
1956 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 9, SEPTEMBER 2016

Formal Verification of the xDAuth Protocol
Quratulain Alam, Saher Tabbasum, Saif U. R. Malik, Member, IEEE, Masoom Alam,

Tamleek Ali, Adnan Akhunzada, Samee U. Khan, Senior Member, IEEE,
Athanasios V. Vasilakos, Senior Member, IEEE,

and Rajkumar Buyya, Fellow, IEEE

Abstract— Service-oriented architecture offers a flexible
paradigm for information flow among collaborating organiza-
tions. As information moves out of an organization boundary,
various security concerns may arise, such as confidentiality,
integrity, and authenticity that needs to be addressed. Moreover,
verifying the correctness of the communication protocol is also an
important factor. This paper focuses on the formal verification of
the xDAuth protocol, which is one of the prominent protocols for
identity management in cross domain scenarios. We have modeled
the information flow of xDAuth protocol using high-level Petri
nets to understand the protocol information flow in a distributed
environment. We analyze the rules of information flow using
Z language, while Z3 SMT solver is used for the verification of
the model. Our formal analysis and verification results reveal
the fact that the protocol fulfills its intended purpose and
provides the security for the defined protocol specific properties,
e.g., secure secret key authentication, and Chinese wall secu-
rity policy and secrecy specific properties, e.g., confidentiality,
integrity, and authenticity.

Index Terms— Cross domain access control framework,
formal methods, high-level Petri nets (HLPN), information secu-
rity, modeling, and verification, SMT, service oriented architec-
ture (SOA), xDAuth protocol, Z3.

I. INTRODUCTION

THE internet has revolutionized the ways of
communication. Before the advent of Service Oriented

Architecture (SOA), it was not easy to connect organizations

Manuscript received December 17, 2015; revised March 28, 2016;
accepted April 17, 2016. Date of publication May 3, 2016; date of
current version June 27, 2016. This work was supported by the National
ICT Research and Development Fund under the Project CDACDEA
(http://www.ictrdf.org.pk/index.php/component/tprojects/project/19). The
associate editor coordinating the review of this manuscript and approving it
for publication was Prof. Wanlei Zhou.

Q. Alam and T. Ali are with the Department of Computer Sciences,
Institute of Management Sciences, Peshawar 25000, Pakistan (e-mail:
quratul.alam30@gmail.com; tamleek091@gmail.com).

S. Tabbasum, S. U. R. Malik, and M. Alam are with the Department
of Computer Sciences, COMSATS Institute of Information Technology,
Islamabad 45550, Pakistan (e-mail: saher.tabbasum@comsats.edu.pk;
saif.rehmanmalik@gmail.com; masoom.alam@gmail.com).

A. Akhunzada is with the Center for Mobile Cloud Computing
Research, University of Malaya, Kuala Lumpur 50603, Malaysia (e-mail:
a.adnan@siswa.um.edu.my).

S. U. Khan is with the Department of Electrical and Computer Engineer-
ing, North Dakota State University, Fargo, ND 58108-6050 USA (e-mail:
same.khan@ndsu.edu).

A. V. Vasilakos is with the Department of Computer Science, Electrical
and Space Engineering, Lule University of Technology, Skellefteå SE-931 87,
Sweden (e-mail: th.vasilakos@gmail.com).

R. Buyya is with the Cloud Computing and Distributed Systems Laboratory,
Department of Computing and Information Systems, The University of
Melbourne, Parkville, VIC 3010, Australia (e-mail: rbuyya@unimelb.edu.au).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2016.2561909

and to achieve interoperability among organizations having
heterogeneous environments. The SOA provides the facility in
which a function of an application can be called as a service
by another application using a particular communication
protocol. Moreover, the SOA has benefited both the private
and the public sector organizations as it has enabled them
to share information within and outside the organizational
boundaries [1]. However, as information flows out of an
organization boundary, it has its own security implications and
necessary measures are required to make the communication
secure [2]–[4]. Some of the major challenges of modern-day
information sharing among different organizations are:
handling cross domain resource sharing among distinct orga-
nizations over HTTP or HTTPS, making a wise decision about
which information must be allowed for access by which user,
dealing with cross domain access control policies, providing
strong privacy protection to user data and the issue of building
trust on services offered by unseen organizations [4]–[6].

Different standards and protocols have been developed to
address the security concerns mentioned above. Some of
the well-known standards and protocols are Shibboleth [7],
OAuth 2.0 [8], and OpenID [9]. All of these standards provide
users the facility to Sign-In on a system or a website using
a single identity, such as Single Sign On (SSO). This can be
used in a distributed system such as a federation of different
organizations. The federation can be of universities, public or
private sector organizations. The federation with respect to
Identity Management Systems (IMS) is a joint venture of two
or more trusted organizations. Such organizations are bound
together with some business or technical contract in which
users from either side can access restricted resources [10].
Although, the identity management frameworks and standards
provide the capability of SSO, the frameworks are limited on
providing certain features of cross domain security such as
Conflict of Interest (CoI). Such standards focus on the format
in which information must be written. The specifications
level security at both collaborating bodies is still a challenge.
As an alternate solution to these standards, an access control
framework-xDAuth was presented in [11]. The xDAuth proto-
col overcomes two of the major issues in the SOA and access
control, namely Privacy and Trust. The privacy is handled at
two levels: one is at the service requester end by hiding user
attributes from the service provider and user authentication
credentials from the delegation service. The other level is
achieved at the service provider end in which delegation
service has no prior knowledge of the published resources and
service provider uses pseudonyms for the published resources
on the delegation service. Trust is achieved by exposing

1556-6013 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

ALAM et al.: FORMAL VERIFICATION OF THE xDAuth PROTOCOL 1957

the unique secret key provided by the delegation service
(mediating service) to each service requester and service
provider involved in the cross domain resource sharing envi-
ronment. Detailed information on the xDAuth protocol is
provided in Section II of the paper.

Security standards and protocols of federations are vulner-
able to network attacks, as advocated in [5] and [12]–[14].
Therefore, an effort must be made to analyze the correctness
of the protocols, so as to avoid network attacks. The
improvements should be formally verified to ensure that the
protocols are free of security problems. Formal methods
are applied to check the correctness of the protocol. Formal
methods have been found to be very useful in the verification
of protocols. Formal methods provide techniques and tools
for specifying the system and checking the security properties
for system verification [15]–[17], [54]. Some cryptographic
protocols such as Needham-Schroeder, TMN, Kerberos and
a formal foundation for web security have been successfully
verified using Formal methods approaches, which exposed
the security flaws [18], [19].

xDAuth is considered as one of the prominent protocol for
SOA and cross domain access control scenarios. Therefore,
verification of the correctness of xDAuth protocol is imperative
to avoid network attacks. The correctness of the xDAuth
protocol ensures that the protocol is free of security problems.
To the best of our knowledge, this is the first effort made
on modeling, analysis and formal verification of the xDAuth
protocol. We preferred model checking than simulation, testing
and deductive verification due to the reason that it consists of
an exhaustive exploration of the system and can be used to ver-
ify finite state concurrent systems, which benefit as automatic
verification. We have used High Level Petri Nets (HLPN) and
Z language for modeling and analysis of the cross domain
access control protocol xDAuth [11]. The HLPN presents
a graphical representation of the system and provides the
mathematical representation to analyze the behavioral and
structural properties of the system. With the help of these
two techniques, we are able to understand and analyze the
interconnections between the system entities, granular details,
and processing of information. Verification of the model is
done by translating the HLPN model using bounded model
checking techniques through Satisfiability Modulo Theories
Library (SMT-Lib) and Z3 solver. The security properties are
also translated into the SMT and checked whether the model
satisfies the security properties. As the focus of this paper is
proving the correctness of xDAuth protocol flow, in the said
perspective, we defined certain security properties and verified
that the security properties must always be satisfied throughout
the system. For each of the system’s behavior, such as the
sequence of inputs, outputs, and state changes, we clearly
determine that whether a desired security property holds or
not. The proposed method can be applied for the evaluation
or verification of other security protocols. We have applied
the similar method for the formal analysis and verification of
FADE protocol, which is used for the security of files stored
on the cloud (complete details can be seen in [55]). Moreover,
some of the literature work that depicts the application of
the method that we adopt to verify our protocol can be seen

in [56] and [57]. The method can also be applied to other
kinds of security protocols, such as OAuth and Shibboleth for
the verification. The main contributions of the paper are listed
below.

• Detail modeling and analysis of cross domain access
control protocol, i.e. xDAuth protocol with the help of
HLPN and Z language respectively.

• Formal verification of cross domain access control
protocol xDAuth on defined system specifications and
security properties, using SMT-Lib and Z3 Solver.

• Proving the correctness of the xDAuth protocol by defin-
ing certain security properties and verifying that the
security properties must always be satisfied throughout
the system.

• We perform the automated verification of the model by
following the bounded model checking technique using
Satisfiability Modulo Theories Library (SMT-Lib) and
Z3 solver. During the analysis of xDAuth, we realized
that the formal verification of the security properties,
such as confidentiality, integrity and authenticity, is not
possible without incorporating certain attributes as part of
xDAuth protocol. Therefore, we augmented the attributes
in xDAuth to verify the security properties. This formal
verification technique made us able to augment certain
attributes in the xDAuth protocol which are necessary
for the verification of the security properties.

• The delegation service (DS) returns a domain key
(30-byte public string to uniquely identify the domain)
and the secret key (10-byte shared secret between the DS
and domain) after the registration process. Our analysis
has revealed that the said keys can create a single point of
failure, which will lead to the compromise of the whole
federation.

The rest of the paper is organized as follows. Section II
presents the background concepts such as xDAuth Protocol,
Boolean Satisfiability Solvers, and Petri Nets. Section III
elaborates related work. Section IV describes the Modeling
and Analysis of the xDAuth protocol. Section V constitutes
the verification of the xDAuth protocol. Finally, we provide
the concluding remarks in Section VI.

II. BACKGROUND

A. An Overview of the xDAuth Protocol

The xDAuth protocol presents a general framework for
the realization of cross domain access and delegation control
of the resources. In the xDAuth, there is a single trusted
Delegation Service (DS) that acts as the decision making
body for cross domain resource access request. The Service
Provider (SP) is the organization that agrees to share its
resources for cross domain resource sharing. The Service
Requester (SR) is the organization from which users access
the resources. The xDAuth provides strong privacy protection
to both the SP and the SR domains. The SR domain user’s
authentication credentials are kept private from the DS. Sim-
ilarly, the SP can define policies to hide the information of
shared resources from the DS. The xDAuth can support many

1958 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 9, SEPTEMBER 2016

Fig. 1. An Overview of the xDAuth Protocol [11].

access control and delegation constraints in cross domain envi-
ronment, such as Dynamic Separation of Duty (DSoD) [20]
and the Chinese Wall Security Policy (CWSP) [21]. A pictorial
representation of the xDAuth protocol is depicted in Figure 1.

1) Responsibilities of the xDAuth Entities: The
xDAuth is implemented in OpenERP by the “Cross
Domain Access Control and Delegation in Enterprise
Applications (CDACDEA)” project [22]. Three main entities
constitute the xDAuth protocol: the service provider (SP),
the service requester (SR), and the delegation service (DS).
However, both the SP and the SR are implemented in the
OpenERP; whereas, the DS is implemented as a web service.
Responsibilities of each of the entity are as follows:

• The SP Responsibilities: The SP is responsible to publish
the cross domain policies on the DS. The SP receives
resource access requests from the SR domain user and
redirects the user’s client application to the DS for further
procedure.

• The DS Responsibilities: The DS receives resource
access request redirected from the SP. Once the request
is received the DS performs two main operations:
(a) Managing request redirections for authentication and
authorization, and (b) Implementing the CWSP.

• The SR Responsibilities: The DS redirects the access
requests to the SR domain for authentication. Once the
access request is received, the responsibility of the SR
is to authenticate the user in the home domain. As a
response to the DS request, the SR domain sends the
required attributes, user authentication response (valid or
invalid), and domain authentication response.

2) Accessing Cross Domain Resources via the xDAuth
Protocol: The overall process of accessing a shared resource
within the xDAuth protocol is divided into the following steps:

Forming a federation is considered to be a prerequisite of
step 0 i.e. Publishing Policies. A federation is formed by
the registration of SP and SR domains at the DS to become
part of the federation. Once the federation is formed, a local
user (from the SP domain) makes a delegation request to the
Internal Authorization (IA) service of the SP for creating cross
domain policy.

• Step 0: Publishing Policies In step 0, After the creation
of cross domain policy, the SP publishes the policy on
the DS.

• Step 1: Resource Request The first step towards accessing
a shared resource is initiated by an external user (from
the SR domain). The external user initiates a request for
resource access that is available on the SP resource page
through a client application, such as a web browser.

• Step 2: Request Redirection to the DS The SP domain
receives a resource access request from the SR user. Since
SP is not managing the identity of external users; there-
fore, the request is redirected to the DS for authentication
and authorization decisions.

• Step 3: SR Home Domain Selection The DS receives the
redirected resource access request from the SP. In order
to get the user authenticated from her parent organization,
the DS provides a list of domains in the federation to the
SR user, for selecting the home domain.

• Step 4: SR Authentication Once redirected to the SR
domain, the user authenticates herself by providing
already issued credentials. After successful authentica-
tion, the user is redirected to the DS along with the
domain identity and required attributes (which were
requested by the DS).The reason for requesting the
attributes is because the DS has to make an authorization
decision for the SP domain based on the cross domain
access control policy.

• Step 5: DS Redirection to SP On receiving the required
attributes, the DS evaluates them against the published
policy. A positive evaluation takes the user’s client appli-
cation to the SP along with the authorization result.

• Step 6: Resource Release After receiving the authoriza-
tion result from the DS, the SP provides access to the
resource to the user. A fine-grained description of each
step along with the security constraints will be discussed
in Section IV.

B. SMT-Lib and Z3 SMT Solver

In the context of automated reasoning and formal
verification, Boolean Satisfiability Solvers (SAT) are used.
However, now the decision problems are encoded and solved
as Satisfiability Modulo Theories (SMT) [23]. The SAT are
propositional satisfiability solvers. The SMT takes the decid-
ability problem as first order logic formula and decide for its
satisfiability based on the decidable background theory. There
are a number of theories supported by the SMT solvers, such
as equality and un-interpreted functions, linear arithmetic over
rationals, linear arithmetic over integers, non-linear arithmetic
over reals, over arrays, bit vectors, and combinations [24].
The SMT-Lib provides a common input platform for many
solvers used for the verification of systems. Behavioral
specifications of a system can be represented using abstract
models. The SMT solvers are then used to perform bounded
model checking to explore a bounded symbolic execution
of the model [25], [26]. A number of solvers are available
that support the SMT-Lib such as the Beaver, the Boolector,
the CVC4, the MathSAT5, the Z3, and the OpenSMT [25].

ALAM et al.: FORMAL VERIFICATION OF THE xDAuth PROTOCOL 1959

Fig. 2. An Example of the HLPN.

The differentiating feature of solvers can be the underlying
logic (First Order Logic (FOL) or Temporal Logic), supported
theories, input formulas, and interfaces [24], [25].

In this paper, we used the Z3 constraint solver, which is
an efficient automated SMT solver by Microsoft Research
Labs [27]. The Z3 solver is mostly used in the analysis and
verification of software systems. The underlying verification
theory for our system’s model is the theory of array that is
used to prove the satisfiability of our model’s logical formulae.
The array theory is frequently used in software modeling
domain [28].

C. The High-Level Petri Nets (HLPN)

Petri Nets are very useful for mathematical and graphical
modeling of wide range of systems, such as distributed,
parallel, concurrent, stochastic, non-deterministic, and asyn-
chronous systems [29]. However, a tradeoff must be kept
between modeling generality and analysis capability. Even
a modest model can become too large for analysis process.
In this work, we have used a variant of the conventional Petri
Nets, termed as High-Level Petri Nets (HLPN) for the formal
verification of the proposed migration technique. The HLPN
is a set of 7-tuple [30], [31], N = (P, T, F, ϕ, R, L, M0), where:

1) P is a set of finite places,
2) T is a set of finite transitions such that P and T are

two distinct sets P ∩ T = φ,
3) F represents the flow relation from place to transition or

transition to place such that F ⊆ (P × T) ∪ (T × P),
4) φ represents the mapping function that maps places to

data types, such that φ: P → Data types,
5) R defines the set of rules that maps T to logical formulae

such that R: T → Formula,
6) L represents the labels that are mapped on each flow

in F, such that L: F → Label,
7) M0 represents the initial state/marking where flow can

be initiated, such that M: P → Tokens.
The first three variables (P, T, F) provide information about the
structure of the Petri Net. The next three variables (φ, R, L)
provide the static semantics of the Petri Net, which means
that the information does not change throughout the system.
To build an understanding of a Petri Net, we demonstrate a
small example. Figure 2 represents a simple Petri Net, having
4 places (P = P1, P2, P3, P4), 3 transitions (T= T1, T2, T3), and
7 flows (F = a, b, c, d, e, f, g). In HLPN, each place has some
tokens to enable adjacent transitions, which means that the
preconditions must hold for the transition to fire. The tokens
can correspond to one type or a cross product of different data
types. In Table I, we have mapped places to the following data
types.

TABLE I

PLACES TO DATA TYPE MAPPING

Let α and β be the nodes of the HLPN N if and only if
α, β ∈ P ∪ T. A node α is an input node of another node β
if and only if there is a directed arc from α to β such that
(α, β) ∈ F. Node α is an output node of β if and only if
(β, α) ∈ F. The precondition is • P1 = (P2 | (P2, P1) ∈ F)
and post condition is • P1 = (P2 | (P1, P2) ∈ F). The
precondition must hold to enable the transition. For example
in the Figure 2, precondition for T2 will use c and d as input.
Similarly, post-condition will take values from outgoing flow
to enable further transitions.

III. RELATED WORK

The concerns such as privacy, security, authorization, and
authentication in the cross domain access control applications
calls for a mechanism that can be used to ensure correct-
ness, reliability, robustness, and safety of the system. The
formal methods, which involves formal modeling, analysis,
and verification technique, is one such mechanism that can
be used to achieve the aforesaid attributes by introducing
rigor, performing proofs, and the verification of the underlying
systems [23], [25], [32]. The formal analysis of the security
and the access control protocols has been addressed by many
researchers [33], [36], [41], [48]. The goal of using the formal
analysis and the verification techniques is to provide a formal
base for the protocol verification that helps in finding flaws
and improving the design. One such analysis is performed
in [33], where a symbolic safety analysis framework for the
Administrative Role Based Access Control (ARBAC) policy
model is presented. The authors of [33] used the SMT for the
symbolic backward reachability procedure that can be used to
solve the user-role reachability problem. However, the work
done in [33] is not focused on the incremental analysis of
the access control policies and does not provide automated
analysis and proof generation in the case of policy resistance.
The authors in [34] performed the automated analysis of
ARBAC model.

The work presented in [34] shows an abstract rule-based
framework for the integration of the attributes in the RBAC
model. However, the analysis performed in the aforesaid paper
was only focused on the centralized policies of the RBAC
model. Research work done in [35] has considered the admin-
istration of multiple attributes including the atomic attributes.
A systematic root cause analysis to study the security
vulnerabilities of the OAuth 2.0 protocol is presented in [36].
The authors used an attacker model to unveil the vulnerabilities
such as the replay attacks, the network eavesdropping, the
forced-login CSRF attacks, and the impersonation attacks
in the OAuth 2.0 protocol. An abstraction technique for an

1960 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 9, SEPTEMBER 2016

automated error finding in the ARBAC polices is presented
in [37]. The proposed technique is evaluated in an access con-
trol policy verification tool MOHAWK. The results obtained
are scalable with respect to complexity of the policies and also
in the magnitude. Similarly, a methodology for the bounded
analysis of the security and the cryptographic protocols using a
model checking tool, named the Mur-phi, is presented in [18].
The authors of [18], analyzed the Needham-Schroeder proto-
col, the Kerberos, and the TMN protocol to identify known
bugs. However, the tool (Mur-phi) is rarely used for analyzing
network protocols where the number of topologies are large.
In another study [38], the analysis of the Needham-Schroeder
protocol is performed using the Failures Divergences
Refinement (FDR) model checker to test whether the protocol
correctly achieves the authentication and discovered an attack
on the protocol. In [39], the authors have given a protocol
formalization, first in the Alice-Bob notation, and then in
the High Level Protocol Specification Language (HLPSL).
Moreover, the authors has used the AVISPA, the state-of-
the-art verification tool for the security protocols to identify
two security flaws, a replay attack and a masquerade attack.
However, the formal specification of the Facebook Connect
protocol was not discussed in detail. Therefore, the model
was inferred only by observing the message exchange process
during a valid protocol run. In another study [19], the authors
worked on the formal modeling of the web security and the
authentication protocols using the Alloy model checker.

In order to identify some known and unknown vulnerabili-
ties of the login CSRF attack, the authors of [19] have modeled
the web-based authentication protocol the WebAuth, which is
a Kerberos based SSO web solution. However, the approach
followed by the authors is limited to the HTTP communication
only and does not take into account the application layer
messages such as the SOAP, as discussed in [40]. The formal
model presented by [41] is a good set of advice to the secure
web service communication. A symbolic protocol model of the
Needham Schroeder protocol is generated from the C imple-
mentation code in [16], using the Csur tool (a project about the
automatic analysis of the cryptographic protocols). Only the
secrecy properties were considered for the protocol modeling.
However, the authors did not provide any verification results.
Apart from the model checkers and the theorem provers,
the researchers also developed the logics of knowledge, the
logics of belief, such as the BAN, and improved them to
provide more formal ways for analyzing the security and the
authentication protocols [42].

An abstract representation of the cryptographic protocols
using the prolog rules is presented in [15]. Such prolog rules
are used for proving the secrecy properties of the protocols
using the ProVerif [15] tool. The main difficulty faced while
using such methods is the termination of the analysis process.
Moreover, such methods do not address the decidability of the
secrecy with the Cipher Block Chaining (CBC) encryption
or the blind signature. An automated unbounded symbolic
verification and analysis tool the Scyther is presented in [43].
The scyther tool is used for the verification of the security
and the cryptographic protocols. Such tool has the ability to
automatically find attacks in a protocol. Other tools for the

same purpose are the AVISPA [44], the ProVerif [15], and the
TAMARIN [45].

A role-based provenance mechanism for services aggre-
gation and trustworthiness is presented in [46]. However,
the association of roles from different domains are handled
solely by manual process that can be tedious and lack agility.
Also, assuring access control needs to be considered as one
significant part of security requirement in service oriented
architecture.

Zhao et al. [47] discussed about constructing authentication
web in cloud computing which is also a promising direction
for cross domain resource sharing. The focus was to propose
a single sign-on mechanism to accept user identities from
various domains. They also made a formal mathematical
model to analyze security issues of the proposed mechanism
and verified it to support hybrid authentication protocols.
However, the proposed mechanism gave authority to service
providers to verify the user identities and took authorization
decisions for releasing resources in a cross domain resource
sharing environment.

In [48], the Alloy modeling language is presented to cast
the resource accessibility problem as a constrained graph
reachability problem. Also, an Alloy model is created for each
domain policy, and these models are then composed in a sound
and efficient manner. However, [48] has discussed only the
access control policiy’aspect of cross domain paradigm.

Our work is different in the context that along with the
formal analysis of the xDAuth protocol we have modeled
the protocol in the HLPN and verified the model within the
Z3 [27], that is an efficient SMT solver. Using the Z3, we
performed bounded verification of the xDAuth protocol. The
reason for selecting the Z3 SMT solver for the verification
of the xDAuth protocol is that Z3 is currently an area of
the research for many researcher for the software verification.
The Z3 is a powerful solver used for solving the real world
problems that require greater computational power and the
complex constraint solving abilities. Moreover, its ability to
support several FOL theories brings in it more flexibility when
reasoning about the security polices and their properties. Other
state-of-the art the SMT solvers are the BarceLogic, the CVC4,
the MathSAT, and the Yices [25]. However, the Z3 solver(and
many others automated provers) use classical logics, the proof
terms produced in this manner are not constructive in nature.
Moreover, the Z3 does not have any precise decision proce-
dures for the string [49] and the floating point arithmetic [50].
In the coming section, we will model the xDAuth protocol
using the HLPN and define all the granular level details.
We will also define the rules that contain conditions on which
transition will be enabled/disabled.

IV. MODELING AND ANALYSIS OF XDAUTH PROTOCOL

A HLPN model for initiating a cross domain resource
access request through the xDAuth protocol is demonstrated
in Figure 3.

As stated in the formal definition of the Petri Net, pre-
sented in the background section, the HLPN is a 7-tuple
N = (P, T, F, ϕ, R, L, M0). The first step to model a system

ALAM et al.: FORMAL VERIFICATION OF THE xDAuth PROTOCOL 1961

Fig. 3. A HLPN Model for the Resource Access Request in the xDAuth Protocol

in the HLPN is to define a set of P (Places) and the associated
data types. As depicted in Figure 3, there are 13 places in the
model. The names and the mapping of P is shown in Table II.
The data types used in the model are shown in Table III.

The steps for initiating a cross domain resource access
request are discussed in the background section. In this
section, we will model and analyze the granular level details
of the protocol. Moreover, we will define the set of rules, the
preconditions, and the post-conditions to map to the T. The
set of the transitions T is : T = {Start-Lu, Dr-Req, Reg-Sp-S,
Reg-Sp-F, Publish, Dr-eval-S, Dr-eval-F, Start-Eu, Reg-Sr-S,
Reg-Sr-F, Make-del-R, Eva-Resp, Ex-Req, Resp-Dead,
Resp-Alive, R-R}.

A. Modeling and Analyzing Step 0 of the Protocol

The Step 0 of the protocol has two sub-steps:
• The Domain Registration, and
• The Policy Publication.

In the following subsection, we will elaborate the aforesaid
sub-steps in detail.

The Domain Registration: The organization that needs to
be a part of a federation must register the domain on the DS.
In our case, we have two organizations, the SP and the SR. An
organization registers on the DS through a client application,
such as a web browser. On successful domain registration, the
DS stores the domain information. A portion of the HLPN
model shown in Figure 3 is depicted in Figure 4, which
represents the registration process of domains on the DS.

The registration outcome of domains can be successful or
failed. The transition Reg-Sp-S depicts the successful regis-
tration of the SP shown as IA place, where the DS assigns
a unique domain-ID and secret-key to the newly registered
domain and stores the record at the REG-DATA for later

Fig. 4. Model for the Domain Registration.

usage, as shown in (1). Moreover, in (1), the transition registers
the domain as the SP, based on the domain administrator’s
credentials and the domain type, that is done by matching
the credentials stored at the place REG-DATA with the one
provided by the administrator.

R (Reg-Sp-S) = ∀sp-cr ∈ Sp − Cr, ∀sp-r ∈ Sp − R,

∀sp-ua ∈ Sp − Ua | sp-cr[17]
= sp-r[6] ∨ sp-cr[10] 	= sp-r[1]

→ sp-r[1] := sp-cr[10], sp-r[2] := sp-cr[11],
sp-r[3] := sp-cr[12], sp-r[4] := sp-cr[13],

sp-r[10] := sp-cr[14], sp-r[13] := sp-cr[9],
sp-r[25] := sp-cr[24],
sp-r[11] := C R − REG − DI D(sp-cr[17], sp-cr[10]),
sp-r[12] := C R − REG − SK (sp-cr[17], sp-cr[10]),

sp-cr[15] := sp-r[11], sp-cr[16] := sp-r[12],
sp-ua[1] := sp-r[11], sp-ua[2] := sp-r[12],

Sp − Cr ′ = Sp − Cr ∪ (sp-cr[15], sp-cr[16])
∧ Sp − R′ = Sp − R ∪ (sp-r[1], sp-r[2], sp-r[3], sp-r[4],

sp-r[10], sp-r[13], sp-r[11], sp-r[12], sp-r[25])
∧ Sp − Ua′ = Sp − Ua ∪ (sp-ua[1], sp-ua[2]) (1)

1962 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 9, SEPTEMBER 2016

TABLE II

PLACES AND MAPPING OF THE xDAUTH PROTOCOL

The rule for the domain registration failure is depicted in (4).
Similar constraints are applied to the SR registration as
were applied to the SP domain, where the administrator can
only register one domain with the same email ID and the

TABLE III

DATA TYPES USED IN THE xDAUTH PROTOCOL

domain type. If the constraints are not followed, then the
registration should not be successful and the process should
terminate.

R (Reg-Sp-F) = ∀sp-cr ∈ Sp − Cr, ∀sp-r ∈ Sp − R |
sp-cr[17] = sp-r[6] ∧ sp-cr[10]

= sp-r[1] → Sp − Cr ′ := Sp − Cr (2)

ALAM et al.: FORMAL VERIFICATION OF THE xDAuth PROTOCOL 1963

Fig. 5. Model for the Policy Publication.

Like the SP, the SR domain registration can be successful or
failed. The transition Reg-Sr-S depicts the successful registra-
tion of the SR domain, where the DS assigns a unique domain-
ID and secret-key to the newly registered domain and keeps
the record at REG-DATA for later usage, as shown in (3).
Moreover, in (3), the transition registers the domain as the SR,
based on domain administrator’s credentials and domain type.
The aforesaid is done by matching the credentials stored at the
place REG-DATA with the one provided by the administrator.

R (Reg-Sr-S) = ∀sr-cr ∈ Sr − Cr, ∀sr-r ∈ Sr − R,

∀sr-ua ∈ Sr − Ua | sr-cr[12]
= sr-r[8] ∨ sr-cr[8] 	= sr-r[1]

→ sr-r[1] := sr-cr[8], sr-r[2] := sr-cr[11],
sr-r[4] := sr-cr[10], sr-r[5] := sr-cr[9],

sr-r[10] := sr-cr[16], sr-r[14] := sr-cr[7],
sr-r[25] := sr-cr[24],
sr-r[11] := C R − REG − DI D(sr-cr[12], sp-cr[8]),
sr-r[12] := C R − REG − SK (sr-cr[12], sr-cr[8]),

sr-cr[18] := sr-r[11], sr-cr[19] := sr-r[12],
sr-ua[1] := sr-r[11], sr-ua[2] := sr-r[12]

Sr − Cr ′ = Sr − Cr ∪ (sr-cr[18], sr-cr[19])
∧ Sr − R′ = Sr − R ∪ (sr-r[1], sr-r[2], sr-r[4],sr-r[5],

sr-r[10], sr-r[14], sr-r[11], sr-r[12], sr-r[25])
∧ Sr − Ua′ = Sr − Ua ∪ (sr-ua[1], sr-ua[2]) (3)

The rule for the domain registration failure is depicted in (4).
Similar constraints are applied to the SR registration as was
applied to the SP domain, where the administrator can only
register one domain with the same email ID and the domain
type. If the constraints are not followed, then the registration
will not be successful and the process will terminate.

R (Reg-Sr-F) = ∀sr-cr ∈ Sr − Cr, ∀sr-r ∈ Sr − R |
sr-cr[12] = sr-r[8] ∧ sr-cr[8]

= sr-r[1] → Sr − Cr ′ := Sr − Cr (4)

The Policy Publication On successful registration of the SP
domain on the DS, the IA create and stores a cross domain
policy in response to the delegation request made by the local
user. A Petri Net model for the policy publication on the DS
is shown in Figure 5.

The local user provides information through the transition
Start-Lu, as shown in (5). There are no pre-conditions for the
transition to be satisfied. All required values move to the place

LU seamlessly.

R (Start-Lu) = ∃l-user ∈ L − User | •l-user = φ (5)

The delegation request is performed on the transition Dr-Req,
as shown in (6). The IA stores the information received in the
request for the evaluation purpose.

R (Dr-Req) = ∀l-req ∈ L − Req, ∀dr-req ∈ D − Req |
dr-req[1] := l-req[1], dr-req[2] := l-req[2],
dr-req[3] := l-req[3], dr-req[4] := l-req[4],
dr-req[5] := l-req[5], dr-req[6] := l-req[6],
dr-req[7] := l-req[7], dr-req[8] := l-req[8],

D − Req ′ = D − Req ∪ (dr-req[1], dr-req[2], dr-req[3],
dr-req[4], dr-req[5], dr-req[6], dr-req[7],
dr-req[8]) (6)

The outcome of the evaluation of the delegation request can
be successful or failed. The transition Dr-eval-S depicts the
successful evaluation of the delegation request where the IA
assigns a unique CDP-ID to the newly created cross domain
policy and keeps the record at CDP for later use, as shown
in (7). Moreover in (7), the evaluation is done by checking the
values of the local user’s email address, the resource name,
the action, and the email address of the resource requester in
organization’s Delegation Control Policy (DCP). An additional
constraint is also checked, where the ID of the request initiator
and the request approver must not be the same.

R (Dr-eval-S)

= ∀dr-val ∈ Dr −V al, ∀dcp-val ∈ Dcp−V al,

∀cdp-p ∈ Cdp − P | dr-val[1] 	= dcp-val[20]
∧ dr-val[3] = dcp-val[1], dr-val[4] = dcp-val[2],

dr-val[5] = dcp-val[3], dr-val[6] = dcp-val[4]
→ cdp-p[1] := dr-val[3], cdp-p[2] := dr-val[4],

cdp-p[3] := dr-val[5], cdp-p[4] := dr-val[6],
cdp-p[5] := dr-val[7], cdp-p[6] := dr-val[8],
cdp-p[7] := C R − C DI D(dr-val[3], dr-val[4],

dr-val[6])dr-val[19] := cdp-p[7]
Dr − V al ′ = Dr − V al ∪ (dr-val[19])

∧ Cdp − P ′ = Cdp − P ∪ (cdp-p[1], cdp-p[2], cdp-p[3],
cdp-p[4], cdp-p[5], cdp-p[6], cdp-p[7]) (7)

The rule for the delegation request failure is depicted in (8),
where the failure occurs if: (a) The IDs of the local user and
the administrator are the same, or (b) The delegated action
corresponding to the requested resource is not defined in
the DCP.

R (Dr-eval-F) = ∀dr-val ∈ Dr − V al,

∀dcp-val ∈ Dcp − V al |
dr-val[1] = dr-val[20] ∨ dr-val[3] 	= dcp-val[1],
dr-val[4] 	= dcp-val[2], dr-val[5] 	= dcp-val[3],
dr-val[6] 	= dcp-val[4] → Dcp − V al ′ := Dcp − V al

(8)

1964 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 9, SEPTEMBER 2016

Fig. 6. Model for an External User.

Finally, after successful evaluation of the delegation request,
the IA administrator publishes the newly created policy on
the DS, as shown in (9). The administrator must authenticate
himself with the DS before policy publication. This is done
by matching the credentials stored at the place REG-DATA,
with the one provided by the administrator. A distinct ID is
also assigned to each published policy, which is then stored
on both the SP and the DS.

R (Publish) = ∀c-pub∈C− Pub, ∀ia-pub ∈ Ia− Pub,

∀ds-c-pub ∈ Ds−C− Pub | ia-pub[17]= ds-c-pub[6]
→ ds-c-pub[15] := c-pub[1], ds-c-pub[17] := c-pub[2],

ds-c-pub[18] := c-pub[3], ds-c-pub[16] := c-pub[4],
ds-c-pub[14] := c-pub[5], ds-c-pub[19] := c-pub[6],
ds-c-pub[13] := ia-pub[9], ds-c-pub[24]

:= C R − C DP − I D(c-pub[2]),
ia-pub[19] := ds-c-pub[24]
Ia − Pub′ = Ia − Pub ∪ (ia-pub[19])

∧ Ds − C − Pub′

= Ds − C − Pub ∪ (ds-c-pub[15],
ds-c-pub[17], ds-c-pub[18], ds-c-pub[16],
ds-c-pub[14], ds-c-pub[19], ds-c-pub[13],
ds-c-pub[24]) (9)

B. Modeling Step 1, 2, and 3 of the Protocol

The request for a cross domain resource acquisition in a
federation is initiated by an external user (coming from the
SR domain). The resource request flow starts on the transition
Start-Eu, as shown in figure 6. The rule for the transition
Start-Eu is shown in (10), which depicts that there are no
pre-conditions for the transition and all the required values
are provided by the user.

R (Start-Eu) = ∃e-user ∈ E − User | •e-user = φ (10)

The resource access request reaches the SR from the transition
Ex-Req, as shown in (11). The transition updates the SR by
transferring the information from the place EU.

R (Ex-Req) = ∀e-req ∈ E − Req, ∀ex-req ∈ Ex − Req |
ex-req[1] := e-req[1], ex-req[2] := e-req[2],
ex-req[3] := e-req[3], ex-req[4] := e-req[4],
ex-req[5] := e-req[5], ex-req[6] := e-req[6],
ex-req[7] := e-req[7], ex-req[8] := e-req[8],

E − Req ′ = E − Req ∪ (ex-req[1], ex-req[2], ex-req[3],
ex-req[4], ex-req[5], ex-req[6], ex-req[7],
ex-req[8]) (11)

Fig. 7. Model for the Delegation Request.

On the transition Make-del-R, which is shown in Figure 7,
the request is forwarded to the DS through a web interface
which provides the details of all the shared resources of the SP.
By selecting any of the listed resources, a request is initiated
and forwarded to the DS for the authentication, and authoriza-
tion decisions. A Petri Net model for resource access request
is depicted in Figure 7 below. The rule for the Make-del-R
transition is shown in (12).

As soon as the request reaches the DS, the DS first authen-
ticates the SP domain. The authentication is performed by
comparing the shared secret key provided to the SP at the time
of registration. If the comparison results in a failure, then the
resource request is denied by the DS. Alternatively, the DS
creates a request token for the resource request and keeps it
for further processing.

R (Make-del-R) = ∀sr-rec-req ∈ Sr − Rec − R,

∀rec-req ∈ Rec− Req, ∀ds-rec-req ∈ Ds− R− R,

∀sp-sk-c ∈ Sp − Sk − C | sp-sk-c[2] = rec-req[16]
→ ds-rec-req[15] := rec-req[3],

ds-rec-req[17] := rec-req[4],
ds-rec-req[18] := rec-req[5],
ds-rec-req[16] := sr-rec-req[2],
ds-rec-req[14] := sr-rec-req[7], rec-req[22]

:= C R − RE Q − T K N(rec-req[4],
rec-req[6])ds-rec-req[23]

:= rec-req[22], DS − R − R′

= DS − R − R ∪ ds-rec-req[14],
ds-rec-req[15], ds-rec-req[16], ds-rec-req[17],
ds-rec-req[18], ds-rec-req[23] Rec − Req ′

= Rec − Req ∪ rec-req[22] (12)

C. Modeling the Step 4, 5, and 6 of the Protocol

After the resource request is forwarded to the DS by
the SP, the DS evaluates the request on constraints such as
(a) The SR authentication, (b) Checking the CoI history for
the resource request, (c) The user authentication response, and
(d) The required user attributes. The DS stores the evaluation
result at place RESP. If the result is positive, then the DS
forwards the result to the SP for the resource release. If the
response is negative, the resource request should be discarded.
A Petri Net model for the process is shown in Figure 8
below. The rule for the aforesaid behavior is mapped on the
transition Eva-Resp and shown in (13). In the rule, the dual

ALAM et al.: FORMAL VERIFICATION OF THE xDAuth PROTOCOL 1965

Fig. 8. Model for the Resource Release.

authentication is performed, i.e. (a) the user authentication,
which is performed by comparing the credentials, such as the
user name and the password, with the users home domain
and (b) the domain authentication, to ensure that the domain
is the part of a federation. Moreover, the DS maintains
a CoI-history at the end to cross check whether the user
has accessed the same resource in the past or some other
resource of the same CoI class. The user provided attributes
are compared for the CoI checking. After all the comparisons
are performed, the result is stored at a place RESP.

R (Eva-Resp) = ∀sr-sto-cr ∈ Sr − Sto − Cr, sr-ent-cr

∀ ∈ Sr − Cr, ∀eva-resp-stor ∈ Eva − Resp − Stor,

∀stor-sr-sk ∈ Stor − Sr − Sk,

∀stor-coi-a ∈ Stor − Coi − A |
sr-sto-cr[1] = sr-ent-cr[20], sr-sto-cr[2] = sr-ent-cr[21],

stor-sr-sk[2] = sr-ent-cr[19], sr-ent-cr[2] = stor-coi-a[1],
sr-ent-cr[4] = stor-coi-a[2], sr-ent-cr[5] = stor-coi-a[3],

sr-ent-cr[15] = stor-coi-a[4], sr-ent-cr[23] = stor-coi-a[5]
→ sr-ent-cr[17]

:= C R − AU T H − RS(sr-sto-cr[1],
sr-sto-cr[2], stor-sr-sk[2], stor-coi-a[1],
stor-coi-a[2], stor-coi-a[3],
stor-coi-a[4], stor-coi-a[5]),
eva-resp-stor[1]

:= sr-ent-cr[17],
Sr − Cr ′ = Sr − Cr ∪ (sr-ent-cr[17])

Eva − Resp − Stor ′

= Eva − Resp − Stor ∪ (eva-resp-stor[1])
(13)

The results of the authentication process can be positive
or negative. If the response is positive, then the transition
Resp-Alive is fired. The rule for the said transition is shown
in (14), where the DS generates the response as true against
the request token and stores it at a place DS-TO-IA-RESP.

If the response is negative, the transition Resp-Dead is fired
that depicts the failure, resulting in a termination of the
process. The rule for the said transition is shown in (15).

R (Resp-Alive) = ∀resp-s ∈ Resp − S,

∀sr-eva-s ∈ Sr − Eva − S

| resp-s[1] = T rue → sr-eva-s[1] := resp-s[1]
Sr − Eva − S′ = Sr − Eva − S ∪ (sr-eva-s[1]) (14)

R (Resp-Dead) = ∀resp-f ∈ Resp − F,

∀sr-eva-f ∈ Sr − Eva − F

| resp-f[1] = False → sr-eva-f[1] := resp-f[1]
Sr − Eva − F ′ = Sr − Eva − F ∪ (sr-eva-f[1]) (15)

Finally, the transition R-R will be triggered only if (13) is
fired that complete the process of a secure resource release in
a federation. The rule for the transition R-R is shown in (16).

R (R-R) = ∀ia-res ∈ Ia − Res, ∀ds-rec ∈ Ds − Res,

∀r-rls ∈ R − Rls | ia-res[21] = ds-rec[1] ∧ ia-res[22]
= ds-rec[2] → r-rls[1] := ia-res[23],

R − Rls′ = R − Rls ∪ (r-rls[1]) (16)

V. VERIFICATION OF THE XDAUTH PROTOCOL

Verification is the process of demonstrating the correctness
of an underlying system. To prove the correctness of the
system under consideration, it is important to verify the
system on certain parameters. Generally, system specifications
and system properties parameters are used for the system
verification. Every system has some specifications that define
the system; whereas, system properties act as the axioms that
must be proved by the system.

A. The xDAuth Model Verification Using the Z3 Solver

We have followed 3 main steps towards the verification of
the xDAuth protocol. As a first step, we have modeled the
xDAuth protocol in the HLPN. Secondly, we have defined
the transition rules using the Z formal specification language.
Such rules are then transformed into the array theory of the
SMT-Lib. Finally, using a bounded model checking technique
[51], [52], the Z3 solver [27] verify the system properties
(in our case these are the security properties) of the protocol
model to check for the satisfiability of the logical formulae
over the system specification. The Z3 solver performs the com-
putation and provides result as satisfiable sat or unsatisfiable
unsat. If the generated result is sat, it means that there is a
violation of the asserted property. The solver will generate a
counter example for it. Alternatively, if the result is unsat, then
this indicates that the property holds and the correctness of the
system is proved. To verify the xDAuth protocol model, we
have defined five security properties of which two are protocol
specific and the other three are secrecy properties.

1) Security Properties: The protocol specific security
properties are: (a) The Secure Secret Key Authentication, and
(b) The Chinese Wall Security Policy. The secrecy
properties that define the granular level security are: (c) The
Confidentiality, (d) The Integrity, and (e) The Authenticity.

1966 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 9, SEPTEMBER 2016

Fig. 9. The Secure Secret Key Authentication.

Fig. 10. The CWSP Assertion.

Fig. 11. The Confidentiality Assertion.

a) The secure secret key authentication: In the xDAuth
protocol, at the time of the registration, a secure secret key is
shared between the DS and each of the SP and the SR domain
respectively. The secret key is used for the purpose of domain
authentication. For the secure secret key authentication, we
have used the secret keys and asserted this as a property.
The code snippet for the secure secret key property is shown
in Figure 9. The property holds if the secret key held by
the SP and DS is similar and the secret key held by the
SR and DS is similar, respectively. If the keys are matched, the
solver generates unsat result, which indicates that the xDAuth
protocol is secure and the DS can successfully authenticate
each organization that is a part of a federation. Also, xDAuth
authentication mechanism ensures the fact that the unautho-
rized user cannot pass the authentication due to secure secret
key mechanism and user authentication mechanism in its home
domain.

b) The chinese wall security policy (CWSP): The next
property is the CWSP. The CWSP is about avoiding the CoI
among clients in a federation. The CWSP maintains a set of the
objects, each containing information of different companies
that fall in one of the CoI classes [21]. Asserting the same
for the xDAuth protocol, where different organizations may
have CoI with each other, we have defined this as a security
property. The code snippet for the CWSP is shown in Figure 10
below. In the property, we asserted that if a user has accessed
the resource of a company of a specific CoI class and has
performed some action on it such as read or write, he/she will
not be allowed to access the resource of another company
which is in the same CoI class.

c) The confidentiality: For a system to be secure, it
is important to consider the confidentiality constraints. The
confidentiality is defined as a liaison between two or more per-
sons in which the communicated information is not disclosed
deliberately to another person [53]. By following the definition
of the confidentiality, we have made an assertion for testing
the xDAuth protocol. The code snippet as shown in Figure 11
exemplifies the assertion. In the xDAuth protocol, the resource
itself is confidential information in the SP domain. Therefore,
the resource content of the SP domain must not match with
the resource content of the SR domain before the resource
information is released properly following the protocol flow.
The result that we obtained against this assertion is unsat.

Fig. 12. The Integrity Assertion.

Fig. 13. The Authenticity Assertion.

d) The integrity: Another secrecy property for a system
to be secure is the integrity. The integrity is defined as
the property of a system that a malicious user cannot alter
or modify the contents of a secured message block once
protected [53]. That is, a person or system which does not
have a write access on the protected message must not be
able to modify the contents. In the code snippet as shown in
Figure 12, we have matched the SP user’s action which he/she
came to perform on the protected message. If the action is
the same which is delegated to him/her then integrity of the
system is maintained. The result that we obtained against this
assertion is unsat.

e) The authenticity: By definition, authentication is the
process of identifying and verifying the person or entity who is
accessing the information of the system [53]. Any information
that is coming from a valid user of the system is considered to
be authentic. In Figure 13, an assertion has been listed for the
xDAuth protocol to check its authenticity. In the code snippet,
we have matched the source of the information i.e. the email
address of the SP domain user known to the SR domain user
with the sender’s email address of the information. The result
that we obtained from the assertion is unsat. From this we can
say that the xDAuth protocol preserves the security constraint
of authenticity.

B. Results

To verify, the model of the xDAuth protocol is translated
to SMT. The properties are also translated and specified
in SMT. The Z3 solver takes the model and the properties
to check whether the model satisfies the properties or not.
If the system model satisfies the aforementioned properties
using SMT and Z3 solver then this indicates that the model
specifications can be stated as correct. The objective that we
want to achieve in this paper is to verify the correctness of the
xDAuth protocol without analyzing quality attributes such as
performance and reliability. Therefore, executing the xDAuth
model along with the asserted properties in the Z3 solver, the
model of xDAuth works fine and produces results as per our
expectations. For our implementation using SMT-LIB, we used
QF_AUFLIA logic, which is used for closed quantifier-free
linear formulas over the theory of integer arrays extended with
free sort and function symbols. The results are illustrated in
the Table IV in execution time of the xDAuth protocol when
verified on the security properties.

The results illustrate that the xDAuth protocol executes in a
finite time on verification. The execution time here indicates
that the time solver takes to compute the satisfiability of

ALAM et al.: FORMAL VERIFICATION OF THE xDAuth PROTOCOL 1967

TABLE IV

EXECUTION TIME OF THE SECURITY PROPERTIES

Fig. 14. Verification Results of the xDAuth Protocol.

the properties, which shows the correctness. Figure 14 plots
the execution time taken by the Z3 solver on each security
property of the xDAuth model.

VI. CONCLUSIONS

In a federation, where organizations are sharing their
resources with other organizations, access to shared resources
is readily governed by organizational and internal access
control policies that define conditions on which access can
be granted/denied. In this paper, we have used the HLPN
and the Z language for the modeling and the analysis of
the xDAuth protocol which is used for cross domain access
control. The HLPN presents a graphical representation of the
system whereas the Z specification language provides the
mathematical representation which helps in the analysis of
the behavioral and the structural properties of the system.
By using formal techniques, we could understand and analyze
the interconnections of the xDAuth protocol. For providing
the proof of protocol correctness, the modeled system is trans-
formed into the Z3 SMT solver. The obtained results revealed
the fact that the asserted protocol specific and the secrecy
properties complement the secure release of the resource in
the xDAuth protocol. However, the secret key between the
DS and each respective domain after the registration process
can also be a single point of failure and should be backed
by a strong logging system in order to track and audit all the
administrative (domain registration, policy update etc.,) and
non-administrative (resource access) activities. In our future
work, we intend to incorporate a secure key mechanism backed
by a logging system in the xDAuth protocol.

REFERENCES

[1] K. A. Alam, R. Ahmad, A. Akhunzada, M. H. N. M. Nasir, and
S. U. Khan, “Impact analysis and change propagation in service-
oriented enterprises: A systematic review,” Inf. Syst., vol. 54, pp. 43–73,
Dec. 2015.

[2] OASIS. Web Services Security (WSS) OASIS TC Homepage,
accessed on May 20, 2016. [Online]. Available: https://www.oasis-
open.org/committees/download.php/16790/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf

[3] E. Yuan and J. Tong, “Attributed based access control (ABAC) for
Web services,” in Proc. IEEE Int. Conf. Web Services, Los Alamitos,
Jul. 2005, pp.561–569, doi: 10.1109/ICWS.2005.25.

[4] L. Lowis and R. Accorsi, “Vulnerability analysis in SOA-based busi-
ness processes,” IEEE Services Comput., vol. 4, no. 3, pp. 230–242,
Jul./Sep. 2011.

[5] E. Bertino, L. Martino, F. Paci, and A. Squicciarini, Security for Web
Services and Service-Oriented Architectures. New York, NY, USA:
Springer, 2009.

[6] Web Services Security: What’s Required To Secure A Service-
Oriented Architecture, accessed on May 20, 2016. [Online].
Available: http://www.oracle.com/us/products/middleware/identity-
management/059410.pdf

[7] R. L. Morgan, S. Cantor, S. Carmody, W. Hoehn, and K. Klingenstein,
“Federated security: The shibboleth approach,” ERIC Educause Quart.,
vol. 24, no. 4, pp. 12–17, 2004.

[8] E. Hammer, Ed. IETF, The OAuth2.0 Authorization Protocol Draft,
vol. 28. USA: OAuth Working Group, 2012. [Online]. Available:
http://tools.ietf.org/html/draft-ietf-oauth-v2-28

[9] D. Recordon and D. Reed, “OpenID 2.0: A platform for user-
centric identity management,” in Proc. 2nd ACM Workshop Digit.
Identity Manage., New York, NY, USA, 2006, pp. 11–16, doi:
10.1145/1179529.1179532.

[10] M. S. Ferdous and R. Poet, “Analysing power consumption of different
browsers & identity management systems in mobile phones,” Int. J.
Distrib. Parallel Syst., vol. 3, no. 2, pp. 21–41, Mar. 2012, doi:
10.5121/ijdps.2012.3203.

[11] M. Alam, X. Zhang, K. Khan, and G. Ali, “xDAuth: A scalable and
lightweight framework for cross domain access control and delegation,”
in Proc. SACMAT, Innsbruck, Austria, Jun. 2011, pp. 31–40, doi:
10.1145/1998441.1998447.

[12] A. Akhunzada, E. Ahmed, A. Gani, M. K. Khan, M. Imran, and
S. Guizani, “Securing software defined networks: Taxonomy, require-
ments, and open issues,” IEEE Commun. Mag., vol. 53, no. 4, pp. 36–44,
Apr. 2015.

[13] A. Akhunzada et al., “Man-at-the-end attacks: Analysis, taxonomy,
human aspects, motivation and future directions,” J. Netw. Comput.
Appl., vol. 48, pp. 44–57, Feb. 2015.

[14] A. Akhunzada et al., “Secure and dependable software defined
networks,” J. Netw. Comput. Appl., vol. 61, pp. 199–221,
Feb. 2015.

[15] B. Blanchet, “An efficient cryptographic protocol verifier based on pro-
log rules,” Proc. 14th IEEE Comput. Secur. Found. Workshop, Jun. 2001,
p. 82–96, doi:10.1109/CSFW.2001.930138.

[16] J. Goubault-Larrecq and F. Parrennes, “Cryptographic protocol analysis
on real C code,” Verification, Model Checking, and Abstract Interpreta-
tion. Berlin, Germany: Springer, 2005, pp. 363–379, doi: 10.1007/978-
3-540-30579-8_24.

[17] M. Cheminod et al., “Detecting chains of vulnerabilities in industrial
networks,” IEEE Trans. Ind. Informat., vol. 5, no. 2, pp. 181–193,
May 2009, doi: 10.1109/TII.2009.2018627.

[18] J. C. Mitchell, M. Mitchell, and U. Stern, “Automated analy-
sis of cryptographic protocols using Murφ,” in Proc. IEEE Symp.
Secur. Privacy, Oakland, CA, USA, May 1997, pp. 141–151, doi:
10.1109/SECPRI.1997.601329.

[19] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D. Song, “Towards
a formal foundation of Web security,” Proc. 23rd IEEE Comput. Secur.
Found. Symp. (CSF), Edinburgh, Scotland, July. 2010, pp. 290–304, doi:
10.1109/CSF.2010.27.

[20] N. Li, M. V. Tripunitara, V. Mahesh, and Z. Bizri, “On mutually
exclusive roles and separation-of-duty,” ACM Trans. Inf. Syst. Secur.,
vol. 10, no. 2, p. 5, 2007.

[21] D. F. C. Brewer and M. J. Nash, “The Chinese wall security policy,” in
Proc. IEEE Symp. Secur. Privacy, May 1989, pp. 206–214.

[22] Cross Domain Assess Control and Delegation in Enter-
prise Applications (CDACDEA) Funded by the National
ICT R&D, accessed on May 20, 2016. [Online].
Available: http://aserg.com.pk/otw-portfolio/cross-domain-assess-
control-and-delegation-in-enterprise-applications-cdacdea/

[23] L. Moura and N. Bjørner, “Satisfiability modulo theories: An appetizer,”
in Formal Methods: Foundations and Applications. Berlin, Germany:
Springer-Verlag, 2009, pp. 23–36.

1968 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 9, SEPTEMBER 2016

[24] M. Frade and J. S. Pinto, “Verification conditions for source-level
imperative programs,” Dept. Comput. Sci. Technol. Center, Univ. Minho,
Braga, Portugal, Tech. Rep. DI-CCTC-08-01, 2008.

[25] S. U. R. Malik, S. U. Khan, and S. K. Srinivasan, “Modeling and analysis
of state-of-the-art VM-based cloud management platforms,” IEEE Trans.
Cloud Comput., vol. 1, no. 1, pp. 50–63, Jan./Jun. 2013.

[26] (2015). SMT-Lib. [Online]. Available: http://smtlib.cs.uiowa.edu/
[27] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools

and Algorithms for the Construction and Analysis of Systems. Berlin,
Germany: Springer 2008, pp. 337–340, doi: 10.1007/978-3-540-78800-
3_24.

[28] L. de Moura and N. BjÃ¸rner, “Satisfiability modulo theories: Intro-
duction and applications,” Commun. ACM, vol. 54, no. 9, pp. 69–77,
Sep. 2011.

[29] T. Murata, “Petri nets: Properties, analysis and applications,” Proc.
IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989, doi: 10.1109/5.24143.

[30] Y. Lin, S. U. R. Malik, K. Bilal, Q. Yang, Y. Wang, and S. U. Khan,
“Designing and modeling of covert channels in operating systems,” IEEE
Trans. Comput., to be published.

[31] W. Reisig and G. Rozenberg, Eds., Lectures on Petri Nets I: Basic
Models. Berlin, Germany: Springer-Verlag, 1998.

[32] S. U. R. Malik and S. U. Khan, “Formal methods in LARGE-SCALE
computing systems,” Proc. ITNOW, vol. 55, no. 2, pp. 52–53, 2013, doi:
10.1093/itnow/bwt025.

[33] A. Armando and S. Ranise, “Scalable automated symbolic analysis
of administrative role-based access control policies by SMT solving,”
J. Comput. Secur., vol. 20, no. 4, pp. 309–352, 2012, doi: 10.3233/JCS-
2012-0461.

[34] A. Armando and S. Ranise, “Automated and efficient analysis of role-
based access control with attributes,” in Data and Applications Security
and Privacy XXVI. Berlin, Germany: Springer 2012, pp. 25–40, doi:
10.1007/978-3-642-31540-4_3.

[35] X. Jin, R. Krishnan, and R. Sandhu, “Reachability analysis for
role-based administration of attributes,” Proc. ACM Workshop Digit.
Identity Manage., New York, NY, USA, 2013, pp. 73–84, doi:
10.1145/2517881.2517891.

[36] F. Yang and S. Manoharan, “A security analysis of the OAuth pro-
tocol,” in Proc. IEEE Pacific Rim Conf. Commun., Comput. Signal
Process. (PACRIM). Victoria, BC, Canada, Aug. 2013, pp. 271–276,
doi: 10.1109/PACRIM.2013.6625487.

[37] K. Jayaraman, V. Ganesh, V, M. Tripunitara, M. Rinard, and S. Chapin,
“Automatic error finding in access-control policies,” in Proc. 18th
ACM Conf. Comput. Commun. Secur., New York, NY, USA, 2011,
pp. 163–174, doi: 10.1145/2046707.2046727.

[38] G. Lowe, “Breaking and fixing the Needham–Schroeder public-key
protocol using FDR,” in Tools and Algorithms for the Construction and
Analysis of Systems. Berlin, Germany: Springer, 1996, pp. 93–102, doi:
10.1007/3-540-61042-1_43.

[39] M. Miculan and C. Urban, “Formal analysis of Facebook Connect single
sign-on authentication protocol,” Proc. SOFSEM, 2011, pp. 1–11.

[40] R. Wang, S. Chen, and X. Wang, “Signing me onto your accounts
through Facebook and Google: A traffic-guided security study of com-
mercially deployed single-sign-on Web services,” in Proc. IEEE Symp.
Secur. Privacy, May 2012, pp. 365–379, doi: 10.1109/SP.2012.30.

[41] K. Bhargavan, C. Fournet, and A. D. Gordon, “Verifying policy-
based security for Web services,” in Proc. 11th ACM Conf. Com-
put. Commun. Secur., New York, NY, USA, 2004, pp. 268–277, doi:
10.1145/1030083.1030120.

[42] W. Mao and C. Boyd, “Towards formal analysis of security protocols,”
in Proc. IEEE 6th Comput. Secur. Found. Workshop, Franconia, NH,
USA, Jun. 1993, pp. 147–158, doi: 10.1109/CSFW.1993.246631.

[43] C. J. F. Cremers, “The Scyther tool: Verification, falsification, and
analysis of security protocols,” Computer Aided Verification. Berlin,
Germany: Springer, 2008, pp. 414–418, doi: 10.1007/978-3-540-70545-
1_38.

[44] L. Viganò, “Automated security protocol analysis with the AVISPA tool,”
Electron. Notes Theor. Comput. Sci., vol. 155, pp. 61–86, May 2006, doi:
10.1016/j.entcs.2005.11.052.

[45] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The TAMARIN
prover for the symbolic analysis of security protocols,” Computer
Aided Verification. Berlin, Germany: Springer, 2013, pp. 696–701, doi:
10.1007/978-3-642-39799-8_48.

[46] W. She, I. Yen, F. Bastani, B. Tran, and B. Thuraisingham, “Role-
based integrated access control and data provenance for SOA based
net-centric systems,” in Proc. IEEE 6th Int. Symp. Service Oriented
Syst. Eng. (SOSE), Dec. 2011, pp. 225–234.

[47] G. Zhao, Z. Ba, X. Wang, F. Zhang, C. Huang, and Y. Tang, “Con-
structing authentication Web in cloud computing,” in Security and
Communication Networks. New York, NY, USA: Wiley, 2015.

[48] M. C. Reynolds and A. Bestavros, “Formal verification of cross-domain
access control policies using model checking,” Dept. CS, Boston Univ.,
Tech. Rep. BUCS-TR-2011-031, Dec. 2011.

[49] N. Bjørner, N. Tillmann, and A. Voronkov, “Path feasibility analysis
for string-manipulating programs,” Tools and Algorithms for the Con-
struction and Analysis of Systems. Berlin, Germany: Springer, 2009,
pp. 307–321, doi: 10.1007/978-3-642-00768-2_27.

[50] B. Korel, “A dynamic approach of test data generation,” in Proc.
IEEE Conf. Softw. Maintenance, San Diego, CA, USA, Nov. 1990,
pp. 311–317, doi: 10.1109/ICSM.1990.131379.

[51] H. Huang and H. Kirchner, “Formal specification and verification of
modular security policy based on colored Petri nets,” IEEE Trans.
Dependable Secure Comput., vol. 8, no. 6, pp. 852–865, Nov./Dec. 2011,
doi: 10.1109/TDSC.2010.43.

[52] L. Cordeiro, B. Fischer, and J. Marques-Silva, “SMT-based bounded
model checking for embedded ANSI-C software,” IEEE Trans.
Softw. Eng., vol. 38, no. 4, pp. 957–974, Jul./Aug. 2012, doi:
10.1109/TSE.2011.59.

[53] C. Chen, P. Grisham, S. Khurshid and D. Perry, “Design and validation
of a general security model with the alloy analyzer,” in Proc. ACM
SIGSOFT 1st Alloy Workshop, 2006, pp.38–47.

[54] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. Cambridge,
MA, USA: MIT Press, 1999.

[55] M. Ali, S. U. R. Malik, and S. U. Khan, “DaSCE: Data security for
cloud environment with semi-trusted third party,” IEEE Trans. Cloud
Comput., to be published.

[56] S. U. R. Malik, S. K. Srinivasan, S. U. Khan, and L. Wang, “A method-
ology for OSPF routing protocol verification,” in Proc. 12th Int. Conf.
Scalable Comput. Commun. (ScalCom), Changzhou, China, Dec. 2012,
pp. 1–5.

[57] S. U. R. Malik, S. K. Srinivasan, and S. U. Khan, “Convergence
time analysis of open shortest path first routing protocol in Internet
scale networks,” IET Electron. Lett., vol. 48, no. 19, pp. 1188–1190,
Sep. 2012.

Quratulain Alam received the master’s degree in
information technology. She is currently pursuing
the Ph.D. degree in information security and formal
methods. Her research interests include cross domain
access control frameworks and formal verification.
She has also worked on a funded project “Cross
Domain Access Control and Delegation in Enter-
prise Applications (CDACDEA)” by ICT R&D.
The project was executed in the Applied Security
Engineering Research Group (ASERG) lab active
at COMSATS Institute of Information Technology,

Islamabad, Pakistan.

Saher Tabbasum received the B.S. degree in
computer science. She is currently pursuing the
M.S. degree in software engineering. Her research
interests include software engineering and formal
verification.

ALAM et al.: FORMAL VERIFICATION OF THE xDAuth PROTOCOL 1969

Saif U. R. Malik received the Ph.D. degree from the
Department of Electrical and Computer Engineering
at North Dakota State University, USA, in 2014.
He is currently an Assistant Professor with the
Department of Computer Science, COMSATS Insti-
tute of Information Technology, Islamabad, Pakistan.
His research interest revolves around the application
of formal methods in large scale computing systems,
software engineering, and security protocols.

Masoom Alam received the Ph.D. degree in com-
puter sciences from the University of Innsbruck,
Austria. He is currently an Associate Professor with
the COMSATS Institute of Information Technology,
Islamabad, Pakistan. His areas of interest include
access control systems, model driven architecture,
and work flow management systems. He received
the best Ph.D. thesis award at the Ph.D. Sym-
posium of Models 2006 Conference Genoa, Italy
(Invited for Springer LNCS publication). He had two
consecutive projects from the National ICT R&D

Fund, which is a highly reputable national funding agency for research and
development projects in Pakistan.

Tamleek Ali received the master’s degree in com-
puter sciences, where he is currently involved in
remote attestation. He is currently an Assistant Pro-
fessor with the Institute of Management Sciences,
Pakistan. His research interests include dynamic
remote attestation through behavior detection and
analysis, and privacy in behavioral attestation sys-
tems. His findings related to privacy in behavioral
attestation systems have been published in confer-
ences and journals of international repute.

Adnan Akhunzada is currently a Ph.D. Fellow and
an Active Researcher with the Center for Mobile
Cloud Computing, University of Malaya, Malaysia.
He had a great experience teaching international
modules. He is a Senior Lecturer with CIIT, Islam-
abad, since 2011. He is author/coauthor in several
high-impact major journal publications, conferences,
and a book chapter. His current research interests
include secure and dependable software defined net-
works, man-at-the-end attacks, lightweight cryptog-
raphy, human attacker attribution and profiling, and

remote data auditing.

Samee U. Khan is currently an Associate Professor
of Electrical and Computer Engineering with the
North Dakota State University, Fargo, ND, USA.
His work has appeared in over 275 publications.
He is Fellow of the Institution of Engineering and
Technology and a Fellow of the British Computer
Society.

Athanasios V. Vasilakos is currently a Professor
with the University of Western Macedonia, Greece.
He has authored or coauthored over 200 technical
papers in major international journals and confer-
ences, five books, and 20 book chapters. He served
as a General Chair, a Technical Program Committee
Chair for many international conferences. He served
or is serving as an Editor of the IEEE renowned
transactions and, also a General Chair of the Council
of Computing of the European Alliances for Inno-
vation.

Rajkumar Buyya (F’15) is currently a Professor
of Computer Science and Software Engineering, a
Future Fellow of the Australian Research Council,
and the Director of the Cloud Computing and
Distributed Systems Laboratory with The Univer-
sity of Melbourne, Australia. He is also serving
as the founding CEO of Manjra soft, a spin-off
company of the University, commercializing its
innovations in cloud computing. He has authored
over 525 publications and five text books. He is one
of the highly cited authors in computer science and

software engineering worldwide.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

