
Reliability-Oriented Genetic Algorithm for Workflow Applications Using
Max-Min Strategy

Xiaofeng Wang#1, Rajkumar Buyya*, Jinshu Su# 2
#College of Computer, National University of Defense Technology

Changsha, 410073, Hunan, China
{xf_wang1, sjs2}@nudt.edu.cn

*GRIDS Laboratory, Department of Computer Science and Software Engineering
The University of Melbourne, VIC 3010, Australia

 raj@csse.unimelb.edu.au
Abstract— To optimize makespan and reliability for
workflow applications, most existing works use list
heuristics rather than genetic algorithms (GAs) which can
usually give better solutions. In addition, most existing
GAs evolve a scheduling solution randomly, which may
give invalid solutions or lead to slow convergence of the
algorithm. In this paper, we define three heuristics for
GAs to decide the priorities for a resource and a task
dynamically. We propose Look-Ahead Genetic
Algorithm (LAGA) to optimize both makespan and
reliability for workflow applications. It uses a novel
evolution and evaluation mechanism: the genetic
operators evolve the task-resource mapping for a
scheduling solution, while the solution’s task order is
determined in the evaluation step using our new max-min
strategy, which is specifically proposed for GAs. Our
experiments show that LAGA can provide better
solutions than existing list heuristics and evolve to better
solutions more quickly than a traditional genetic
algorithm.

1. Introduction
Distributed computing systems, such as peer-to-peer

systems and Grids, have been widely deployed for
executing computationally intensive applications. These
systems usually comprise large number of geographically
distributed resources which are more susceptible to
unreliability. It seems likely that as distributed systems
become larger and more widely dispersed, the reliability
of an application running on these systems decreases due
to the system’s inherent unreliability. Hence, the
scheduling of an application in such environments must
take into account the reliability of the application besides
the execution time (makespan) which is usually
considered.

For a workflow application, which can be modelled by
a Directed Acyclic Graph (DAG), optimizing makespan
and reliability simultaneously is known to be a NP-hard
problem. Many list heuristics have been proposed for
DAG modelled applications. Most of them tried to give
makespan [9,10,14] or reliability [1,16,18] suboptimal
solutions, whose optimality cannot be guaranteed [4].
However, Genetic Algorithms (GAs) can usually provide

better quality solutions than list heuristics [7,12].
Although GA is more time consuming than list heuristics,
it is acceptable for applications with long runtime. In
addition, the speed of GA can be accelerated by using
parallel genetic algorithm technology [2].

Currently, Bi-objective Genetic Algorithm (BGA) [17]
is the only GA we know that can give both makespan and
reliability optimized scheduling solutions for workflow
applications. However, BGA can give invalid solutions
which violate the dependency between tasks. To address
this problem, the scheduling of a workflow application
can be divided into two components: task-resource
mapping and task execution order [4]. Most existing GAs
evolve these two components randomly [4,8,17], which
may lead to slow convergence of the algorithm. In fact,
the GAs can be improved by using heuristics to evolve
solutions more intelligently. However, very few heuristics
were specifically proposed for GAs. Although some two
phase heuristics have been proposed, which are reported
to be more efficient than other heuristics [7], they cannot
work with GAs because of the evolution mechanism.

In this paper, we propose Look-Ahead Genetic
Algorithm (LAGA) to intelligently optimize both
makespan and reliability for a workflow application. We
define three new heuristics for LAGA to decide the
priorities for a resource and a task. LAGA has two
characteristics: (i) it optimizes the typical GA by a new
mutation operator according to our resource priority
heuristic. (ii) it uses a novel evolution and evaluation
mechanism: the genetic operators (crossover and
mutation) evolve the task-resource mapping for a solution,
while the solution’s task execution order is determined in
the evaluation step using our proposed max-min strategy,
which is the first two phase strategy that can work with
GAs. LAGA can avoid the invalid solution problem in
BGA [17] by using the max-min strategy to evolve the
task execution order. More importantly, LAGA can
accelerate the evolution of solutions more intelligently by
using our evolution and evaluation mechanism.

The remainder of this paper is organized as follows.
Section 2 discusses related work. Section 3 defines the
scheduling problem. Section 4 proposes the priority
heuristics for resources and tasks. Our novel LAGA is

9th IEEE/ACM International Symposium on Cluster Computing and the Grid

978-0-7695-3622-4/09 $25.00 © 2009 IEEE

DOI 10.1109/CCGRID.2009.14

108

presented in Section 5, while experimental results are
presented in Section 6, followed by the conclusion and
future work in Section 7.

2. Related Work
For a workflow application in unreliable distributed

systems, makespan and reliability should be optimized
simultaneously. This problem is known to be NP-hard
[19], hence many list heuristics [3,10,11,13] have been
proposed. To optimize the makespan, Dynamic Level
Scheduling (DLS) [10] assigns the task with a higher
static level and an earlier start time to the fastest resource.
To optimize the reliability, Dongarra et al. [1] proved that
the tasks should be assigned to the node with the
minimum multiplication value of instruction execution
time γ and reliability λ. Dogan et al. [18] proposed a bi-
criteria heuristic rule called RDLS based on DLS. RDLS
evaluated the priority of a task-resource assignment
according to the task’s size, its starting time, the
resource’s computing power, and the reliability cost. A
two phase min-min heuristic was reported to be the best
tested list heuristics [17]. It works as follows: i) for each
task, select its assumed resource which can start the task
earliest. ii) from all the tasks with the assumed resource,
it selects the task with the minimum ending time to be
scheduled. This heuristic cannot be used by GAs, because
the task-resource mapping is fixed at the evolution time.
However, our max-min strategy is specifically proposed
for GAs based on our new task priority heuristics.

Usually, a genetic algorithm (GA) can give better
scheduling solutions than a list heuristic [7]. Currently,
BGA [17] is the only GA that we know can optimize both
makespan and reliability for a workflow application. But
it evolved the scheduling solutions randomly, which may
give invalid solutions violating the dependence between
tasks. To keep the task dependence in the evolution, two
methods have been proposed. CorreA et al. [14] define a
partition V1, V2 of the tasks such that there is no
dependency from a task in V1 to a task in V2, and their
crossover operation only exchanges the order of the tasks
in set V2. Wang et al. [4] represented a scheduling solution
as two strings: the task-resource mapping string and the
task execution order string, and they evolved the two
strings separately. Although these two methods can solve
the invalid solution problem, they did not take into
account the reliability of an application. In addition, most
existing GAs [4,8,17] evolve the task-resource mapping
and the task execution order randomly, which may lead to
slow convergence of the algorithm. In our look-ahead
genetic algorithm, a solution’s task execution order is
determined by our max-min strategy, so that the
algorithm will not give invalid solutions. Moreover, our
new evolution and evaluation mechanism can accelerate
the evolution of solutions by applying our resource and
task priority heuristics.

3. Scheduling Problem Model
A scheduling system model consists of an application,

a specific computing environment and the scheduling
criteria. We model a workflow application as a
DAG:),(EVApp = . V is the set of task
nodes)1(nivi ≤≤ , which denote the tasks of an
application. E is the set of edges)1)(,(njijie ≤<≤ which
represents the dependence constraint between
tasks iv and jv , iv is the parent task and jv is the child
task. A task with no parents is called an entry task, and a
task with no children is called an exit task. For each task
node iv , its weight iv is the number of instructions
required to be executed for this task, which is assumed to
be known using compiling technology [1]. Like in some
other works [1,8,13], we focus on computationally
intensive applications, which means the communication
time between tasks is not modeled. Extending our model
to include the communication time will be our future
work.

The computing environment is represented by a set of
m resources },{ 21 mrrrR = . Each resource ir is

associated with two values: iλ , the resource’s failure rate

and iγ , the resource’s computing power illustrated by
unitary instruction execution time (i.e. the time to execute
one instruction).

In a workflow application, each task could be executed
only after all its parent tasks have been completed. Thus
the available starting time for a task iv is:

e
j

Eije
avail
i tt

∈
=

),(
max , (1)

where e
jt is the ending time for task jv . The available

starting time for all entry tasks is 0. Let
RVM →: denotes the task-resource mapping function,

and then jriM =)(means that task iv is assigned to

resource jr . The beginning and ending times of task iv
can be defined as:

jji
b
i

e
i

avail
i

b
i

rM(i)wherevtt

iMidlett

=⋅+=

=

))}((,max{

γ
, (2)

where))((iMidle is the time when resource)(iM

becomes idle. Let j
St be the time when resource

jr finishes all the tasks assigned to it in scheduling S, it
can be defined to be:

}{max)(|
e
iriMi

j
S tt

j== . (3)

109

The reliability of an application can be given by the
probability that all the resources remain functional until
the tasks assigned to them finish. The probability that
resource ir can successfully complete all its tasks in

scheduling S is i
i
sti

s eR λ⋅−= [1]. Thus the success

probability sR for an application in scheduling S can be

computed as the product of all i
sR , which is illustrated in

Equation 4. We can see that to maximize the reliability,
we need to minimize the failure factor i

i
s

m
i tSfal λ.)(1=∑= .

i
i
s

m
i tm

i
i
ss eRR λ.

1
1=∑−

= == ∏ . (4)
Our scheduling algorithm tries to maximize the

reliability and minimize the makespan for an application
under the time constraint D. Therefore the scheduling
problem can be formalized as following:

DStime

tStime

tSfal

i
S

Rr

m

i
i

i
S

i

<

=

=

∈

=
∑

)(

)(max)(

).()(

Subject to

Minimize

1
Minimize λ

. (5)

4. Proposed Heuristics for GA
In this section, we define one resource priority

heuristic and two task priority heuristics for our proposed
GA. To optimize the reliability for an application, it has
been proven that the resource ir which has the minimal
multiplication value of instruction speed (unitary
instruction execution time) iγ and failure rate iλ should
have a higher priority to be chosen in the scheduling [1].
So we can define our resource priority heuristic as:

Resource Priority Heuristic (ResPH)
Let

iiλγ1 be the priority of a resource ir , and S be a
schedule where all the tasks are assigned to a resource
with the highest priority. Then any other schedule

SS ≠′ with reliability of SR ′ is such that SS RR <′ .
To minimize the makespan for an application, we

should give higher priority to tasks which can start earlier
and tasks which have a bigger influence on the makespan
of the application. Thus we can define our fist task
priority heuristic as:

Task Priority Heuristic 1 (TaskPH1)
Let the importance of a task iv be the length of the
longest path beginning from the task in the DAG graph,
which can be denoted as:

⎪⎩

⎪
⎨
⎧

+=
∈

otherwisejimptv
vv

iimpt
Ejie

i

ii

)(max
exit taskan is if

)(
),(

. (6)

And the task iv ’s priority)(ip is:

)))((,max()()()(iMidletiimptEip avail
i−⋅= γ , (7)

where)(γE is the mean instruction speed of all resources.
Then, if there are two tasks scheduled to the same
resource, the one with the higher priority should be
scheduled first.

TaskPH1 uses the mean resource instruction speed to
estimate the completion time of the longest path
beginning from a task. It is easy and simple to be
implemented. Assuming that all the tasks of an
application have been assigned to some specific resource,
we can have a more precise estimation of the completion
time for a path, and thus define the second task priority
heuristic as:

Task Priority Heuristic 2 (TaskPH2)
Let the estimated completion time for the longest path
beginning from task iv be:

j

Ekie
i

ii

riM

otherwisekcompv

vv
icomp

=

⎪⎩

⎪
⎨
⎧

+⋅

⋅
=

∈

)(where

)(max

exit taskan is if
)(

),(
j

j

γ

γ

. (8)

And task iv ’s priority)(ip is:

)))((,max()()(iMidleticompip avail
i−= , (9)

Then, if there are two tasks scheduled to the same
resource, the one with the higher priority should be
scheduled first.

5. Look-Ahead Genetic Algorithm
A typical GA consists of the following steps: (1) create

an initial population consisting of randomly generated
chromosomes (solutions); (2) evaluate the fitness of each
solution and select the solutions for the next population;
(3) generate a new generation of solutions by applying
two genetic operators namely crossover and mutation;
and (4) repeat step 2 and 3 until the population converges.
To evolve the solutions intelligently without giving
invalid solutions, we design the Look-Ahead Genetic
Algorithm (LAGA). Its genetic operators evolve the task-
resource mapping for a solution, while the task execution
order is determined in the evaluation step using our new
max-min strategy based on TaskPH1 or TaskPH2. The
details of LAGA are presented in the following
subsections.

5.1 Chromosome Encoding
As illustrated in Fig. 1b, we use a two-dimensional

string to represent a scheduling solution. One dimension
of the string represents the index of resources, which
depicts the task- resource mapping; the other dimension
denotes the order between tasks. The two-dimensional
string can be converted into the task-resource mapping

110

string M (Fig. 1c) directly, which is a vector of length V .
The task-resource mapping string has the same symbol M
with the mapping function, since they have the same
meaning. Hence, jriM =)(denotes task iv is scheduled

to resource jr .

Fig. 1 Encoding Example

5.2 Evolution
GAs use crossover and mutation operations to evolve

the solutions for an application. A crossover operation
tries to create a better chromosome by exchanging two
fittest chromosomes, and a mutation operation usually
changes some of the genes in a chromosome randomly.
To keep the dependence between tasks, the two
operations usually evolve the task-resource mapping and
the task execution order of a solution separately and
randomly [4,8]. This may result in difficulty for the GA
to find a better solution, since a good task execution order
for one task-resource mapping does not mean it is also
good for another task-resource mapping.

Here, our crossover and mutation operations only
evolve the task-resource mapping for the new
chromosomes. The task order of the new offspring is to
be determined later in the evaluation step. Our crossover
operation first randomly chooses some pairs of
chromosomes with a probability cp . For each pair, it
randomly generates a cut-off point for the task-resource
mapping string M, which divides the strings of the pair
into top and bottom parts. Then, the task-resource
assignments in each bottom part are exchanged. And two
new task-resource mapping offspring is generated.

Fig. 2 Mutation Operation

Our mutation operation mutates a solution intelligently
based on ResPH. It selects a solution with a
probability mp . Then, it randomly chooses one task in the

solution and reassigns it to any resource which has
lower iiλγ . As shown in Fig. 2a, task 4v is originally

scheduled to resource 4r whose iiλγ is 4, so the mutation

reassigns it to resource 2r with a lower iiλγ of 1. Fig. 2b
shows the new scheduling, in which both the makespan
and the reliability of the application have been improved.
Algorithm 1 The Evaluation Algorithm�

1 input: task-resource mapping string M

2 output: { i
St , ique }for each resource ir

3 for each entry task jv

4 add jv to the task ready queue)(_ jMreadyque

5 0←avail
jt

6 end for

7 repeat
8 min_end ← ∞ //the minimum ending time
9 task_sel ← null //the task selected
10 for each resource ir
 //max-min phase 1
11 find the task jv with the maximum priority value

from ireadyque _
 //max-min phase 2

12 compute the ending time e
jt for jv using equation 2

13 if min_endt e
j <

14 min_end ← e
jt //the minimum ending time

15 task_sel ← j //record the selected task
16 end if
17 end for

18)_(_ seltaskMselres ←

19 remove seltaskv _ from selresreadyque __

20 add seltaskv _ to selresque _

21 selres
St _ =)_(selresidle = e

seltaskt _

22 for each child task iv of task seltaskv _

23 update avail
it using equation 1

24 if iv is ready to run, add it to)(_ iMreadyque

25 end for
26 until every ireadyque _ is empty

5.3 Evaluation
In evaluation step, most GAs only evaluate the quality

of a solution, they do not improve the scheduling for a
solution. In our evaluation operation, LAGA schedules
the task execution order for a new solution first. Then it

111

calculates the estimated ending time e
it for each task iv ,

so that we can evaluate the makespan and the failure
factor of the new scheduling S using equation 5.

To give an optimized task execution order for a task-
resource mapping string, we use a new two phase max-
min strategy as shown in Algorithm 1, which is
specifically proposed for GAs. For each resource, the
algorithm first selects its next to be scheduled task which
has the maximum priority based on TaskPH1 or TaskPH2.
Then, from all the next to be scheduled tasks of the
resources, it selects the task with the minimum ending
time to be scheduled. Given a task-resource mapping
string M (the mapping function), all the tasks assigned to
resource ir are put into ique in their scheduling order,
and the algorithm outputs the estimated completion time

i
St for each resource ir in the new scheduling S.

ireadyque _ is the queue containing the unscheduled

tasks which are ready to run on resource ir .
The algorithm works as follows: (i) add each entry

task jv to the task ready queue of its assigned resource

)(jM , and set the task’s available starting time to 0 (line
3~6); (ii) select the task with the maximum priority for
each resource (line 11); (iii) Among all the selected tasks,
the task seltaskv _ with the minimum ending time is
selected to be scheduled (line 12~16); (iv) schedule the
selected task seltaskv _ (line 18~20), update the task
completion time and the idle time for resource

)_(seltaskM (line 21); (v) update the state for all the
child tasks of the scheduled task (line 22~25); (vi) repeat
step ii-v until all the tasks have been scheduled.

Theorem 1. The time complexity of the evaluation
algorithm is)log(dnmnn ++Ο , where m is the number
of resources, n is the number of nodes (tasks) in a DAG
and d is the number of directed edges (dependence
constraints).

Proof. The time complexity of initializing the task ready
queue is O(n) (line 3~6). An entire iteration (line 7~26)
schedules one task at a time. So it will run n times. To
effectively sort and select a task for each resource (line
11), it takes time)(log nΟ . The time complexity of
computing the task ending time and select the task with
the minimum ending time is O(m) (line 12~16). The time
complexity of line 18~21 is O(1). So the time complexity
of repeating line 8~21 is))1(log(++Ο mnn . To update
the available time for the child tasks (line 22~25), it
consumes time O(d). Thus, the whole time complexity for
the evaluation algorithm is =++++Ο))1(log(dmnnn

)log(dnmnn ++Ο .

5.4 Selection
In GA, the fitness function is used to measure and

select the solutions. As our goal is to optimize the
makespan and reliability for an application under the time
constraint, the sum of weighted global ratios (SWGR)
model [17] can be used to compute the fitness. So the
fitness value of a scheduling S can be defined as:

{ DStime if
DStime if Spenalty

ω ω Spenalty

Stime
ω

Sfal
ωSf

>
<=

=+

−
−

⋅+
−
−

⋅=

+

)(1
)(0)(

121e wher)(

minTimemaxTime
minTime)(

2minFalmaxFal
minFal)(

1)(

 .(10)

Here maxFal and minFal are the maximum and
minimum failure factors for the solutions in the current
generation respectively, while maxTime and minTime are
the maximum and minimum makespan respectively. The
first two elements of)(Sf encourage the algorithm to
choose the solutions with minimum failure factor and
minimum makespan. The third element)(Spenalty is to
handle the time constraint. If the makespan of a
scheduling exceeds the deadline D, the function gives a
penalty to its fitness value. To select the solutions for the
next generation, the chromosomes are first ordered in the
descending order of their fitness value)(Sf . Then the
algorithm uses the commonly used roulette wheel
selection scheme [4] to choose solutions for the next
generation. The details of this scheme can be found in [4]
and thus will not be repeated here.

6. Experiment and Evaluation
Like many previous works [4,5,15,17], we use a

random DAG graph generator to simulate the application
as three parameters: the number of tasks, the mean
outdegree of a task node and the mean task size. In our
simulation, the number of tasks in a workflow application
is chosen between 40 and 200. The mean outdegree for a
task node is set to be 2. The task’s size is chosen
uniformly between 4101× Million instructions (MI) and

MI1015 6× . For the computing environment, we also
simulate it as three parameters: the number of resources,
the resource’s mean speed and the resource mean failure
rate. There are 40 resources, their speeds are uniformly
distributed in [310,4105 −−×] milliseconds per instruction
and their failure rates are assumed to be uniformly
distributed from h/

3
10

− to h/410− [17].
For the other parameters in the system, the fitness

evaluation weight 1ω and 2ω are set to be 0.5, so the
algorithm assigns the same priority to both reliability and
makespan. The probability cp for crossover operation is

0.5, and mp for mutation operation is 0.25. The
population size of LAGA is 20. For each kind of
workflow application with the same parameters, we

112

create 5 instances so that they can have a wide
representation. In addition, for each workflow application,
we run the genetic algorithms 3 times to get their average
results.

6.1 LAGA compared with list heuristics
DLS [10] and RDLS [18] are two of the best existing

list heuristics to optimize makespan or reliability for
workflow applications [6,16]. To compare our LAGA
with these two list heuristics, we run DLS and RDLS 100
times respectively to get the average result. The number
of tasks varies from 40 to 200. Fig. 3 shows that LAGA

can provide the best solutions for both makespan and
reliability. In particular, LAGA achieves a considerably
larger improvement ratio (of about 15%) for makespan
and reliability when the number of tasks is small (40
tasks), as compared to when the number of tasks is large
(200 tasks). This is because when there are fewer tasks,
there will be more idle resources for LAGA to choose for
each task. Hence, LAGA is able to examine each of them
to find the most befitting resource. But list heuristics only
examine one resource according to the heuristic value,
which may not be the best one.

0

10

20

30

40

50

60

70

80

90

100

40 80 120 160 200

Th
ou

sa
nd

s

Number of tasks

M
ak

es
pa

n
(S

ec
on

d)

DLS
RDLS
LAGA

0

0.1

0.2

0.3

0.4

0.5

0.6

40 80 120 160 200

Number of tasks

Fa
ilu

re
 P

ro
ba

bi
lit

y

DLS
RDLS
LAGA

Fig. 3 Makespan and failure probability of a scheduling solution given by DLS, RDLS and LAGA.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900
Number of iterations

A
ve

ra
ge

 N
or

m
al

iz
ed

 M
ak

es
pa

n

BGA
LAGA

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 100 200 300 400 500 600 700 800 900

Number of iterations

Av
er

ag
e

N
or

m
al

iz
ed

 R
el

ia
bi

lit
y

BGA

LAGA

Fig. 4 Average Normalized makespan and reliability of a scheduling in terms of iterations.

0

2

4

6

8

10

12

14

16

18

1 11 21 31 41 51 61 71 81

x

1
0
0

New Generations with Better Solutions

A
ve

ra
ge

 In
te

rv
al

 (M
ill

is
ec

on
d) BGA

LAGA

0

0.5

1

1.5

2

2.5

1 6 11 16 21 26 31 36

Algorithm running time (200 millisecond)

A
ve

ra
ge

 N
or

m
al

iz
ed

 S
ch

ed
ul

in
g

Q
ua

lit
y

BGA

LAGA

 a. Time needed for a new generation b. Scheduling quality improvement over time

Fig. 5 Performance evaluation of BGA and LAGA in terms of time.

113

6.2 LAGA compared with another GA
We compare our LAGA with BGA [17] which evolves

a solution randomly. Their performances are compared in
terms of iteration and time. For the comparison in terms
of iteration, we compute the average normalized
makespan and the normalized reliability of the solutions,
which are the mean makespan and reliability of the
current generation normalized by the mean makespan and
failure factor of the initial generation respectively. The
application has 200 tasks, while the number of iterations
of the two GAs are 1000. Fig. 4 shows LAGA improves
the makespan and reliability for an application more
quickly than BGA. And within the same iteration, LAGA
can always give better quality scheduling solutions than
BGA.

To compare the performance in terms of time, we do
two experiments. In the first experiment, the average time
needed for a new generation (a generation with better
quality solutions) is calculated. Fig. 5a shows BGA needs
less time (16 millisecond less on average) than LAGA for
a new generation at the start of the evolution (generations
1~31), but needs much more time for a new generation at
the end (generations 62~). Since BGA randomly searches
for better solutions, it is easy to find a better solution at
the start of the evolution, but gradually becomes harder to
find a better solution at the end. On the other hand,
LAGA needs to run the evaluation algorithm which is
more time-consuming and thus evolves more slowly at
the start of the evolution. But, our priority heuristics are
able to ensure that LAGA still finds better solutions using
the similar amount of time at the end of the evolution.

In the second experiment, the average scheduling
quality of the two GAs over the algorithm running time is
compared. We sample the normalized scheduling quality
of the two algorithms after every 200 milliseconds. The
normalized scheduling quality of a GA is the sum of the
normalized reliability and the inverse of the normalized
makespan. In Fig. 5b, at the start of the evolution, BGA
improves the quality of the solutions more quickly than
LAGA. Then it becomes very difficult and slower for
BGA to improve the quality, while LAGA outperforms
BGA to supply better quality solutions at the end of the
evolution. Hence, Fig. 5b proves our analysis of the
previous experiment (Fig. 5a) is correct.

6.3 Efficiency of Priority Heuristics

a) Efficiency of ResPH
To evaluate the efficiency of ResPH, we compare

LAGA using only ResPH with BGA. The tested
application has 200 tasks. Fig. 6 shows the average
normalized scheduling quality (the same definition as
above) of the two GAs over the number of iterations. It
can be seen that ResPH gives better scheduling quality at
the start of the evolution. But at the end, ResPH is no
longer able to further improve the scheduling quality, thus

resulting in LAGA achieving the same scheduling quality
as BGA. This shows that after a period of evolution, it
will be difficult for LAGA to improve the quality of a
solution by just assigning a task to a faster or a more
reliable resource.

1

1.2

1.4

1.6

1.8

2

2.2

10 210 410 610 810
Number of Iterations

A
ve

ra
ge

 N
or

m
al

iz
ed

 S
ch

ed
ul

in
g

Q
ua

lit

BGA
LAGA-ResPH

Fig. 6 Efficiency of ResPH.

b) Efficiency of TaskPH1 and TaskPH2
We compare the efficiency of our task priority

heuristics (TaskPH1 and TaskPH2) on LAGA. For the
experiments, the number of tasks in the application varies
from 40 to 200. Fig. 7 shows the average makespan and
reliability of the solutions given by two types of LAGAs
using TaskPH1 or TaskPH2, normalized by the makespan
and reliability of the solutions given by BGA respectively.
We can observe that both TaskPH1 and TaskPH2 enable
LAGA to have a lower makespan (normalized makespan
< 1) and a higher reliability (normalized reliability > 1)
than BGA. But, TaskPH2 achieves a significantly lower
makespan and higher reliability than TaskPH1 when the
workflow application is of medium size (120 tasks).
Otherwise, TaskPH1 and TaskPH2 achieve similar
performance for the case when workflow application of
small or large size. This is because when the number of
tasks is small, the GA can find a good solution even
without heuristics. When the number of tasks is large,
every resource will be assigned many tasks, which makes
it very difficult to estimate the completion time for a long
task path. So in this case, TaskPH2 cannot outperform
TaskPH1 although it can predict a more precise
estimation for the completion time.

7. Conclusion and Future Work
In this paper, we proposed a Look-Ahead Genetic

Algorithm (LAGA) to optimize both makespan and
reliability intelligently for workflow applications. We
defined three heuristics to decide the priorities for a
resource and a task, which can be used by LAGA. LAGA
evolves only the task-resource mapping for a solution in
genetic operators, and the solution’s task execution order
is evolved in the evaluation step using our proposed max-
min strategy based on our task priority heuristics.
Experiment results show that LAGA can give much better

114

0

0.2

0.4

0.6

0.8

1

1.2

40 80 120 160 200

Number of tasks

Av
er

ag
e

N
or

m
al

iz
ed

 M
ak

es
pa

n
TaskPH1

TaskPH2

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

40 80 120 160 200

Number of tasks

Av
er

ag
e

N
or

m
al

iz
ed

 R
el

ia
bi

lit
y

TaskPH1
TaskPH2

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

40 80 120 160 200

Number of tasks

Av
er

ag
e

N
or

m
al

iz
ed

 R
el

ia
bi

lit
y

TaskPH1
TaskPH2

Fig. 7 Average normalized makespan and reliability of a scheduling given by LAGA using TaskPH1 or TaskPH2.

quality solutions than list heuristics DLS and RDLS;
moreover, it outperforms another genetic algorithm BGA
in evolving scheduling solutions in terms of both
iterations and time.

In future, we are going to extend our scheduling
problem model to include the communication time
between tasks. Our resource and task priority heuristics
will also take into consideration the communication time,
so that our genetic algorithm does not need to be changed
to enable reliable scheduling for communication intensive
applications.

References
[1] J. Dongarra, E. Jeannot, E. Saule and Z. Shi, Bi-objective

Scheduling Algorithms for Optimizing Makespan and
Reliability on Heterogeneous Systems. ACM Symp. on
Parallelism in Algorithms and Architectures, 2007.

[2] D. Lima, Y. Onga, Y. Jinb, B. Sendhoffb, and B. Lee,
Efficient Hierarchical Parallel Genetic Algorithms using
Grid computing, Future Generation Computer Systems,
23(4):658-670, 2007.

[3] R. Hall, A.L. Rosenberg, and A. Venkataramani, A
Comparison of Dag-Scheduling Strategies for Internet-
Based Computing. IEEE International Symposium on
Parallel and Distributed Processing , 2007.

[4] L. Wang, H. J. Siegel, V. P. Roychowdhury, et al., Task
matching and scheduling in heterogeneous computing
environments using a genetic-algorithm-based approach, J.
of Parallel and Distributed Computing, 47(1):8-22, 1997.

[5] M. Hakem and F. Butelle, Critical path scheduling parallel
programs on unbounded number of processors. Int’l
Journal of Foundations of Computer Science, 17(2):287-
301, 2006.

[6] M.I. Daoud and N. Kharma, A high performance
algorithm for static task scheduling in heterogeneous
distributed computing systems, J. of Parallel and
Distributed Computing, 68(4):399-409, 2008.

[7] T.D. Braun, H. J. Siegel, N. Beck, et al., A comparison of
eleven static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing systems,
Journal of Parallel and Distributed Computing, 61(6):810-
837, 2001.

[8] J. Yu, M. Kirley, and R. Buyya, Multi-objective Planning
for Workflow Execution on Grids, IEEE/ACM
International Conference on Grid Computing, 2007.

[9] H. Topcuoglu, S. Hariri, and M.Y. Wu, Performance-
effective and low complexity task scheduling for
heterogeneous computing, IEEE Trans. Parallel
Distributed Systems, 13(3):260-274, 2002.

[10] G.C. Sih and E.A. Lee, A compile-time scheduling
heuristic for interconnection-constrained heterogeneous
processor architectures, IEEE Trans. Parallel Distributed
Systems, 4(2):175-187, 1993.

[11] X. Wang, C. Yeo, R. Buyya and J. Su, Reliability-Driven
Reputation Based Scheduling for Public-Resource
Computing Using GA, IEEE 23rd International
Conference on Advanced Information Networking and
Applications, 2009.

[12] S. Song, K. Hwang, and Y.K. Kwok, Risk-Resilient
Heuristics and Genetic Algorithms for Security-Assured
Grid Job Scheduling, IEEE Trans. on Computers,
55(6):703-719, 2006.

[13] M. Wieczorek, S. Podlipnig, R. Prodan, and T. Fahringer.
Bi-criteria Scheduling of Scientific Workflows for the
Grid. IEEE International Symposium on Cluster
Computing and the Grid, 2008.

[14] R.C. Corrêa, A. Ferreira, and P. Rebreyend, Scheduling
Multiprocessor Tasks with Genetic Algorithms. IEEE
Trans. on Parallel and Distributed Systems. 10(8): 825-
837, 1999.

[15] S.C. Kim, S. Lee, and J. Hahm, Push-Pull: Deterministic
Search-Based DAG Scheduling for Heterogeneous Cluster
Systems, IEEE Trans. on Parallel and Distributed Systems,
18(11):1489-1052, 2007.

[16] M. Hakem and F. Butelle, Reliability and Scheduling on
Systems Subject to Failures. International Conference on
Parallel Processing (ICPP), 2007.

[17] A. Dogan and F. Ozguner. Bi-objective Scheduling
Algorithms for Execution Time-Reliability Trade-off in
Heterogeneous Computing Systems. The Computer
Journal. 48(3):300-314, 2005.

[18] A. Dogan and F. Ozguner. Matching and scheduling
algorithms for minimizing execution time and failure
probability of applications in heterogeneous computing.
IEEE Trans. on Parallel and Distributed Systems,
13(03):308-323, 2002.

[19] A. Benoit, M. Hakem, and Y. Robert. Fault tolerant
scheduling of precedence task graphs on heterogeneous
platforms. IEEE International Symposium on Parallel and
Distributed Processing , 2008.

115

