

Market-Oriented Cloud Computing: A Vision, Hype, and Reality of Delivering Computing as the 5th Utility

Dr. Rajkumar Buyya

Grid Computing and Distributed Systems (GRIDS) Lab Dept. of Computer Science and Software Engineering The University of Melbourne, Australia <u>WWW.gridbus.org/megha</u> <u>www.buyya.com</u> <u>www.manjrasoft.com</u>

Manjrasoft

Dr Rajkumar Buyya

Chief Executive Officer

Manjrasoft Pty Ltd Room 5.31, ICT Building, 111, Barry Street, Carlton, Melbourne, VIC 3053, Australia P: +61-3-8344 1344 | F: +61-3-9348 1184 E: raj@manjrasoft.com http://www.manjrasoft.com

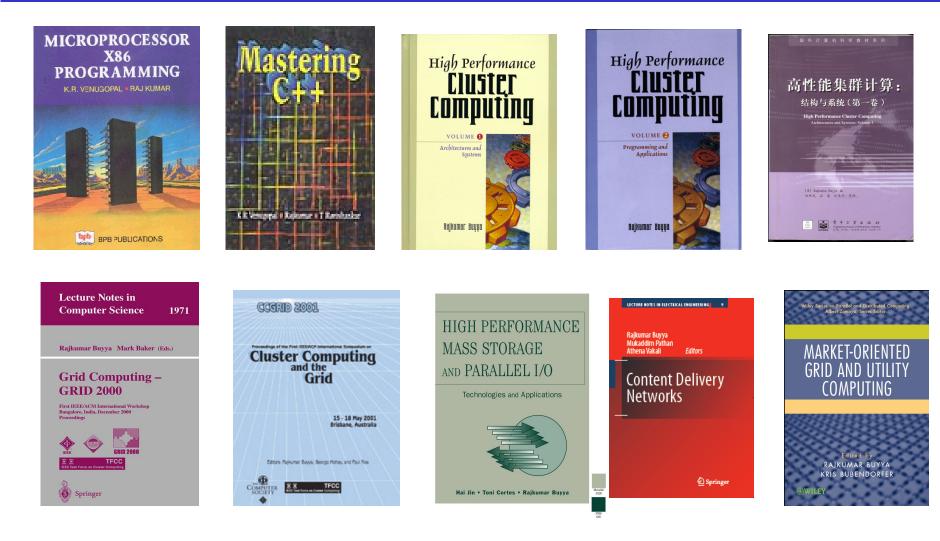
Microsoft[®]

Gridbus Sponsors

IEEE Medal for Excellence in Scalable Computing: Acknowledgements

GRIDS Lab and Ecosystem

- Team
- Sponsors
- Collaborators
- International Community & Friends
 - IEEE Computer Society/Technical Committee on Scalable Computing (TCSC)
 - Colleagues who worked with me in many initiatives:
 - TFCC, TCSC and its events (e.g., CCGrid) and attendees
 - Edited Books
 - Offered access to their computing resources (clusters & supercomputers)
 - Nominated me for IEEE Medal and offered endorsements



(1) team and collaborators: a glimpse

(2) Co-authors/editors

My wife Smrithi and our new born baby (Radha)

(first daughter Soumya)

Outline

"Computer Utilities"

- Vision and Promising IT Paradigms/Platforms
- Cloud Computing and Related Paradigms
 - Trends, Definition, Cloud Benefits and Challenges
- Market-Oriented Cloud Architecture
 - SLA-oriented Resource Allocation
 - Global Cloud Exchange
- Emerging Cloud Platforms
- Megha: Melbourne Cloud Computing Initiative
- Summary and Thoughts for Future

"Computer Utilities" Vision: Implications of the Internet

1969 – Leonard Kleinrock, ARPANET project

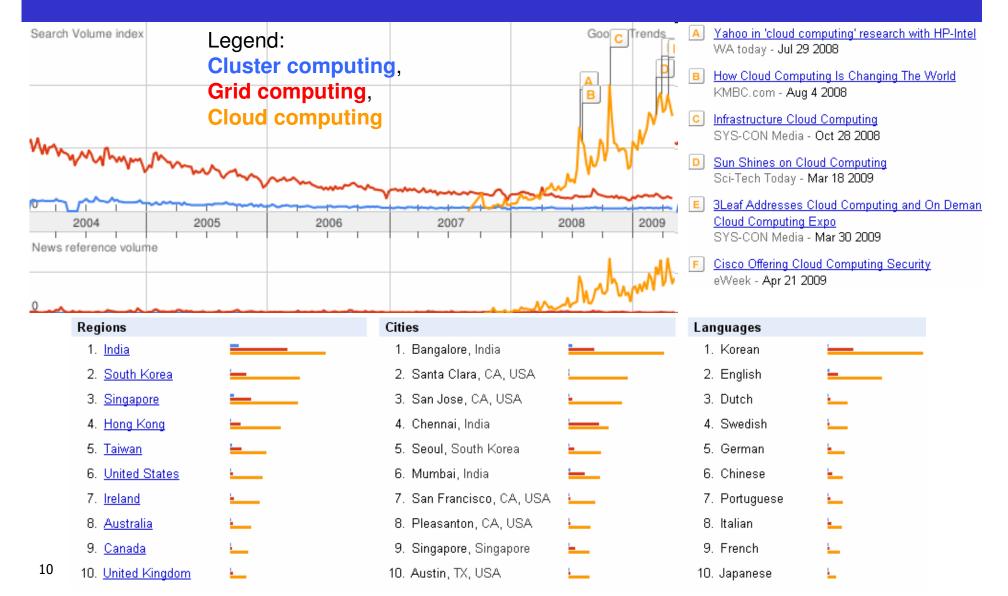
 "As of now, computer networks are still in their infancy, but as they grow up and become sophisticated, we will probably see the spread of 'computer utilities', which, like present electric and telephone utilities, will service individual homes and offices across the country"

Computers Redefined

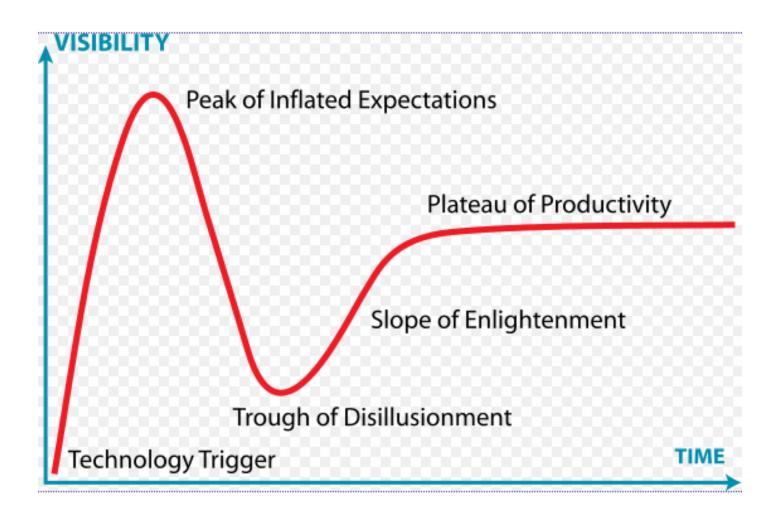
- 1984 John Gage, Sun Microsystems
 - "The network is the computer"
- 2008 David Patterson, U. C. Berkeley
 - "The data center is the computer. There are dramatic differences between of developing software for millions to use as a service versus distributing software for millions to run their PCs"
- 2008 "Cloud is the computer" Buyya!

Computing Paradigms and Attributes: Realizing the 'Computer Utilities' Vision

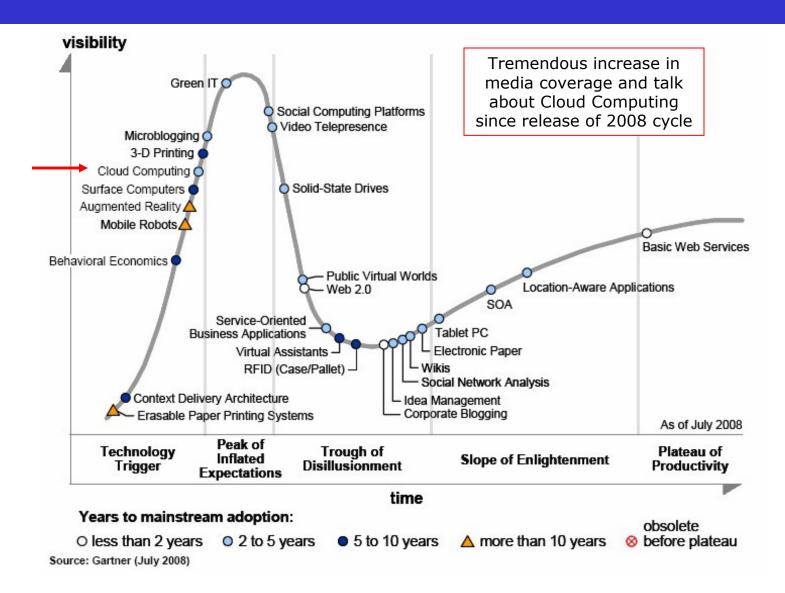
Web **Data Centres Utility Computing** Service Computing Grid Computing + P2P Computing **Market-Oriented** Computing -Ubiquitous **Cloud Computing** -Trillion \$ business access - Who will own it? -Reliability . . . -Scalability -Autonomic Paradigms -Dynamic discovery - Composability -00S -SLA -


Attributes/Capabilities

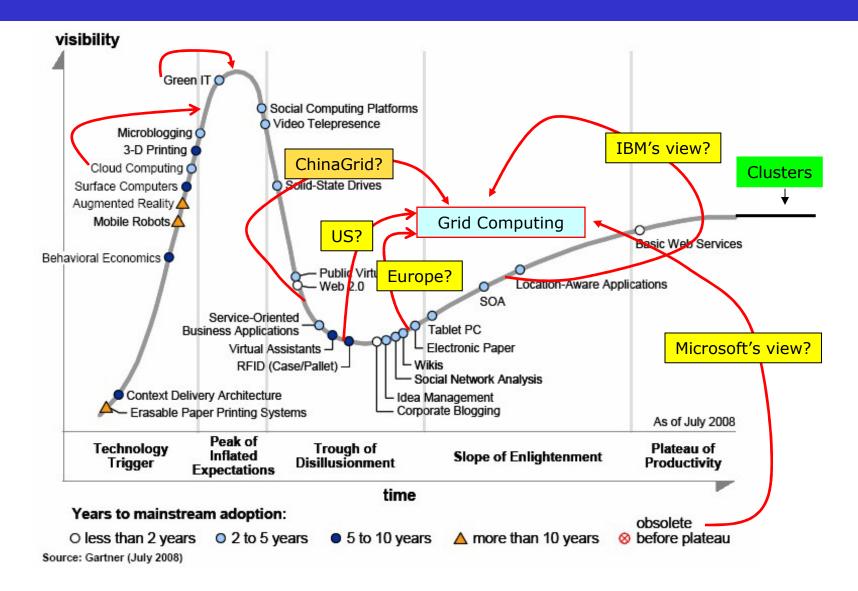
Outline


- "Computer Utilities"
 - Vision and Promising IT Paradigms/Platforms
- Cloud Computing and Related Paradigms
 - Trends, Definition, Cloud Benefits and Challenges
- Market-Oriented Cloud Architecture
 - SLA-oriented Resource Allocation
 - Global Cloud Exchange
- Emerging Cloud Platforms
- Megha: Melbourne Cloud Computing Initiative
- Summary and Thoughts for Future

Web Search Trends & Hot News Items (ref: Google)



Where are we (Cloud Computing) in Gartner IT Hype Cycle ?



2008 Gartner IT Hype Cycle of Emerging Technologies

2009 Hype Cycle and where are Clusters and Grids ? Buyya's View!

Defining Clouds: There are many views for what is cloud computing?

- Over 20 definitions:
 - http://cloudcomputing.sys-con.com/read/612375_p.htm
- Buyya's definition☺
 - "A Cloud is a type of parallel and distributed system consisting of a collection of inter-connected and <u>virtualised</u> computers that are <u>dynamically provisioned</u> and presented as one or more unified computing resources based on <u>service-level</u> <u>agreements</u> established through <u>negotiation</u> between the service provider and consumers."
- Keywords: Virtualisation (VMs), Dynamic Provisioning (negotiation and SLAs), and Web 2.0 access interface

Cloud Services

- Infrastructure as a Service (IaaS)
 - CPU, Storage: Amazon.com, Nirvanic, GoGrid....
- Platform as a Service (PaaS)
 - Google App Engine, Microsoft Azure, Manjrasoft Aneka..
- Software as a Service (SaaS)
 - SalesForce.Com

Software as a Service (SaaS) Platform as a Service (PaaS)

Infrastructure as a Service (IaaS)

Clouds based on Ownership and Exposure

Public/Internet Clouds

Hybrid/Mixed Clouds

3rd party, multi-tenant Cloud infrastructure & services:

* available on subscription basis (pay as you go)

Cloud computing model run within a company's own Data Center / infrastructure for internal and/or partners use.

Mixed usage of private and public Clouds: Leasing public cloud services when private cloud capacity is insufficient

Benefits of (Public) Clouds

- No upfront infrastructure investment
 - No procuring hardware, setup, hosting, power, etc..
- On demand access
 - Lease what you need and when you need..
- Efficient Resource Allocation
 - Globally shared infrastructure, can always be kept busy by serving users from different time zones...
- Nice Pricing
 - Based on Usage, QoS, Supply and Demand, Loyalty, ...
- Application Acceleration
 - Parallelism for large-scale data analysis, what-if scenarios studies...
- High Availability
- Supports Creation of 3rd Party Services & Seamless offering
 - Builds on infrastructure and follows similar Business model as Cloud

Challeges: Dealing with too many issues and offerings

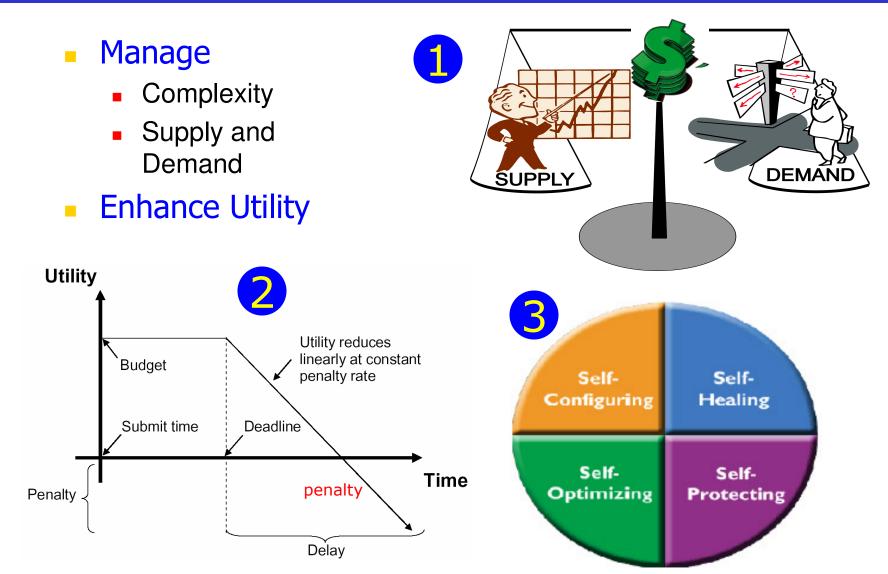
Outline

- "Computer Utilities"
 - Vision and Promising IT Paradigms/Platforms
- Cloud Computing and Related Paradigms
 - Trends, Definition, Cloud Benefits and Challenges
- Market-Oriented Cloud Architecture
 - SLA-oriented Resource Allocation
 - Global Cloud Exchange
- Emerging Cloud Platforms
- Megha: Melbourne Cloud Computing Initiative
- Summary and Thoughts for Future

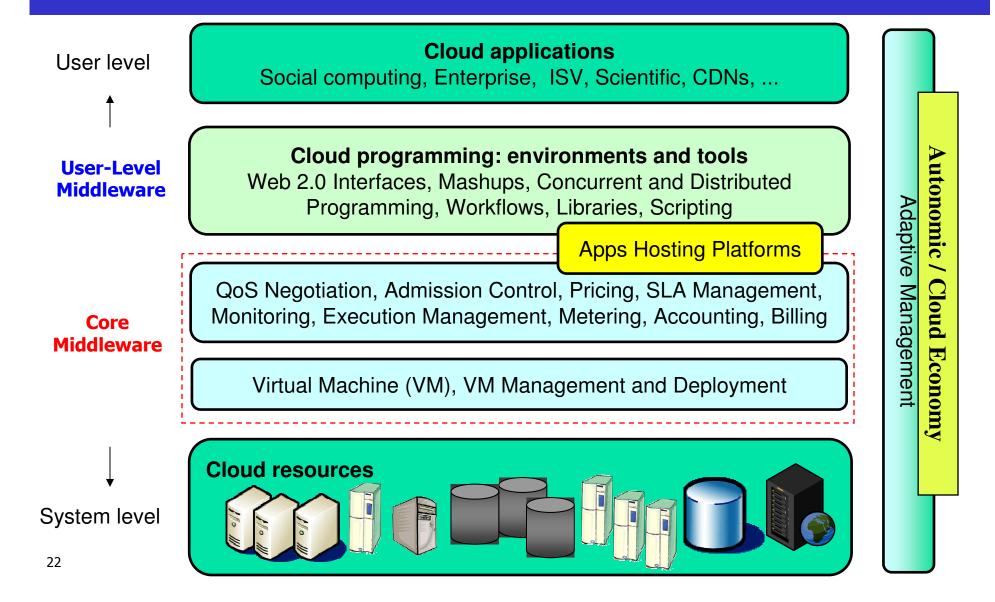
Realizing the 'Computer Utilities' Vision: What Consumers and Providers Want?

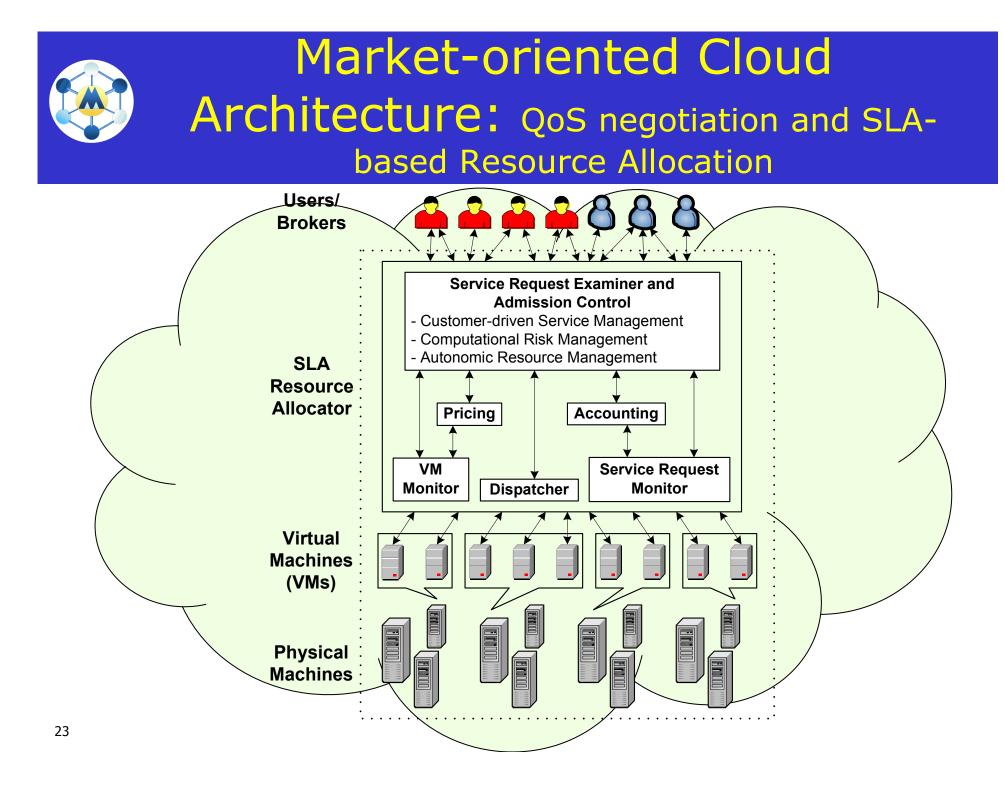
Consumers – minimize expenses, meet QoS

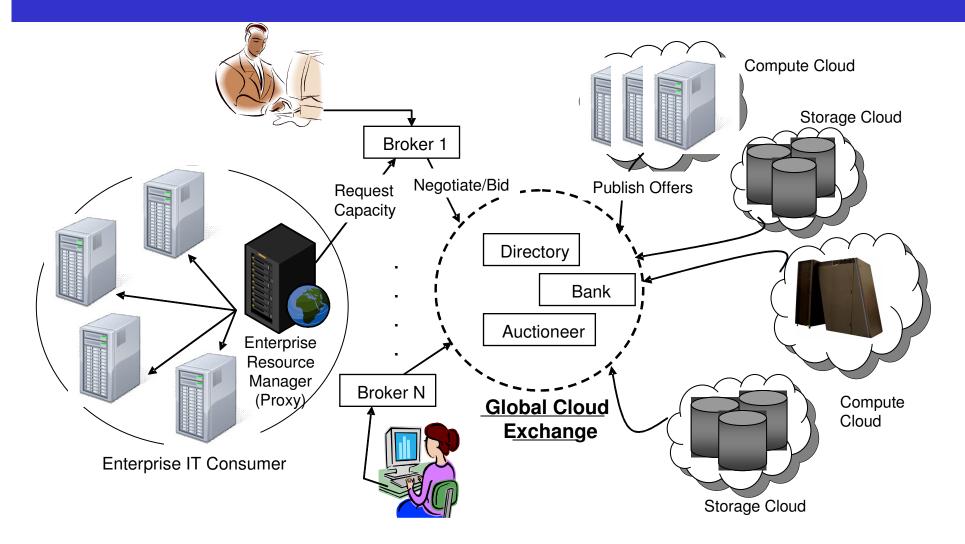
- How do I express QoS requirements to meet my goals?
- How do I assign valuation to my applications?
- How do I discover services and map applications to meet QoS needs?
- How do I manage multiple providers and get my work done?
- How do I outperform other competing consumers?
- • •


Providers – maximise Return On Investment (ROI)

- How do I decide service pricing models?
- How do I specify prices?
- How do I translate prices into resource allocations?
- How do I assign and enforce resource allocations?
- How do I advertise and attract consumers?
- How do I perform accounting and handle payments?
- ..
- Mechanisms, tools, and technologies
 - value expression, translation, and enforcement




Market-based Systems = Selfmanaged and self-regulated systems.


(Layered) Cloud Architecture

InterCloud: Global Cloud Exchange and Market Maker

- 21st Century Vision of Computing
 - Promising Computing Paradigms
- Cloud Computing and Related Paradigms
 - Trends, Definition, Characteristics, Architecture
- Market-Oriented Cloud Architecture
 - SLA-oriented Resource Allocation
 - Global Cloud Exchange
- Emerging Cloud Platforms
- Megha: Melbourne Cloud Computing Initiative
- Summary and Thoughts for Future

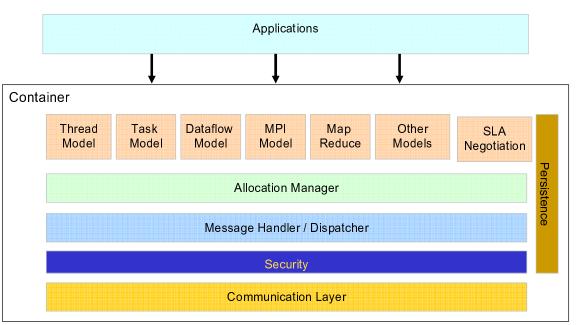
Some Commercial-Oriented Cloud platforms/technologies

System Property	<u>Amazon</u> Elastic Compute Cloud (EC2)	<u>Google</u> App Engine	<u>Microsoft</u> Azure	<u>Sun</u> Network.com (Sun Grid)	<u>Manjrasoft</u> Aneka
Focus	IaaS	IaaS/PaaS	IaaS/PaaS	IaaS	PaaS
Service Type	Compute, Storage (Amazon S3)	Web application	Web and non-web application	Compute	Compute
Virtualisation	OS Level running on a Xen hypervisor	Application container	OS level through Fabric controller	Job management system (Sun Grid Engine)	Resource Manager and Scheduler
Dynamic Negotiation of QoS Parameters	None	None	None	None	SLA-based Resource Reservation
User Access Interface	Amazon EC2 Command-line Tools	Web-based Administration Console	Windows Azure portal	Job submission scripts, Sun Grid Web portal	Workbench, Web-based portal
Web APIs	Yes	Yes	Yes	Yes	Yes
Value-added Service Providers	Yes	No	Yes	Yes	No
Programming Framework	Customizable Linux- based Amazon Machine Image (AMI)	Python	.NET framework	Solaris OS, Java, C, C++, FORTRAN	APIs supporting different programming models in C# and other .Net supported languages

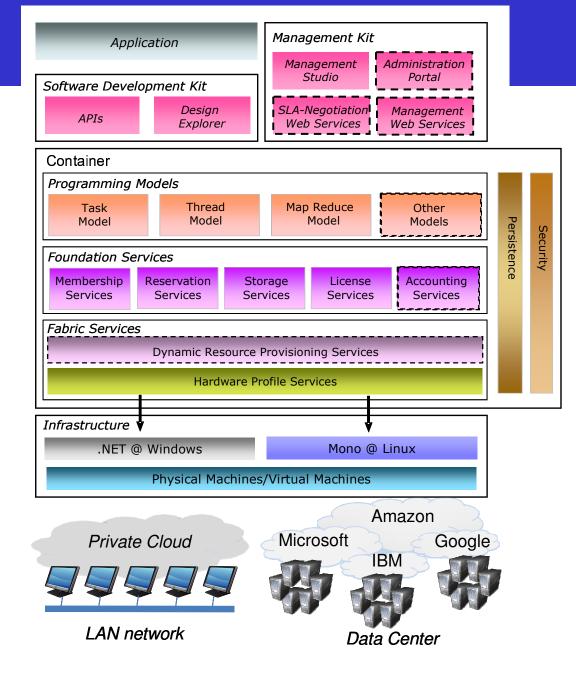
Outline

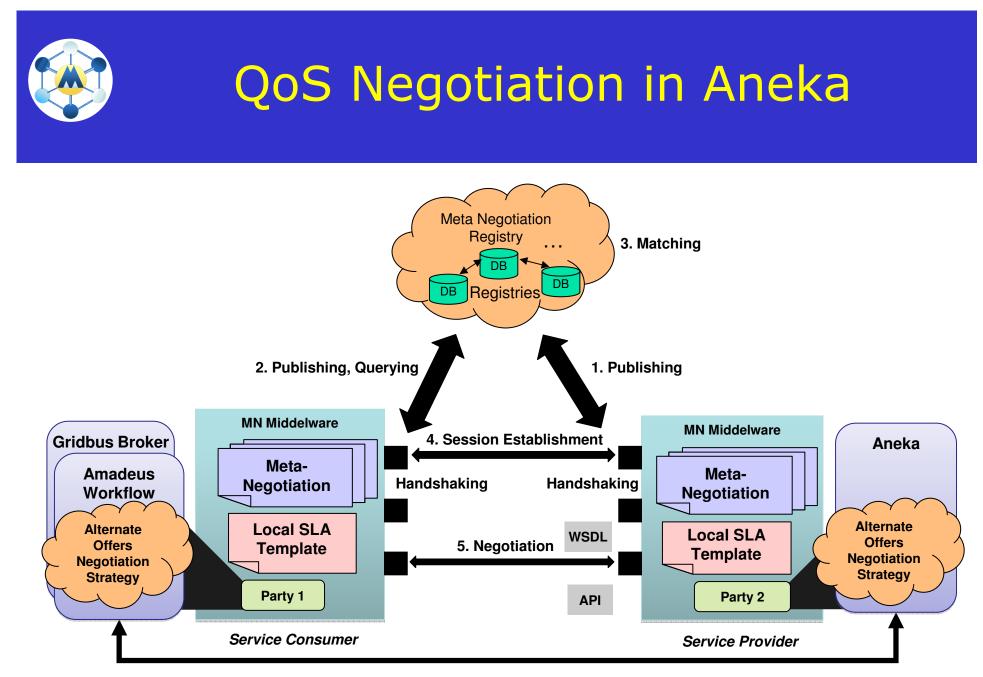
- "Computer Utilities"
 - Vision and Promising IT Paradigms/Platforms
- Cloud Computing and Related Paradigms
 - Trends, Definition, Cloud Benefits and Challen
- Market-Oriented Cloud Architecture
 - SLA-oriented Resource Allocation
 - Global Cloud Exchange
- Emerging Cloud Platforms
- Megha: Melbourne Cloud Computing Initiative

Summary and Thoughts for Future


GRIDS Lab's Cloud Computing Initiatives

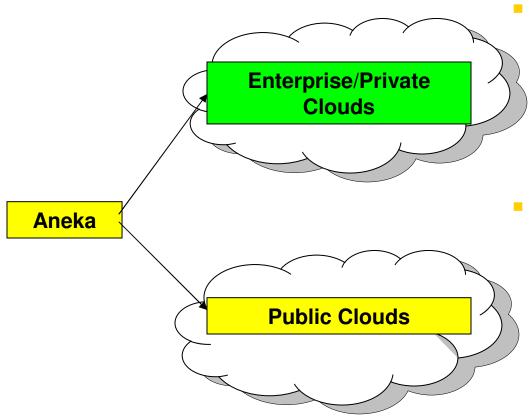
- Aneka .NET-based Cloud Computing
 - PaaS for Enterprise and Public Clouds
- Market-Oriented Clouds
 - SLA-based Resource Management
 - Global Cloud Exchange Elements: Brokers
- 3rd Party Cloud Services (MetaCDN) Harnessing Storage resources
 - Building Content Delivery Networks using different "vendors" Storage Clouds
- Scaling Across Clouds (Meta Brokering) Harnessing Compute resources
 - Extending our existing Market Oriented Grid computing ideas...
 - Federation of clouds for application scaling across distributed resources
- CloudSim: Toolkit for Simulation of Clouds
 - Design and evaluation for resource management policies & algorithms
- Green Clouds / Data Centers
 - Energy Efficiency and QoS Oriented Resource Allocation


Aneka – Product Overview


- .NET based service-oriented platform for Cloud computing
- SDK containing APIs for multiple programming models and tools
- Runtime Environment for managing application execution management
- Suitable for
 - Development of Enterprise Cloud Applications
 - Cloud enabling legacy applications
- Ideal for Corporate Developers, ISVs, Hosting Vendors and Application / System Integrators

ANEKA Product Architecture

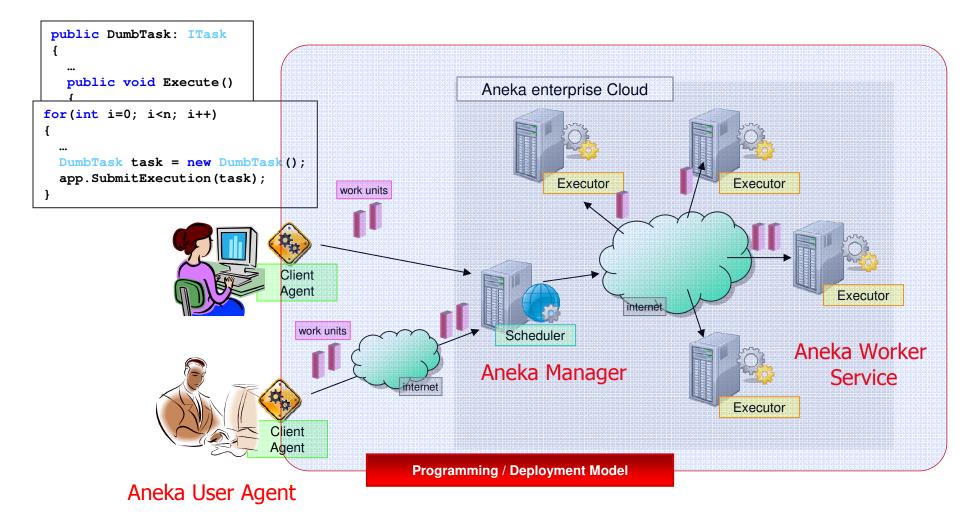
Aneka Engineering Architecture



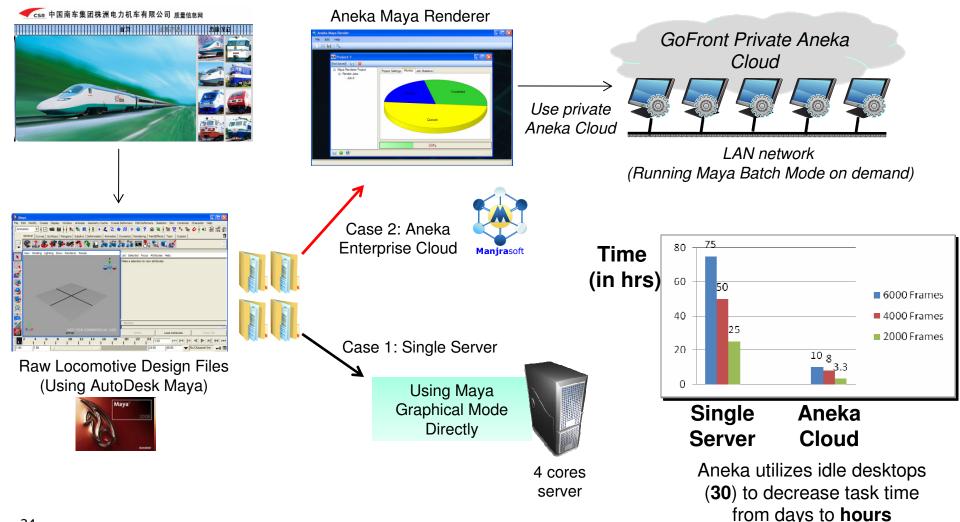
6. Service Invocation

Aneka Deployment Models

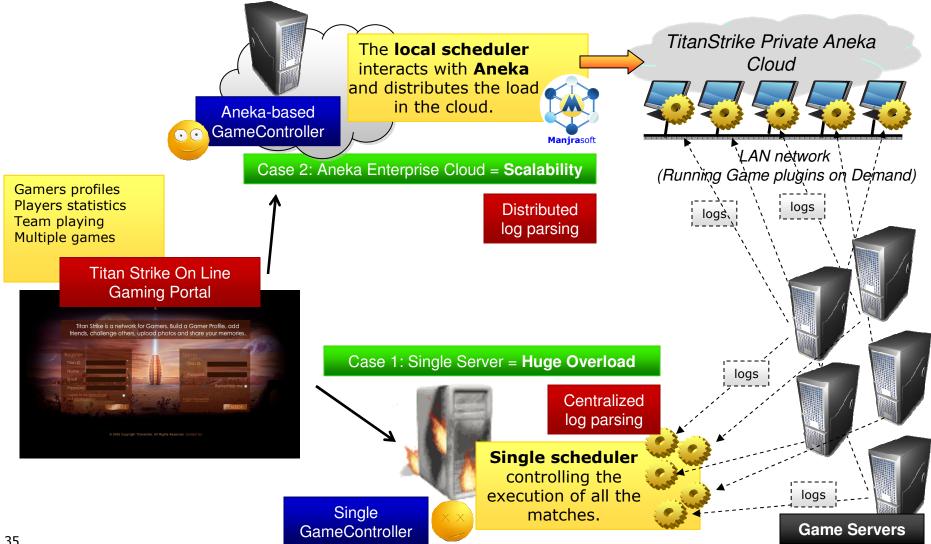
Enterprise/Private


- Harness LAN connected resources
- Application Development, Testing, Execution
- Teaching and Learning
- Sensitive applications

Public


- Hosted by a 3rd party service provider owning a large Data Center (1000s of servers)
- Offers subscription-based services to their shared infrastructure on "pay-as go" model.to many users from different organisations.
- Amazon.com, Microsoft Azure
- Aneka SDK + Execution Manger

Aneka: components



User scenario: GoFront (unit of China Southern Railway Group) Application: Locomotive design CAD rendering

Providing a scalable architecture for **TitanStrike on-line Gaming Portal**

Aneka on Public Cloud (Amazon)

Application Demonstration:

- Microarray Gene Expression Data Analysis for Cancer Diagnosis
- SCALE 2009 (Scalable Computing Challenge) Demos:
 - Wednesday: 20 May 2009
 - 14.00-16.00 (Room 1)
- Play with Aneka:
 - Build your own Private Cloud:
 - Download Aneka: <u>http://www.manjraosoft.com</u>
 - Use it as a Platform for running apps on Amazon

Building 3rd Party Cloud Services – Harnessing Storage Clouds

LECTURE NOTES IN ELECTRICAL ENGINEERING

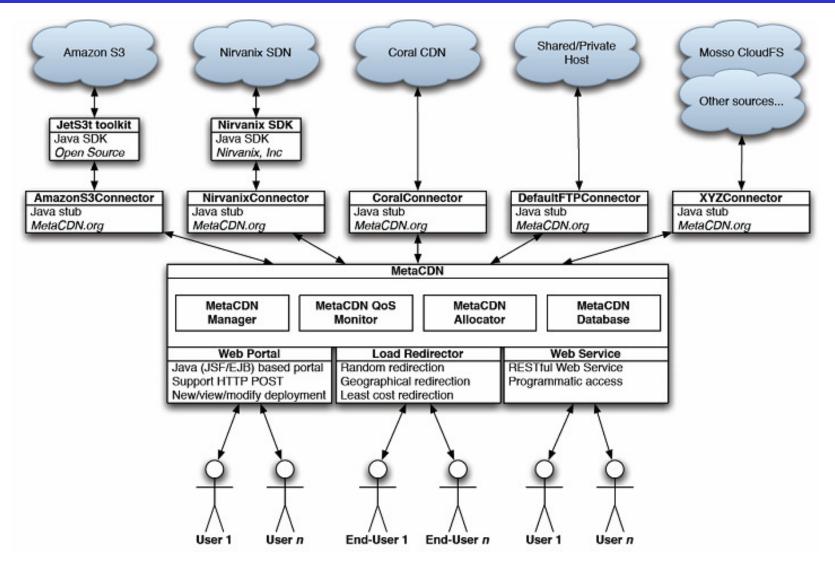
Content Delivery Networks

🖄 Springer

Building Next-Gen "Content Delivery Networks"

Motivations

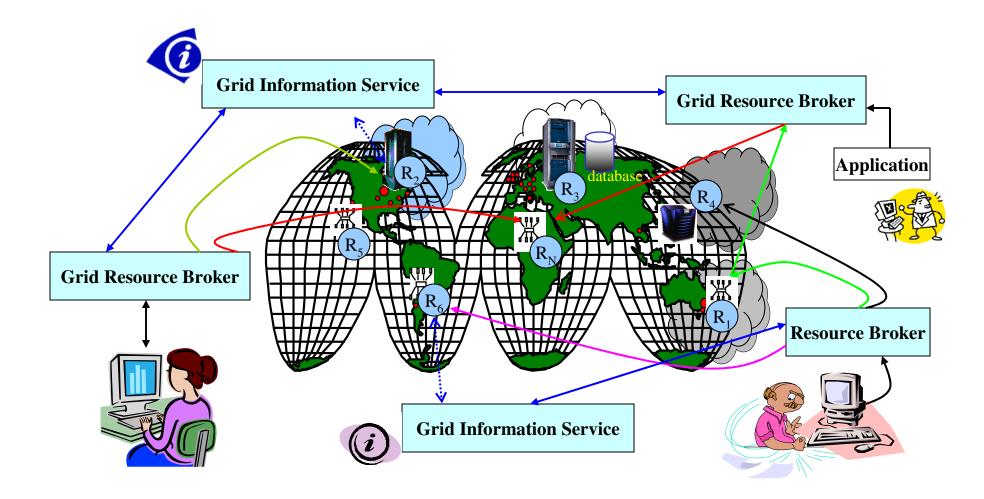
- Content Delivery Networks (CDNs) such as Akamai place web server clusters in numerous geographical locations – "huge upfront investment"
 - to improve the responsiveness and locality of the content it hosts for end-users.
- However, their services are priced out of reach for all but the largest enterprise customers.
- Hence, we have developed an alternative approach to content delivery by leveraging infrastructure 'Storage Cloud' providers at a fraction of the cost of traditional CDN providers – "pay as you go"



Commercial Storage Clouds & Pricing

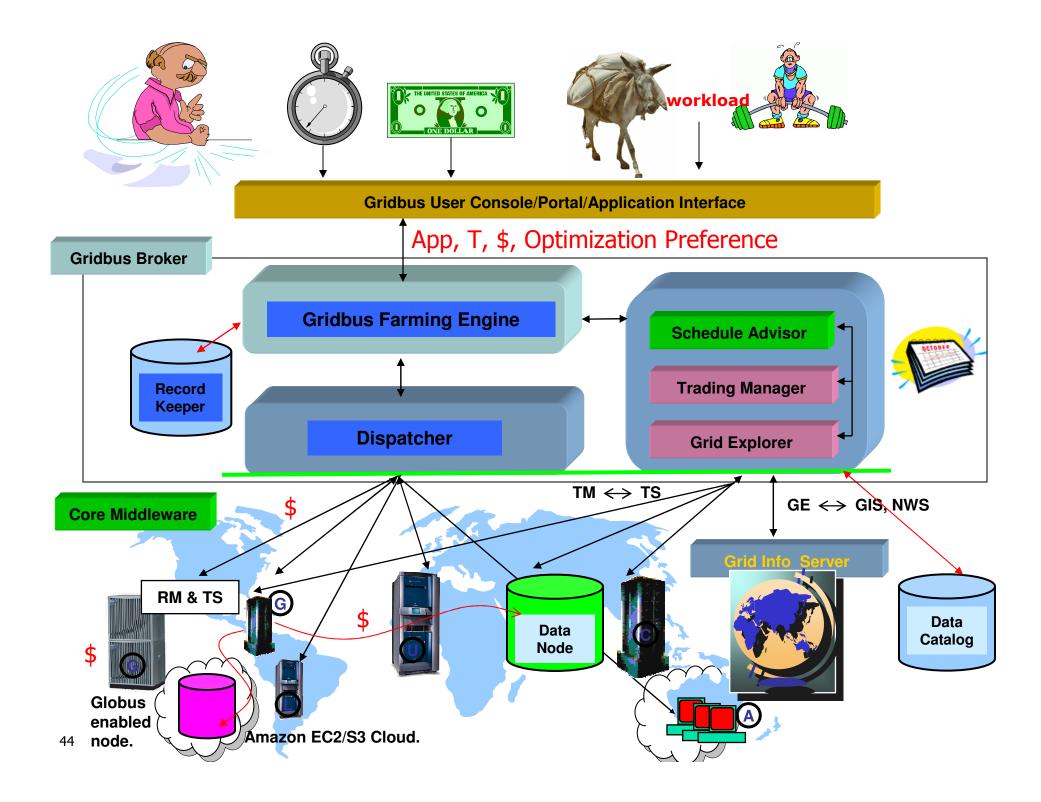
Provider Feature	<u>Nirvanix</u> US/EU	<u>Nirvanix</u> SDN	Amazon S3 US	Amazon S3 EU	Mosso CloudFS
Incoming Data (\$/GB/month)	0.18	0.18	0.10	0.10	Unkne
Outgoing data (\$/GB/month)	0.18	0.18	0.17	0.17	Unknown
Storage (\$/GB/month)	0.18	0.25	0.15	0.18	0.15
Requests (\$/1,000 PUT)	0.00	0.00	0.01	0.01	Unknown
Requests (\$/1,000 GET)	0.00	0.00	0.01	0.01	Unknown
SLA	99.9	99.9	99-99.9	99-99.9	Unknown
Max. File Size	256GB	256GB	5GB	5GB	5GB
US PoP	Yes	Yes	Yes	N/A	Yes
EU PoP	Yes	Yes	N/A	Yes	No
Asia PoP	No	Yes	No	No	No
Australasia <u>PoP</u>	No	No	No	No	No
Automatic Replication	Yes	No	Yes	No	No
Developer API	Yes	Yes	Yes	Yes	Yes

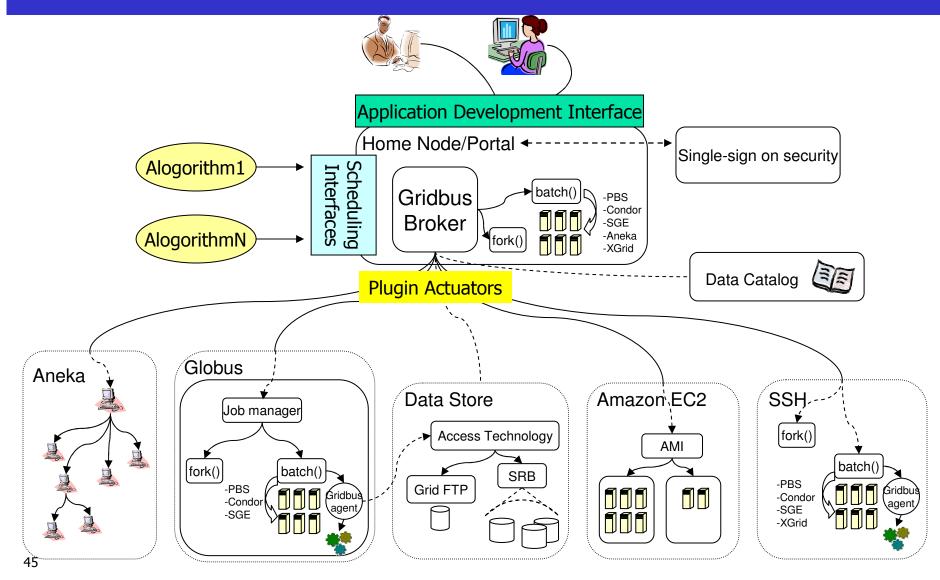
MetaCDN: Harnessing Storage Clouds for Content Delivery (Broberg, Buyya, Tari, JNCA 2009)



Meta Brokering – Harnessing Compute Clouds for Application Scaling

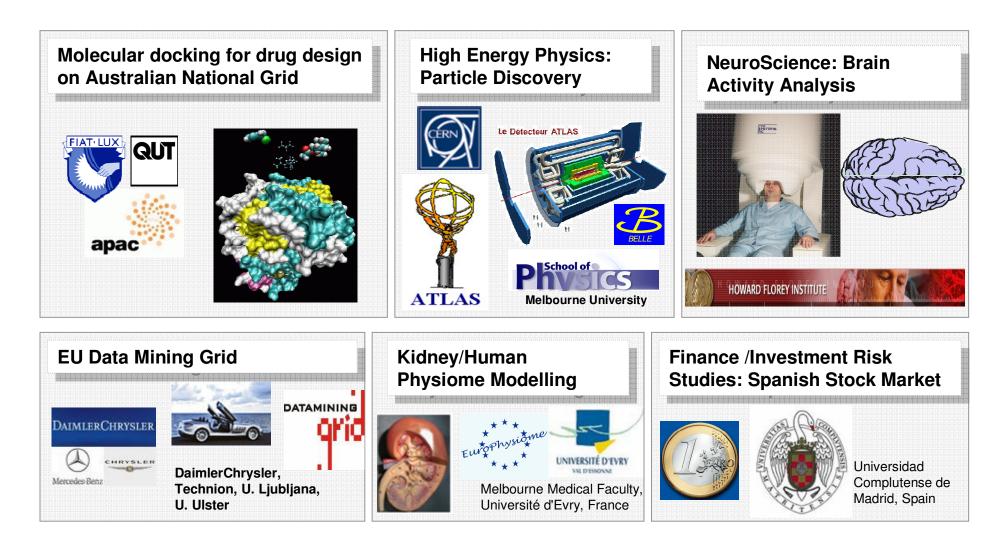
Extending market-oriented Grid Ideas with Cloud computing


Building a Grid of Clouds → Global Utility Computing

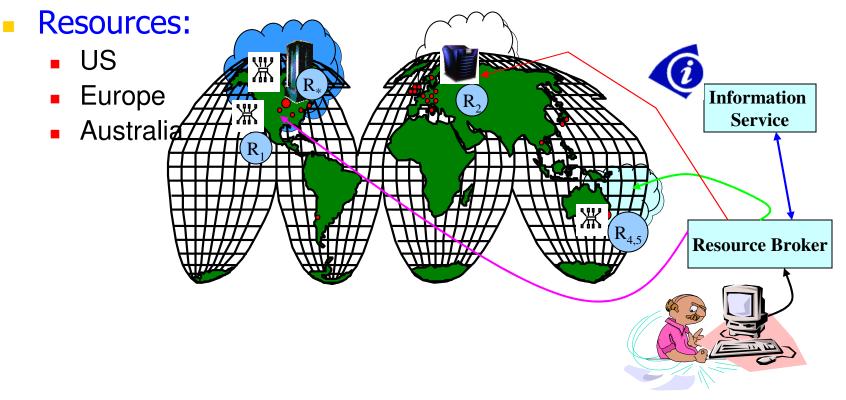


Gridbus Service Broker (GSB)

- A resource broker for scheduling task farming dataintensive applications with static or dynamic parameter sweeps on global Grids and Clouds.
- It uses <u>computational economy</u> paradigm for optimal selection of computational and data services depending on their quality, cost, and availability, and users' QoS requirements (deadline, budget, & T/C optimisation)
- Key Features
 - A single window to manage & control experiment
 - Programmable Task Farming Engine
 - Resource Discovery and Resource Trading
 - Optimal Data Source Discovery
 - Scheduling & Predications
 - Generic Dispatcher & Grid Agents
 - Transportation of data & sharing of results
 - Accounting


Gridbus Broker: Separating "applications" from "different" remote service access enablers and schedulers

A Sample List of Gridbus Broker Users



Market-Oriented Scheduling Experiments

Experiment Setup: DBC Scheduling with Optimize for (1) Time & (2) Cost

Workload:

- A parameter sweep "synthetic" application (100 jobs), each job is modeled to execute ~5 minute with variation of (+/-20 sec.).
- QoS Constraints: Deadline: 40 min. and Budget: \$6

Resources & Price (*multiplier for clarity*)

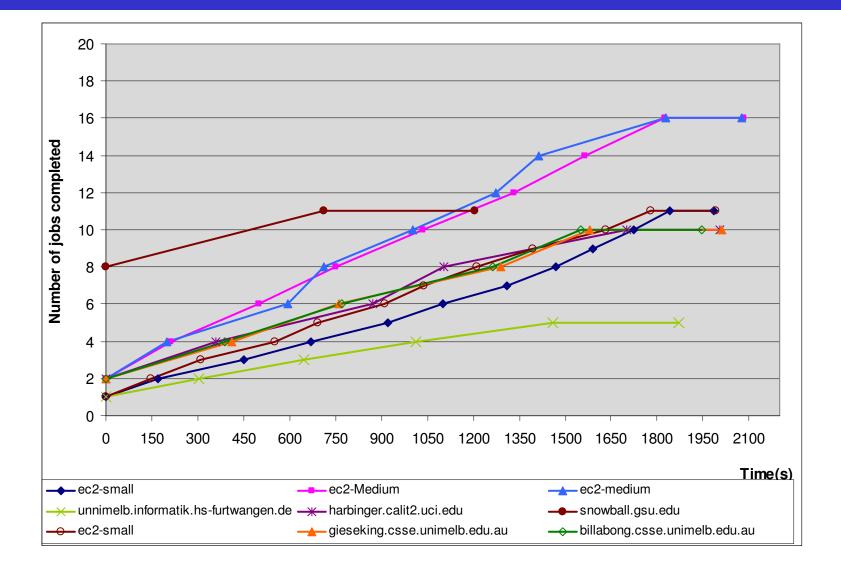
Organization	Resource Details	Rate (Cents per second*1000)		
Georgia State University, US	<i>snowball.cs.gsu.edu</i> 8 Intel 1.90GHz CPU, 3.2 GB RAM, 152 GB HD, Linux	90 (0.09)		
H. Furtwangen University, Germany	<i>unimelb.informatik.hs-furtwangen.de</i> 1 Athlon XP 1700+ CPU, 767 MB RAM, 147 GB HD	3		
University of California-Irvine, US	<i>harbinger.calit2.uci.edu</i> 2 Intel P III 930 MHz CPU, 503 MB RAM, 32 GB HD	2		
University of Melbourne, Australia	<i>billabong.csse.unimelb.edu.au</i> 2 Intel(R) 2.40GHz CPU, 1 GB RAM, 35 GB HD	6		
University of Melbourne, Australia	<i>gieseking.csse.unimelb.edu.au</i> 2 Intel(R) 2.40GHz CPU, 1 GB RAM, 71 GB HD	6		
Amazon EC2 *	<i>ec2-Medium instance</i> 5 EC2 Compute Units [*] , 1.7 GB RAM, 350 GB HD	60		
Amazon EC2 *	<i>ec2-Medium instance</i> 5 EC2 Compute Units, 1.7 GB RAM, 350 GB HD	60		
Amazon EC2 *	<i>ec2-Small instance</i> 1 EC2 Compute Unit, 1.7 GB RAM, 160 GB HD	30		
Amazon EC2 *	<i>ec2-Small instance</i> 1 EC2 Compute Unit, 1.7 GB RAM, 160 GB HD	30		
	Total Price / Budget Consumed			
	Time to Complete Execution			

* Amazon charges for 1 hour even if you use VM for 1 sec. We should force Amazon to change Charging Policy from 1hr block to actual usage! Or invent a 3rd party service that manages this by leasing smaller slots.

Execution Console: Setting QoS

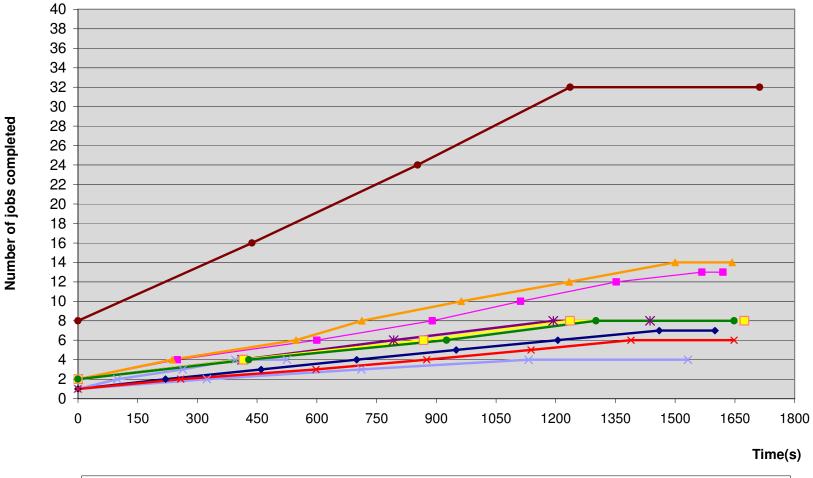
Gridbus Execution Monitor Console									
D	D	D	D	D	D	D	D	D	D
j0	j1	j2	j3	j4	j5	j6	j7	j8	j9 ⁼
D	D	D	D	D	D	D	D	D	D
j10	j11	j12	j13	j14	j15	j16	j17	j18	j19
D	D	D	D	D	D	D	D	D	D
j20	j21	j22	j23	j24	j25	j26	j27	j28	j29
D	D	D	D	D	D	D	D	D	D
j30	j31	j32	j33	j34	j35	j36	j37	j38	j39
D	D	D	D	D	D	D	D	D	D
j40	j41	j42	j43	j44	j45	j46	j47	j48	j49
D	D	D	D	D	D	D	D	D	D
j50	j51	j52	j53	j54	j55	j56	j57	j58	j59 🚽
Server Information									
snowball.cs.gsu.edu (176/177) unimelb.informatik.hs-furtwangen.de (14/15) harbinger.calit2.uci.edu (42/44) billabong.csse.unimelb.edu.au (82/84)					unning				

Results of Execution on Cloud and other Distributed Resources

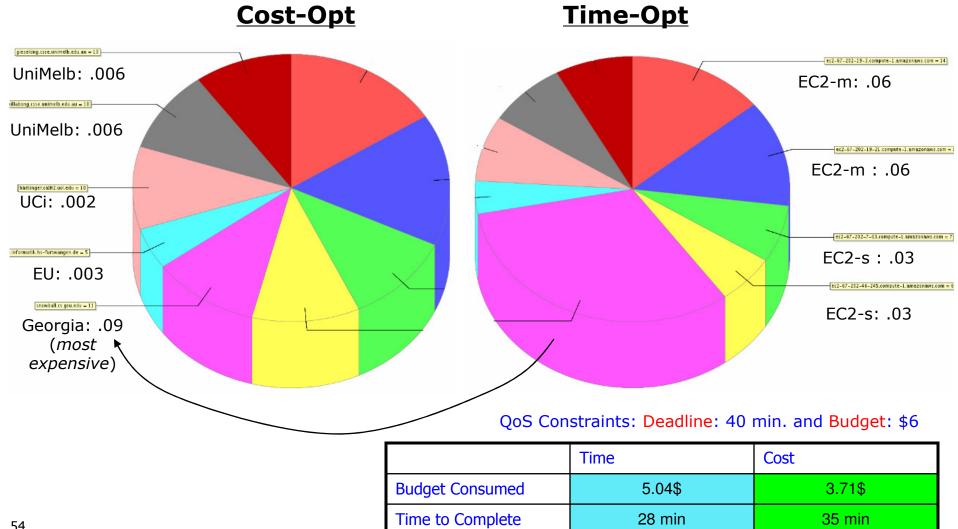

Organization	Resource Details	Rate (Cents per	Total Jobs
Organization	gamzation nesource Details		
Georgia State University, US	<i>snowball.cs.gsu.edu</i> 8 Intel 1.90GHz CPU, 3.2 GB RAM, 152 GB HD, Linux	90 (0.09)	
H. Furtwangen University, Germany	<i>unimelb.informatik.hs-furtwangen.de</i> 1 Athlon XP 1700+ CPU, 767 MB RAM, 147 GB HD	3	
University of California-Irvine, US	<i>harbinger.calit2.uci.edu</i> 2 Intel P III 930 MHz CPU, 503 MB RAM, 32 GB HD	2	
University of Melbourne, Australia	<i>billabong.csse.unimelb.edu.au</i> 2 Intel(R) 2.40GHz CPU, 1 GB RAM, 35 GB HD	6	
University of Melbourne, Australia	<i>gieseking.csse.unimelb.edu.au</i> 2 Intel(R) 2.40GHz CPU, 1 GB RAM, 71 GB HD	6	
Amazon EC2 *	<i>ec2-Medium instance</i> 5 EC2 Compute Units [*] , 1.7 GB RAM, 350 GB HD	60	
Amazon EC2 *	<i>ec2-Medium instance</i> 5 EC2 Compute Units, 1.7 GB RAM, 350 GB HD	60	
Amazon EC2 *	<i>ec2-Small instance</i> 1 EC2 Compute Unit, 1.7 GB RAM, 160 GB HD	30	
Amazon EC2 *	<i>ec2-Small instance</i> 1 EC2 Compute Unit, 1.7 GB RAM, 160 GB HD	30	
	Total Price / Budget Consumed		
	Time to Complete Execution		

* Amazon charges for 1 hour even if you use VM for 1 sec.

QoS Constraints: Deadline: 40 min. and Budget: \$6



Scheduling for DBC Cost Optimization



Resource Scheduling for DBC Time Optimization

Resources Consumed by Cost and Time Opt. Strategies

54

Experimental Evaluation is too much of work and "expensive" for computing researchers?

CloudSim: Performance Evaluation Made Easy *Repeatable, scalable, controllable environment for modelling and simulation of Clouds * No need to worry about paying IaaS provides + CloudSim is FREE!

The CloudSim Toolkit http://www.gridbus.org/cloudsim/

User code	•
Simulat Specificat	
Schedul Po	Ing licy User or Datacenter Broker
CloudSim	
User Interface Structures	Cloudlet Virtual Machine
Virtual Machine Services	Cloudlet VM Execution Management
Cloud Services	VM ProvisioningCPU AllocationMemory AllocationStorage AllocationBandwidth Allocation
Cloud Resources	Host Datacenter
GridSim	
Grid Services	Data Sets Grid Information Service Replica Catalogue Job Description Replica Manager Reservation Service Manager Workload
L	Allocation Traces
Core Elements	Resource Traffic Network
SimJava	
Discrete Ever Simulatio	t Events Simulation Timing

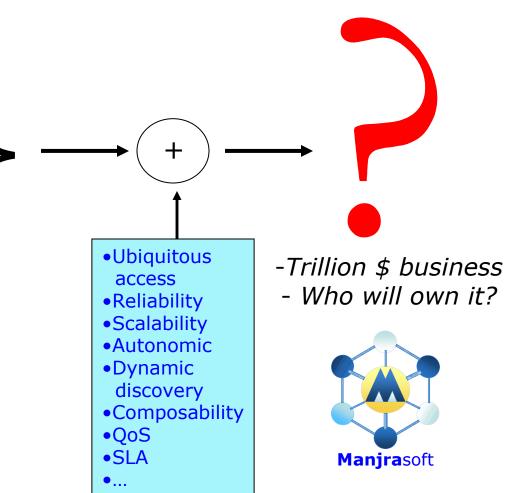
Outline

- "Computer Utilities"
 - Vision and Promising IT Paradigms/Platforms
- Cloud Computing and Related Paradigms
 - Trends, Definition, Cloud Benefits and Challenges
- Market-Oriented Cloud Architecture
 - SLA-oriented Resource Allocation
 - Global Cloud Exchange
- Emerging Cloud Platforms
- Megha: Melbourne Cloud Computing Initiative

Summary and Thoughts for Future

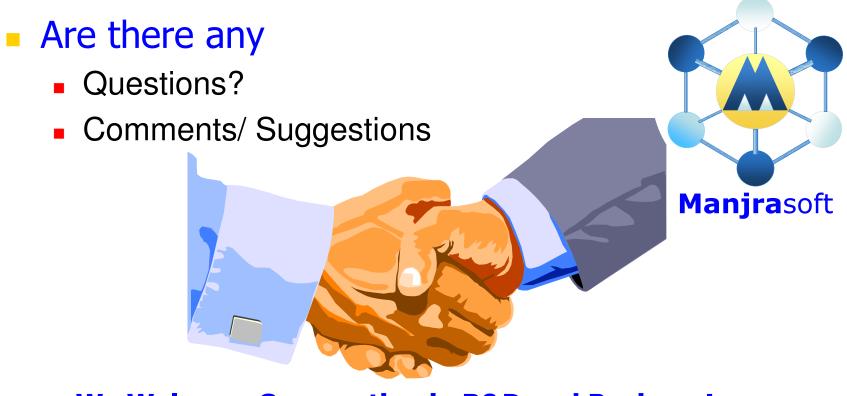
Summary

- Several Computing Platforms/Paradigms are promising to deliver "Computing Utilities" vision
 - Cloud Computing is the most recent kid in the block promising to turn vision into reality
 - Clouds built on: SOA, VMs, Web 2.0 technologies
 - Many exciting business and consumer applications enabled.
- Market Oriented Clouds are getting real
 - Need to move from static pricing to dynamic pricing
 - Need strong support for SLA-based resource management
 - 3rd party Composed Cloud services starting to emerge
- Building Grids using Clouds is much more realistic.
 - Extension of idea can lead to → "Global Cloud Exchange"


Dozens of Open Research Issues

- (Application) Software Licensing
- Seamless integration of private and Cloud resources
- Security, Privacy and Trust
- Cloud "Lock-In" worries and Interoperability
- Application Scalability Across Multiple Clouds
- Clouds Federation and Cooperative Sharing
- Global Cloud Exchange and Market Maker
- Dynamic Pricing
- Dynamic Negotiation and SLA Management
- Energy Efficient Resource Allocation and User QoS
- Power-Cost and CO₂ emission issues
 - Use renewable energy: follow Sun and wind?
- Regulatory and Legal Issues

Convergence of Competing Paradigms/Communities Needed


Web **Data Centres Utility Computing** Service Computing **Grid Computing** + P2P Computing **Cloud Computing** Market-Oriented Ubiquitous Computing access Reliability . . . Scalability Autonomic Paradigms

Attributes/Capabilities

Thanks for your attention!

We Welcome Cooperation in R&D and Business! http:/www.gridbus.org | www.Manjrasoft.com rbuyya@unimelb.edu.au | raj@manjrasoft.com

- Blueprint Paper!
 - R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, I. Brandic, "Cloud Computing and Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th Utility", *Future Generation Computer Systems* (FGCS) Journal, 2009.
- Aneka Documents:
 - http://www.manjrasoft.com/
- The Grid Economy Paper:
 - R. Buyya, D. Abramson, S. Venugopal, "The Grid Economy", Proceedings of the IEEE, No. 3, Volume 93, IEEE Press, 2005.
- MetaCDN Paper:
 - James Broberg, Rajkumar Buyya, and Zahir Tari, MetaCDN: Harnessing 'Storage Clouds' for High Performance Content Delivery, Journal of Network and Computer Applications, ISSN: 1084-8045, Elsevier, Amsterdam, The Netherlands, 2009.
- CloudSim Keynote Paper:
 - R. Buyya, R. Ranjan and R. Calheiros, Modeling and Simulation of Scalable Cloud Computing Environments and the CloudSim Toolkit: Challenges and Opportunities, Proceedings of the 7th High Performance Computing and Simulation (HPCS 2009) Conference, Leipzig, Germany, June 21 - 24, 2009.