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Abstract— To optimize makespan and reliability for 
workflow applications, most existing works use list 
heuristics rather than genetic algorithms (GAs) which can 
usually give better solutions. In addition, most existing 
GAs evolve a scheduling solution randomly, which may 
give invalid solutions or lead to slow convergence of the 
algorithm. In this paper, we define three heuristics for 
GAs to decide the priorities for a resource and a task 
dynamically. We propose Look-Ahead Genetic 
Algorithm (LAGA) to optimize both makespan and 
reliability for workflow applications. It uses a novel 
evolution and evaluation mechanism: the genetic 
operators evolve the task-resource mapping for a 
scheduling solution, while the solution’s task order is 
determined in the evaluation step using our new max-min 
strategy, which is specifically proposed for GAs. Our 
experiments show that LAGA can provide better 
solutions than existing list heuristics and evolve to better 
solutions more quickly than a traditional genetic 
algorithm. 

1. Introduction 
Distributed computing systems, such as peer-to-peer 

systems and Grids, have been widely deployed for 
executing computationally intensive applications. These 
systems usually comprise large number of geographically 
distributed resources which are more susceptible to 
unreliability. It seems likely that as distributed systems 
become larger and more widely dispersed, the reliability 
of an application running on these systems decreases due 
to the system’s inherent unreliability. Hence, the 
scheduling of an application in such environments must 
take into account the reliability of the application besides 
the execution time (makespan) which is usually 
considered. 

For a workflow application, which can be modelled by 
a Directed Acyclic Graph (DAG), optimizing makespan 
and reliability simultaneously is known to be a NP-hard 
problem. Many list heuristics have been proposed for 
DAG modelled applications. Most of them tried to give 
makespan [9,10,14] or reliability [1,16,18] suboptimal 
solutions, whose optimality cannot be guaranteed [4]. 
However, Genetic Algorithms (GAs) can usually provide 

better quality solutions than list heuristics [7,12]. 
Although GA is more time consuming than list heuristics, 
it is acceptable for applications with long runtime. In 
addition, the speed of GA can be accelerated by using 
parallel genetic algorithm technology [2].  

Currently, Bi-objective Genetic Algorithm (BGA) [17] 
is the only GA we know that can give both makespan and 
reliability optimized scheduling solutions for workflow 
applications. However, BGA can give invalid solutions 
which violate the dependency between tasks. To address 
this problem, the scheduling of a workflow application 
can be divided into two components: task-resource 
mapping and task execution order [4]. Most existing GAs 
evolve these two components randomly [4,8,17], which 
may lead to slow convergence of the algorithm. In fact, 
the GAs can be improved by using heuristics to evolve 
solutions more intelligently. However, very few heuristics 
were specifically proposed for GAs. Although some two 
phase heuristics have been proposed, which are reported 
to be more efficient than other heuristics [7], they cannot 
work with GAs because of the evolution mechanism. 

In this paper, we propose Look-Ahead Genetic 
Algorithm (LAGA) to intelligently optimize both 
makespan and reliability for a workflow application. We 
define three new heuristics for LAGA to decide the 
priorities for a resource and a task. LAGA has two 
characteristics: (i) it optimizes the typical GA by a new 
mutation operator according to our resource priority 
heuristic. (ii) it uses a novel evolution and evaluation 
mechanism: the genetic operators (crossover and 
mutation) evolve the task-resource mapping for a solution, 
while the solution’s task execution order is determined in 
the evaluation step using our proposed max-min strategy, 
which is the first two phase strategy that can work with 
GAs. LAGA can avoid the invalid solution problem in 
BGA [17] by using the max-min strategy to evolve the 
task execution order. More importantly, LAGA can 
accelerate the evolution of solutions more intelligently by 
using our evolution and evaluation mechanism. 

The remainder of this paper is organized as follows. 
Section 2 discusses related work. Section 3 defines the 
scheduling problem. Section 4 proposes the priority 
heuristics for resources and tasks. Our novel LAGA is 
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presented in Section 5, while experimental results are 
presented in Section 6, followed by the conclusion and 
future work in Section 7. 

2. Related Work 
For a workflow application in unreliable distributed 

systems, makespan and reliability should be optimized 
simultaneously. This problem is known to be NP-hard 
[19], hence many list heuristics [3,10,11,13] have been 
proposed. To optimize the makespan, Dynamic Level 
Scheduling (DLS) [10] assigns the task with a higher 
static level and an earlier start time to the fastest resource. 
To optimize the reliability, Dongarra et al. [1] proved that 
the tasks should be assigned to the node with the 
minimum multiplication value of instruction execution 
time γ and reliability λ. Dogan et al. [18] proposed a bi-
criteria heuristic rule called RDLS based on DLS. RDLS 
evaluated the priority of a task-resource assignment 
according to the task’s size, its starting time, the 
resource’s computing power, and the reliability cost. A 
two phase min-min heuristic was reported to be the best 
tested list heuristics [17]. It works as follows: i) for each 
task, select its assumed resource which can start the task 
earliest. ii) from all the tasks with the assumed resource, 
it selects the task with the minimum ending time to be 
scheduled. This heuristic cannot be used by GAs, because 
the task-resource mapping is fixed at the evolution time. 
However, our max-min strategy is specifically proposed 
for GAs based on our new task priority heuristics. 

Usually, a genetic algorithm (GA) can give better 
scheduling solutions than a list heuristic [7]. Currently, 
BGA [17] is the only GA that we know can optimize both 
makespan and reliability for a workflow application. But 
it evolved the scheduling solutions randomly, which may 
give invalid solutions violating the dependence between 
tasks. To keep the task dependence in the evolution, two 
methods have been proposed. CorreA et al. [14] define a 
partition V1, V2 of the tasks such that there is no 
dependency from a task in V1 to a task in V2, and their 
crossover operation only exchanges the order of the tasks 
in set V2. Wang et al. [4] represented a scheduling solution 
as two strings: the task-resource mapping string and the 
task execution order string, and they evolved the two 
strings separately. Although these two methods can solve 
the invalid solution problem, they did not take into 
account the reliability of an application. In addition, most 
existing GAs [4,8,17] evolve the task-resource mapping 
and the task execution order randomly, which may lead to 
slow convergence of the algorithm. In our look-ahead 
genetic algorithm, a solution’s task execution order is 
determined by our max-min strategy, so that the 
algorithm will not give invalid solutions. Moreover, our 
new evolution and evaluation mechanism can accelerate 
the evolution of solutions by applying our resource and 
task priority heuristics. 

3. Scheduling Problem Model 
A scheduling system model consists of an application, 

a specific computing environment and the scheduling 
criteria. We model a workflow application as a 
DAG: ),( EVApp = . V is the set of task 
nodes )1( nivi ≤≤ , which denote the tasks of an 
application. E is the set of edges )1)(,( njijie ≤<≤  which 
represents the dependence constraint between 
tasks iv and jv , iv is the parent task and jv is the child 
task. A task with no parents is called an entry task, and a 
task with no children is called an exit task. For each task 
node iv , its weight iv is the number of instructions 
required to be executed for this task, which is assumed to 
be known using compiling technology [1]. Like in some 
other works [1,8,13], we focus on computationally 
intensive applications, which means the communication 
time between tasks is not modeled. Extending our model 
to include the communication time will be our future 
work. 

The computing environment is represented by a set of 
m resources },{ 21 mrrrR = . Each resource ir is 

associated with two values: iλ , the resource’s failure rate 

and iγ , the resource’s computing power illustrated by 
unitary instruction execution time (i.e. the time to execute 
one instruction).  

In a workflow application, each task could be executed 
only after all its parent tasks have been completed. Thus 
the available starting time for a task iv is: 

e
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where e
jt  is the ending time for task jv . The available 

starting time for all entry tasks is 0. Let 
RVM →: denotes the task-resource mapping function, 

and then jriM =)(  means that task iv is assigned to 

resource jr . The beginning and ending times of task iv  
can be defined as:  
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where ))(( iMidle is the time when resource )(iM  

becomes idle. Let j
St be the time when resource 

jr finishes all the tasks assigned to it in scheduling S, it 
can be defined to be: 
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The reliability of an application can be given by the 
probability that all the resources remain functional until 
the tasks assigned to them finish. The probability that 
resource ir  can successfully complete all its tasks in 

scheduling S is i
i
sti

s eR λ⋅−= [1]. Thus the success 

probability sR for an application in scheduling S can be 

computed as the product of all i
sR , which is illustrated in 

Equation 4. We can see that to maximize the reliability, 
we need to minimize the failure factor i

i
s

m
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i
i
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ss eRR λ.
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= == ∏ .                (4) 
Our scheduling algorithm tries to maximize the 

reliability and minimize the makespan for an application 
under the time constraint D. Therefore the scheduling 
problem can be formalized as following:  
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4. Proposed Heuristics for GA 
In this section, we define one resource priority 

heuristic and two task priority heuristics for our proposed 
GA. To optimize the reliability for an application, it has 
been proven that the resource ir which has the minimal 
multiplication value of instruction speed (unitary 
instruction execution time) iγ  and failure rate iλ  should 
have a higher priority to be chosen in the scheduling [1]. 
So we can define our resource priority heuristic as: 

Resource Priority Heuristic (ResPH) 
Let 

iiλγ1 be the priority of a resource ir , and S be a 
schedule where all the tasks are assigned to a resource 
with the highest priority. Then any other schedule 

SS ≠′ with reliability of SR ′  is such that SS RR <′ . 
To minimize the makespan for an application, we 

should give higher priority to tasks which can start earlier 
and tasks which have a bigger influence on the makespan 
of the application. Thus we can define our fist task 
priority heuristic as: 

Task Priority Heuristic 1 (TaskPH1) 
Let the importance of a task iv  be the length of the 
longest path beginning from the task in the DAG graph, 
which can be denoted as: 

⎪⎩
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And the task iv ’s priority )(ip  is: 

)))((,max( )()()( iMidletiimptEip avail
i−⋅= γ ,   (7)                         

where )(γE is the mean instruction speed of all resources. 
Then, if there are two tasks scheduled to the same 
resource, the one with the higher priority should be 
scheduled first. 

TaskPH1 uses the mean resource instruction speed to 
estimate the completion time of the longest path 
beginning from a task. It is easy and simple to be 
implemented. Assuming that all the tasks of an 
application have been assigned to some specific resource, 
we can have a more precise estimation of the completion 
time for a path, and thus define the second task priority 
heuristic as: 

Task Priority Heuristic 2 (TaskPH2) 
Let the estimated completion time for the longest path 
beginning from task iv  be: 
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And task iv ’s priority )(ip  is: 

)))((,max( )()( iMidleticompip avail
i−= ,       (9) 

Then, if there are two tasks scheduled to the same 
resource, the one with the higher priority should be 
scheduled first.  

5. Look-Ahead Genetic Algorithm 
A typical GA consists of the following steps: (1) create 

an initial population consisting of randomly generated 
chromosomes (solutions); (2) evaluate the fitness of each 
solution and select the solutions for the next population; 
(3) generate a new generation of solutions by applying 
two genetic operators namely crossover and mutation; 
and (4) repeat step 2 and 3 until the population converges. 
To evolve the solutions intelligently without giving 
invalid solutions, we design the Look-Ahead Genetic 
Algorithm (LAGA). Its genetic operators evolve the task-
resource mapping for a solution, while the task execution 
order is determined in the evaluation step using our new 
max-min strategy based on TaskPH1 or TaskPH2. The 
details of LAGA are presented in the following 
subsections. 

5.1 Chromosome Encoding 
As illustrated in Fig. 1b, we use a two-dimensional 

string to represent a scheduling solution. One dimension 
of the string represents the index of resources, which 
depicts the task- resource mapping; the other dimension 
denotes the order between tasks. The two-dimensional 
string can be converted into the task-resource mapping 
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string M (Fig. 1c) directly, which is a vector of length V . 
The task-resource mapping string has the same symbol M 
with the mapping function, since they have the same 
meaning. Hence, jriM =)( denotes task iv is scheduled 

to resource jr .  

 

Fig. 1     Encoding Example 

5.2 Evolution 
GAs use crossover and mutation operations to evolve 

the solutions for an application. A crossover operation 
tries to create a better chromosome by exchanging two 
fittest chromosomes, and a mutation operation usually 
changes some of the genes in a chromosome randomly. 
To keep the dependence between tasks, the two 
operations usually evolve the task-resource mapping and 
the task execution order of a solution separately and 
randomly [4,8]. This may result in difficulty for the GA 
to find a better solution, since a good task execution order 
for one task-resource mapping does not mean it is also 
good for another task-resource mapping.  

Here, our crossover and mutation operations only 
evolve the task-resource mapping for the new 
chromosomes. The task order of the new offspring is to 
be determined later in the evaluation step. Our crossover 
operation first randomly chooses some pairs of 
chromosomes with a probability cp . For each pair, it 
randomly generates a cut-off point for the task-resource 
mapping string M, which divides the strings of the pair 
into top and bottom parts. Then, the task-resource 
assignments in each bottom part are exchanged. And two 
new task-resource mapping offspring is generated.  

 
Fig. 2    Mutation Operation 

Our mutation operation mutates a solution intelligently 
based on ResPH. It selects a solution with a 
probability mp . Then, it randomly chooses one task in the 

solution and reassigns it to any resource which has 
lower iiλγ . As shown in Fig. 2a, task 4v is originally 

scheduled to resource 4r whose iiλγ  is 4, so the mutation 

reassigns it to resource 2r with a lower iiλγ of 1. Fig. 2b 
shows the new scheduling, in which both the makespan 
and the reliability of the application have been improved. 
Algorithm 1 The Evaluation Algorithm�

1  input:   task-resource mapping string M 

2  output:  { i
St , ique }for each resource ir      

3  for each entry task jv  

4        add jv to the task ready queue )(_ jMreadyque  

5        0←avail
jt  

6  end for 
 
7  repeat 
8       min_end ← ∞               //the minimum ending time 
9       task_sel ← null               //the task selected 
10     for each resource ir  
             //max-min phase 1 
11         find the task jv with the maximum priority value 

from ireadyque _  
             //max-min phase 2 

12         compute the ending time e
jt  for jv using equation 2 

13         if min_endt e
j <   

14        min_end ← e
jt      //the minimum ending time 

15        task_sel ← j           //record the selected task 
16         end if 
17     end for 
 
18     )_(_ seltaskMselres ←  

19     remove seltaskv _  from selresreadyque __  

20     add seltaskv _ to selresque _  

21     selres
St _  = )_( selresidle  = e

seltaskt _  

22     for each child task iv  of task seltaskv _  

23         update avail
it using equation 1 

24          if iv is ready to run, add it to )(_ iMreadyque      

25     end for 
26 until every ireadyque _  is empty  

5.3 Evaluation 
In evaluation step, most GAs only evaluate the quality 

of a solution, they do not improve the scheduling for a 
solution. In our evaluation operation, LAGA schedules 
the task execution order for a new solution first. Then it 
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calculates the estimated ending time e
it for each task iv , 

so that we can evaluate the makespan and the failure 
factor of the new scheduling S using equation 5. 

To give an optimized task execution order for a task-
resource mapping string, we use a new two phase max-
min strategy as shown in Algorithm 1, which is 
specifically proposed for GAs. For each resource, the 
algorithm first selects its next to be scheduled task which 
has the maximum priority based on TaskPH1 or TaskPH2. 
Then, from all the next to be scheduled tasks of the 
resources, it selects the task with the minimum ending 
time to be scheduled. Given a task-resource mapping 
string M (the mapping function), all the tasks assigned to 
resource ir are put into ique in their scheduling order, 
and the algorithm outputs the estimated completion time 

i
St  for each resource ir in the new scheduling S. 

ireadyque _ is the queue containing the unscheduled 

tasks which are ready to run on resource ir .  
The algorithm works as follows: (i) add each entry 

task jv to the task ready queue of its assigned resource 

)( jM , and set the task’s available starting time to 0 (line 
3~6); (ii) select the task with the maximum priority for 
each resource (line 11); (iii) Among all the selected tasks, 
the task seltaskv _  with the minimum ending time is 
selected to be scheduled (line 12~16); (iv) schedule the 
selected task seltaskv _ (line 18~20), update the task 
completion time and the idle time for resource 

)_( seltaskM  (line 21); (v) update the state for all the 
child tasks of the scheduled task (line 22~25); (vi) repeat 
step ii-v until all the tasks have been scheduled.  

Theorem 1. The time complexity of the evaluation 
algorithm is )log( dnmnn ++Ο , where m is the number 
of resources, n is the number of nodes (tasks) in a DAG 
and d is the number of directed edges (dependence 
constraints).  

Proof. The time complexity of initializing the task ready 
queue is O(n) (line 3~6). An entire iteration (line 7~26) 
schedules one task at a time. So it will run n times. To 
effectively sort and select a task for each resource (line 
11), it takes time )(log nΟ . The time complexity of 
computing the task ending time and select the task with 
the minimum ending time is O(m) (line 12~16). The time 
complexity of line 18~21 is O(1). So the time complexity 
of repeating line 8~21 is ))1(log( ++Ο mnn . To update 
the available time for the child tasks (line 22~25), it 
consumes time O(d). Thus, the whole time complexity for 
the evaluation algorithm is =++++Ο ))1(log( dmnnn  

)log( dnmnn ++Ο . 

5.4 Selection 
In GA, the fitness function is used to measure and 

select the solutions. As our goal is to optimize the 
makespan and reliability for an application under the time 
constraint, the sum of weighted global ratios (SWGR) 
model [17] can be used to compute the fitness. So the 
fitness value of a scheduling S can be defined as: 

{  DStime     if    
DStime     if    Spenalty

ω  ω  Spenalty

Stime
ω

Sfal
ωSf
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−
−
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⋅=
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)(1
)(0)(

121e      wher)(

minTimemaxTime
minTime)(

2minFalmaxFal
minFal)(

1)(

             .(10) 

Here maxFal and minFal are the maximum and 
minimum failure factors for the solutions in the current 
generation respectively, while maxTime and minTime are 
the maximum and minimum makespan respectively. The 
first two elements of )( Sf  encourage the algorithm to 
choose the solutions with minimum failure factor and 
minimum makespan. The third element )(Spenalty is to 
handle the time constraint. If the makespan of a 
scheduling exceeds the deadline D, the function gives a 
penalty to its fitness value. To select the solutions for the 
next generation, the chromosomes are first ordered in the 
descending order of their fitness value )( Sf . Then the 
algorithm uses the commonly used roulette wheel 
selection scheme [4] to choose solutions for the next 
generation. The details of this scheme can be found in [4] 
and thus will not be repeated here.   

6. Experiment and Evaluation 
Like many previous works [4,5,15,17], we use a 

random DAG graph generator to simulate the application 
as three parameters: the number of tasks, the mean 
outdegree of a task node and the mean task size. In our 
simulation, the number of tasks in a workflow application 
is chosen between 40 and 200. The mean outdegree for a 
task node is set to be 2. The task’s size is chosen 
uniformly between 4101×  Million instructions (MI) and 

MI1015 6× . For the computing environment, we also 
simulate it as three parameters: the number of resources, 
the resource’s mean speed and the resource mean failure 
rate. There are 40 resources, their speeds are uniformly 
distributed in [ 310,4105 −−× ] milliseconds per instruction 
and their failure rates are assumed to be uniformly 
distributed from h/

3
10

− to h/410−  [17]. 
For the other parameters in the system, the fitness 

evaluation weight 1ω and 2ω are set to be 0.5, so the 
algorithm assigns the same priority to both reliability and 
makespan. The probability cp for crossover operation is 

0.5, and mp for mutation operation is 0.25. The 
population size of LAGA is 20. For each kind of 
workflow application with the same parameters, we 

112



create 5 instances so that they can have a wide 
representation. In addition, for each workflow application, 
we run the genetic algorithms 3 times to get their average 
results.  

6.1 LAGA compared with list heuristics  
DLS [10] and RDLS [18] are two of the best existing 

list heuristics to optimize makespan or reliability for 
workflow applications [6,16]. To compare our LAGA 
with these two list heuristics, we run DLS and RDLS 100 
times respectively to get the average result. The number 
of tasks varies from 40 to 200. Fig. 3 shows that LAGA 

can provide the best solutions for both makespan and 
reliability. In particular, LAGA achieves a considerably 
larger improvement ratio (of about 15%) for makespan 
and reliability when the number of tasks is small (40 
tasks), as compared to when the number of tasks is large 
(200 tasks). This is because when there are fewer tasks, 
there will be more idle resources for LAGA to choose for 
each task. Hence, LAGA is able to examine each of them 
to find the most befitting resource. But list heuristics only 
examine one resource according to the heuristic value, 
which may not be the best one.   
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Fig. 3 Makespan and failure probability of a scheduling solution given by DLS, RDLS and LAGA. 
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Fig. 4 Average Normalized makespan and reliability of a scheduling in terms of iterations. 
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Fig. 5 Performance evaluation of BGA and LAGA in terms of time.
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6.2 LAGA compared with another GA 
We compare our LAGA with BGA [17] which evolves 

a solution randomly. Their performances are compared in 
terms of iteration and time. For the comparison in terms 
of iteration, we compute the average normalized 
makespan and the normalized reliability of the solutions, 
which are the mean makespan and reliability of the 
current generation normalized by the mean makespan and 
failure factor of the initial generation respectively. The 
application has 200 tasks, while the number of iterations 
of the two GAs are 1000. Fig. 4 shows LAGA improves 
the makespan and reliability for an application more 
quickly than BGA. And within the same iteration, LAGA 
can always give better quality scheduling solutions than 
BGA. 

To compare the performance in terms of time, we do 
two experiments. In the first experiment, the average time 
needed for a new generation (a generation with better 
quality solutions) is calculated. Fig. 5a shows BGA needs 
less time (16 millisecond less on average) than LAGA for 
a new generation at the start of the evolution (generations 
1~31), but needs much more time for a new generation at 
the end (generations 62~). Since BGA randomly searches 
for better solutions, it is easy to find a better solution at 
the start of the evolution, but gradually becomes harder to 
find a better solution at the end. On the other hand, 
LAGA needs to run the evaluation algorithm which is 
more time-consuming and thus evolves more slowly at 
the start of the evolution. But, our priority heuristics are 
able to ensure that LAGA still finds better solutions using 
the similar amount of time at the end of the evolution. 

In the second experiment, the average scheduling 
quality of the two GAs over the algorithm running time is 
compared. We sample the normalized scheduling quality 
of the two algorithms after every 200 milliseconds. The 
normalized scheduling quality of a GA is the sum of the 
normalized reliability and the inverse of the normalized 
makespan. In Fig. 5b, at the start of the evolution, BGA 
improves the quality of the solutions more quickly than 
LAGA. Then it becomes very difficult and slower for 
BGA to improve the quality, while LAGA outperforms 
BGA to supply better quality solutions at the end of the 
evolution. Hence, Fig. 5b proves our analysis of the 
previous experiment (Fig. 5a) is correct. 

6.3 Efficiency of Priority Heuristics 

a) Efficiency of ResPH 
To evaluate the efficiency of ResPH, we compare 

LAGA using only ResPH with BGA. The tested 
application has 200 tasks. Fig. 6 shows the average 
normalized scheduling quality (the same definition as 
above) of the two GAs over the number of iterations. It 
can be seen that ResPH gives better scheduling quality at 
the start of the evolution. But at the end, ResPH is no 
longer able to further improve the scheduling quality, thus 

resulting in LAGA achieving the same scheduling quality 
as BGA. This shows that after a period of evolution, it 
will be difficult for LAGA to improve the quality of a 
solution by just assigning a task to a faster or a more 
reliable resource. 
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Fig. 6 Efficiency of ResPH. 

b) Efficiency of TaskPH1 and TaskPH2 
We compare the efficiency of our task priority 

heuristics (TaskPH1 and TaskPH2) on LAGA. For the 
experiments, the number of tasks in the application varies 
from 40 to 200. Fig. 7 shows the average makespan and 
reliability of the solutions given by two types of LAGAs 
using TaskPH1 or TaskPH2, normalized by the makespan 
and reliability of the solutions given by BGA respectively. 
We can observe that both TaskPH1 and TaskPH2 enable 
LAGA to have a lower makespan (normalized makespan 
< 1) and a higher reliability (normalized reliability > 1) 
than BGA. But, TaskPH2 achieves a significantly lower 
makespan and higher reliability than TaskPH1 when the 
workflow application is of medium size (120 tasks). 
Otherwise, TaskPH1 and TaskPH2 achieve similar 
performance for the case when workflow application of 
small or large size. This is because when the number of 
tasks is small, the GA can find a good solution even 
without heuristics. When the number of tasks is large, 
every resource will be assigned many tasks, which makes 
it very difficult to estimate the completion time for a long 
task path. So in this case, TaskPH2 cannot outperform 
TaskPH1 although it can predict a more precise 
estimation for the completion time. 

7. Conclusion and Future Work 
In this paper, we proposed a Look-Ahead Genetic 

Algorithm (LAGA) to optimize both makespan and 
reliability intelligently for workflow applications. We 
defined three heuristics to decide the priorities for a 
resource and a task, which can be used by LAGA. LAGA 
evolves only the task-resource mapping for a solution in 
genetic operators, and the solution’s task execution order 
is evolved in the evaluation step using our proposed max-
min strategy based on our task priority heuristics. 
Experiment results show that LAGA can give much better 
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Fig. 7 Average normalized makespan and reliability of a scheduling given by LAGA using TaskPH1 or TaskPH2. 
 

quality solutions than list heuristics DLS and RDLS; 
moreover, it outperforms another genetic algorithm BGA 
in evolving scheduling solutions in terms of both 
iterations and time.  

In future, we are going to extend our scheduling 
problem model to include the communication time 
between tasks. Our resource and task priority heuristics 
will also take into consideration the communication time, 
so that our genetic algorithm does not need to be changed 
to enable reliable scheduling for communication intensive 
applications. 
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