the same irrespective of service quality. It is not significantly influenced by the
demand, whereas in a supply and demand model, prices change very often based on supply and demand
changes. In principle, when the demand increases or supply decreases, prices are increased until there exists
equilibrium between supply and demand. Pricing schemes in a Commodity Market Model can be based on:

• Flat fee
• Usage Duration (Time)
• Subscription
• Demand and Supply-based [71]

The resource owners publish their prices and rules in the Grid market directory (GMD) service (see
Figure 3.6) similar to publishing through yellow pages. This is accomplished by defining the price
specification that GTS can use for publishing service access price in the market directory. A simple price
specification may contain the following parameters.

• consumer_id, which is the as same Grid-ID

• peak_time_price (say, between 9am-6pm: office hours on working days)

39

• lunch_time_price

• offpeak_time_price

• discount_when_lightly_loaded (i.e., if the load is less than 50% at any time)

• raise_price_high_demand (i.e., raise in price if the average load is above 50%)

• price_holiday_time (i.e., during holidays and week ends)

“Solve this in
5hrs for $20”

Grid Market
Directory (GMD)

Resource
Broker

Grid Info.
Service

GTSGTS

GTSGTS

(Grid Service Provider)

GTSGTS

GTSGTS GTSGTS

“register me as GSP”

“Give me list of GSPs & price?”

“service available?”

(GTS - Grid
Trade Server)

(GSP)

“service available?”

“service
available?”

(RB selects GSPs)

Figure 3.6: Interaction between GSPs and users in a commodity market Grid for resource trading.

Traditionally, computational services are priced based on their production cost and desired profit
margin. However, the consumers’ perception of value is based on parameters such as supply and demand
for resources, priority and service quality requirements. Therefore, the resource value in Grid economy
needs to be defined as a function of many parameters as follows:

• Resource Value = Function (Resource strength, Cost of physical resources, Service overhead,
Demand, Value perceived by the user, Preferences);

The last three parameters are difficult to capture from consumers unless they see any benefit in disclosing
them as they vary with time and application. However, there are consumers who prefer regular access to
resources during a particular period of the day. For example, those involved in making regular decisions on
supply chain management of goods shipping from inventory to the departmental stores prefer calendar-
based guaranteed access, and stable but competitive pricing to resources unlike spot-market based access to
services [69]. In this case demand and preferences are clear, pricing policy can be easily negotiated in
advance in a competitive and reasonable manner and resource quality of services can be guaranteed through
reservation during the required period as agreed in advance.

Consumers can be charged for access to various resources including CPU cycles, storage, software, and
network. The users compose their application using higher-level Grid programming languages. For
example, in our Nimrod problem-solving environment we provide a declarative programming language for
composing parameter sweep applications and defining application and user requirements such as deadline
and budget. The resource broker (working for the user) can carry out the following steps for executing
applications:
a. The broker identifies service providers.
b. It identifies suitable resources and establishes their prices (by interacting with GMD and GTS).
c. It selects resources that meet its utility function and objectives. It uses heuristics and/or historical

knowledge base while choosing resources and mapping jobs to them.
d. It uses resource services for job processing and issues payments as agreed.

40

As we are focusing on a generic framework, implementation specific details for releasing the above
steps are not presented. For example, implementation specific details of our Nimrod-G resource broker
vary from other related systems.

“Solve this by
next day for $5”

Grid Market
Directory (GMD)

Resource
Broker

“2hrs SP2, $5”

Grid Info.
Service

GTSGTS

GTSGTS

(Grid Service Provider)

GTSGTS

GTSGTS GTSGTS

“T3E, $9/ hr, Sunday”

“Free for Genome”“10% discount today”

“Any SP2/ T3E? offers”
“Free or < $2/ hr

clusters+ matlab”

“5MB free”

(GTS - Grid
Trade Server)

(GSP)

Figure 3.7: Posted price model and resource trading in a computational market environment.

3.6.2 Posted Price Model

The posted price model is similar to the commodity market model, except that it advertises special offers
(see Figure 3.7) in order to attract (new) consumers to establish market share or motivate users to consider
using cheaper slots. In this case, brokers need not negotiate directly with GSPs for price, but use posted
prices as they are generally cheaper compared to regular prices. The posted-price offers will have usage
conditions, but they might be attractive for some users. For example, during holiday periods, demand for
resources is likely to be limited and GSPs can post tempting offers or prices aiming to attract users to
increase resource utilization. The activities that are specifically related to the posted-price model in addition
to those related to the commodity market model are:
a. Grid Service Providers (GSPs) post their special offers and associated conditions etc. in Grid Market

Directory.
b. Broker looks at GMD to identify if any of these posted services are available and fits its requirements.
c. Broker enquires (GSP) for availability of posted services.
d. Other steps are similar to those pointed out in commodity market model.

3.6.3 Bargaining Model

In the previous models, the brokers pay access prices, which are fixed by GSPs. In the bargaining model,
resource brokers bargain with GSPs for lower access price and higher usage duration. Both brokers and
GSPs have their own objective functions and they negotiate with each other as long as their objectives are
met. The brokers might start with a very low price and GSPs with a higher price. They both negotiate until
they reach a mutually agreeable price (see Figure 3.8) or one of them is not willing to negotiate any further.
This negotiation is guided by user requirements (e.g., deadline is too relaxed) and brokers can take risk and
negotiate for cheaper prices as much as possible and can discard expensive machines. This might lead to
lower utilization of resources, so GSPs might be willing to reduce the price instead of wasting resource
cycles. Brokers and GSPs generally employ this model when market supply-and-demand and service prices
are not clearly established. The users can negotiate for a lower price with promise of some kind favour or
use of GSPs services in the future.

41

“Solve this in
5hrs for $20”

Grid Market
Directory (GMD)

Resource
Broker

Grid Info.
Service

GTSGTS

GTSGTS

(Grid Service Provider)

GTSGTS

GTSGTS GTSGTS

“register m e as GSP”

“Give m e list of GSPs”

“access price ?, 2 , 3 ?”

(GTS - Grid
Trade Server)

(GSP)

“access pr ice ?”

“access
price

?”

(RB negot ia tes for
the best pr ice)

Figure 3.8: Brokers bargaining for lower access price for minimizing computational cost.

3.6.4 Tender/Contract-Net Model

Tender/Contract-Net model is one of the most widely used models for service negotiation in a distributed
problem-solving environment [117]. It is modeled on the contracting mechanism used by businesses to
govern the exchange of goods and services. It helps in finding an appropriate service provider to work on a
given task. Figure 3.9 illustrates the interaction between brokers and GSPs in their bid to meet their
objectives. A user/resource broker asking for a task to be solved is called the manager and a resource that
might be able to solve the task is called potential contractor.

From a manager’s perspective, the process is:
1. Consumer (Broker) announces its requirements (using deal template) and invites bids from

GSPs.
2. Interested GSPs evaluate the announcement and respond by submitting their bids.
3. Broker evaluates and awards the contract to the most appropriate GSP(s).
4. The broker and GSP communicate privately and use the resource (R).

The contents of the deal template used for work announcement include, addressee (user), eligibility
requirements specifications (for instance, Linux, x86arch, and 128MB memory), task/service abstraction,
optional price that the user is willing to invest, bid specification (what should offer contain), expiration
time (deadline for receiving bids).

From a contractor’s/GSP perspective, the process is:
1. Receive tender announcements/advertisements (say in GMD).
2. Evaluate service capability.
3. Respond with bid.
4. Deliver service if bid is accepted.
5. Report results and bill the broker/user as per the usage and agreed bid.

The advantage of this model is that if the selected GSP is unable to deliver a satisfactory service, the
brokers can seek services of other GSPs. This protocol has certain disadvantages. A task might be awarded
to a less capable GSP if a more capable GSP is busy at award time. Another limitation is that the GRB
manager has no obligation to inform potential contractors that an award has already been made.
Sometimes, a manager may not receive bids for several reasons: (a) all potential GSPs are busy with other
tasks, (b) a potential GSP is idle but ranks the proposed tender/task below the other tasks under
consideration, (c) no GSPs, even if idle, are capable of offering service (e.g., resource is Windows NT-
based, but user wants Linux). To handle such cases, a GRB can request quick response bids to which GSPs
respond with messages such as eligible, busy, ineligible or not interested. This helps the GRB in making

42

changes to its work plan. For example, the user can change deadline or budget to wait for new GSPs or
attract existing GSPs to submit bids.

“Solve this in
15hrs for $10”

Grid Market
Directory (GMD)

Resource
Broker

Grid I nfo.
Service

GTSGTS

GTSGTS

(Grid Service Provider)

GTSGTS

GTSGTS GTSGTS

“Any Ads for service tenders”

“Post : call for tenders”

(GTS - Grid
Trade Server)

(GSP)

(GSPs bid)

“gsp1 bid”

“gsp3 bid?”

“gsp2 bid?”

“g
sp

N
b

id
?

”

Figure 3.9: Tender/ContractNet model for resource trading.

The tender model allows directed contracts to be issued without negotiation. The selected GSP responds
with an acceptance or refusal of award. This capability can simplify the protocol and improve the
efficiency of certain services.

3.6.5 Auction Model

The auction model supports one-to-many negotiation, between a service provider (seller) and many
consumers (buyers), and reduces negotiation to a single value (i.e., price). The auctioneer sets the rules of
auction, acceptable for the consumers and the providers. Auctions basically use market forces to negotiate a
clearing price for the service.

In the real world, auctions are used extensively, particularly for selling goods/items within a set
duration. The three key players involved in auctions are: resource owners, auctioneers (mediators), and
buyers (see Figure 3.10). Many e-commerce portals such as Amazon.com and eBay.com are serving as
mediators (auctioneers). Both buyers’ and sellers’ roles can also be automated. In a Grid environment,
providers can use an auction protocol for deciding service value/price (see Figure 3.11). The steps involved
in the auction process are:
a. GSPs announce their services and invite bids.
b. Brokers offer their bids (and they can see what other consumers offer if they like - depending on

open/closed).
c. Step (b) goes on until no one is willing to bid higher price or auctioneer stops if the minimum price

line is not met.
d. GSP offers service to the one who wins.
e. Consumer uses the resource.

Auctions can be conducted as open or closed depending on whether they allow back-and-forth offers
and counter offers. The consumer may update the bid and the provider may update the offered sale price.
Depending on these parameters, auctions can be classified into four types:

• English Auction (first-price open cry)
• First-price sealed-bid auction
• Vickrey (Second-price sealed-bid) auction [142]
• Dutch Auction
•Double Auction (Continuous)

43

Grid Market
Auct ioneer (GMA)

Resource
Broker

“SP2 t ime, 9 pm -8 am”

Grid Info.
Service

GTSGTS

GTSGTS

(Grid Service Provider)

GTSGTS

GTSGTS GTSGTS

“Post: auct ion T3 E service”

“Solve this in
20 hrs for $5”

(GTS - Grid
Trade Server)

(GSP)

Resource
Broker

…
.

“$2 , gsp1”

“$
4 ,

gs
p1

”

“$
2 ,

gs
p2

”

“Solve this in
1 hrs for $35”

(RBs bid)

Figure 3.10: Auctions using external auctioneer.

English Auction (first-price open cry) — all bidders are free to increase their bids exceeding other
offers. When none of the bidders are willing to raise the price anymore, the auction ends, and the highest
bidder wins the item at the price of his bid. In this model, the key issue is how GRBs decide how much to
bid. A GRB has a private value (as defined by the user) and can have a strategy for a series of bids as a
function of its private value and prior estimation of other bidder’s valuations, and the past bids of others.
The GRB decides the private value depending on the user-defined requirements (mainly deadline and
budget that he is willing to invest for solving the problem). In the case of private value English auctions, a
GRB’s dominant strategy is to always bid a small amount “higher” than the current highest bid, and stop
when its private value price is reached. In correlated value auctions, the policies are different and allow the
auctioneer to increase the price at a constant rate or at the rate he wishes. Those not interested in bidding
anymore can openly declare so (open-exit) without re-entry possibility. This information helps other
bidders and gives a chance to adjust their valuation.

First-price sealed-bid auction — each bidder submits one bid without knowing the others’ bids. The
highest bidder wins the item at the price of his bid. In this case a broker bid strategy is a function of the
private value and the prior beliefs of other bidders’ valuations. The best strategy is bid less than its true
valuation and it might still win the bid, but it all depends on what the others bid.

Vickrey (Second-price sealed-bid) auction — each bidder submits one bid without knowing the others’
bids. The highest bidder wins the item at the price of the second highest bidder [142]. The implementation
architecture and strategies are similar to the ContractNet/Tender model discussed earlier.

Dutch Auction — the auctioneer starts with a high bid/price and continuously lowers the price until one
of the bidders takes the item at the current price. It is similar to first-price sealed-bid auction because in
both cases the bid matters only if it is the highest, and no relevant information is revealed during the
auction process. From the broker’s bidding strategic point of view, Dutch auction is similar to English
(first-price sealed-bid auction). The key difference between them is that in an English auction bids start
with low opening and increase progressively until demand falls whereas, in a Dutch auction bids start with
high opening and decrease progressively until demand rises to match supply.

The interaction protocols for Dutch auction are as follows: the auction attempts to find market price for
a good/service by starting at a price much higher than the expected market value, then progressively
reducing the price until one of the buyers accepts the price. The rate of reduction in price is up to the
auctioneer and they have a reserve price below which not to go. If the auction reduces the price to reserve
price with no buyers, the auction terminates. In terms of real time, Dutch auction is much more efficient as
the auctioneer can decrease the price at a strategic rate and first higher bidder wins. In an Internet wide
auction, it is appealing in terms of automating the process wherein all parties can define their strategies for
agents that can participate in multiple auctions to optimize their objective functions.

44

Figure 3.11: Auctions using their own Auctioneer.

Double Auction — This is one of the most common exchange institutions in the marketplace whose
roots go back to ancient Egypt and Mesopotamia [66]. In fact, it is the primary economic model for trading
of equities, commodities, and derivatives in stock markets (e.g., NASDAQ). In the double auction model,
buy orders (bids) and sell orders (asks) may be submitted at anytime during the trading period. If at any
time there are open bids and asks that match or are compatible in terms of price and requirements (e.g.,
quantity of goods or shares), a trade is executed immediately. In this auction orders are ranked highest to
lowest to generate demand and supply profiles. From the profiles, the maximum quantity exchanged can be
determined by matching asks (starting with lowest price and moving up) with demand bids (starting with
highest price and moving down). Researchers have developed software-based agents mechanisms to
automate a double auction for stock trading with or without human interaction [113].

The double auction model has high potential for Grid computing. The brokers can easily be enabled to
issue bids depending on budget, deadline, job complexity, scheduling strategy, and resource characteristics
requirements and GSPs can issue asks depending on current load and perceived demand, and price
constraints. Both orders can be submitted to GMD agents that provide continuous clearance or matching
services. Since bids are cleared continuously, both GRBs and GSPs can make instant decisions with less
computational overhead and complexity.

All the above auctions differ in terms of whether they are performed as open or closed auctions and the
offer price for the highest bidder. In open auctions, bidding agents can know the bid value of other agents
and will have an opportunity to offer competitive bids. In closed auctions, the participants’ bids are not
disclosed to others. Auctions can suffer from collusion (if bidders coordinate their bid prices so that the
bids stay artificially low), deceptive auctioneers in the case of a Vickrey auction (auctioneer may overstate
the second highest bid to the highest bidder unless that bidder can vary it), deceptive bidders, counter
speculation, etc.

3.6.6 Bid-based Proportional Resource Sharing Model

Market-based proportional resource sharing systems are quite popular in cooperative problem-solving
environments like clusters (in single administrative domain). In this model, the percentage of resource
share allocated to the user application is proportional to the bid value in comparison to other users’ bids.
The users are allocated credits or tokens, which they can use for having access to resources. The value of
each credit depends on the resource demand and the value that other users place on the resource at the time

45

of usage. For example, consider two users wishing to access a resource with similar requirements, but the
first user is willing to spend 2 tokens and the second user is willing to spend 4 tokens. In this case, the first
user gets 1/3 of resource share whereas the second user gets 2/3 of resource share, which is proportional to
the value that both users place on the resource for executing their applications.

This can be a good way of managing a large shared resource in an organization or resource owned by
multiple individuals (like multiple departments in a university) who can have credit allocation depending
on the investment they made. They can specify how much of a credit they are willing to offer for running
their applications on the resource. For example, a user might specify low credits for non-interactive batch
jobs and high credits for interactive jobs with high response times. GSPs can employ this model for
offering a QoS for higher price paying customers in a shared resource environment (as shown in Figure
3.12). Systems such as Rexec/Anemone and Xenoservers, D’Agents CPU market employ proportional
resource sharing model in managing resource allocations [98].

Grid Market
Directory (GMD)

Resource
Broker

“SP2 t im e, 9 pm -8 am ”

Grid I nfo.
Service

GTSGTS

GTSGTS

(Grid Service Provider)

GTSGTS

GTSGTS GTSGTS

“Post : auct ion T3 E service”

“Solve this in
20 hrs for $5”

(GTS - Grid
Trade Server)

(GSP)

Resource
Broker

…
.

“RB1: $ 2 ”

“Solve this in
1 hrs for $50”

(RBs bid)

“Give m e list of GSPs”

“RBn: $4 ”

Resource Share ?
Bid/ (sum of all bids) .
E.g., RB1 share = 1 / 3

RB n share - 2 / 3

Figure 3.12: Market-based proportional resource sharing.

3.6.7 Cooperative Bartering Model

A community of individuals shares each other’s resources to create a cooperative computing environment.
Those who are contributing their resources to a common pool can get access to that pool. A sophisticated
model can also be employed here for deciding how much resources share contributors can get. It can
involve credits that one can earn by sharing a resource, which can then be used when needed. A system like
Mojonation.net employs this model for storage sharing. This model works when those participating in the
Grid act as both service providers and consumers.

3.6.8 Monopoly/Oligopoly

In the previously mentioned models we have assumed a competitive market where several GSPs and
brokers/consumers determine the market price. However, there exist cases where a single GSP dominates
the market and is the single provider of a particular service. In economic theory this model is known as a
monopoly. Users cannot influence the prices of services and have to choose the service at the price given
by the single GSP who monopolized the Grid marketplace. As regards the technical realization of this
model, the single site puts the prices into the GMD or information services and brokers consult it without
any possibility to negotiate prices.

The competitive markets are one extreme and monopolies are the other extreme. In most of the cases,
the market situation is oligopoly, which is in between these two extreme cases: a small number of GSPs
dominate the market and set the prices.

46

3.6.9 Other Influences on Market Prices

We now state more influences on price setting strategies in competitive, international markets. Supply and
demand is the most common one but one also has to take into account national borders and different pricing
policies within different countries such as taxation, consumer price index, inflation, etc. These factors are
not dealt in this chapter, but implementations may need to consider them. There are micro and macro-
economic factors that play an important role. One can also neglect them and build a price model on which
all the Grid consumers have to agree. So this would correspond to an international market with special
rules. Then, a model has to be formed for price changes. What is the factor for that change? Is there a
monopoly that can decide what to do? Is the market transparent with optimally adapted prices? These are
some of the main questions that need to be answered by GSPs when they decide their prices in an
international market. A broker may consult the Grid Information Service to find out where the price for a
particular service is minimal. For instance, one country might impose special taxes on a service whereas
another country does not.

There are occasions where resources are not valued as per the actual cost of resources and overhead
involved in offering services. When new players enter the market, in order to attract customers from the
existing GSPs they are likely to offer access at minimal price by under valuing resources. This leads to
price wars as GSPs are caught in a price cutting round to compete with each other. Measures such as
intervention of price regulation authorities can be in place to prevent the market from collapsing or leaving
it to the market to consolidate naturally.

3.7 Summary and Conclusion
We have discussed motivations for the use of computational economy as a metaphor for the management of
resources and application scheduling in Grid computing environments. We proposed the Grid Architecture
for Computational Economy (GRACE) framework and discussed an architecture that can be realized by
leveraging existing middleware services. We have presented economic models such as commodity market,
posted prices, bargaining, tendering, auction, proportional resource sharing or shareholder, and cooperative
bartering models along with architecture and strategies for releasing them within the GRACE framework.

The computational economies driven brokering system can be applied to peer-to-peer computing [12]
applications that enable content sharing. Systems like Napster [88] or Gnutella [39] could use infrastructure
that is similar to GRACE for encouraging people to share files, contents, or music in larger scale by
providing them economic incentive. The brokering systems like Nimrod-G can discover the best content
provider that meets consumers QoS requirements. We believe this approach, of providing an economic
incentive for resource owners to share their resources and resource users to trade-off between the deadline
and budget, promotes the Grid as a platform for mainstream computing, which can lead to the emergence of
a new service oriented computing industry.

In the next chapter, we present an implementation of grid resource broker, called Nimrod-G, driven by
GRACE framework. The Nimrod-G resource broker supports deadline and budget requirements driven
resource allocation and application scheduling on the World Wide Grid.

