
 1

A Taxonomy of Scientific Workflow Systems for Grid Computing

Jia Yu and Rajkumar Buyya
*

Grid Computing and Distributed Systems (GRIDS) Laboratory

Department of Computer Science and Software Engineering

The University of Melbourne, Australia

htpp://www.gridbus.org

ABSTRACT
With the advent of Grid and application technologies,

scientists and engineers are building more and more

complex applications to manage and process large data sets,

and execute scientific experiments on distributed resources.

Such application scenarios require means for composing

and executing complex workflows. Therefore, many efforts

have been made towards the development of workflow

management systems for Grid computing. In this paper, we

propose a taxonomy that characterizes and classifies

various approaches for building and executing workflows

on Grids. The taxonomy not only highlights the design and

engineering similarities and differences of state-of-the-art in

Grid workflow systems, but also identifies the areas that

need further research.

Keywords
Grid computing, Taxonomy, Scientific workflows.

1. INTRODUCTION
Grids [9] have emerged as a global cyber-infrastructure for

the next-generation of e-Science applications, by integrating

large-scale, distributed and heterogeneous resources.

Scientific communities, such as high-energy physics,

gravitational-wave physics, geophysics, astronomy, and

bioinformatics, are utilizing Grids to share, manage and

process large data sets. In order to support complex

scientific experiments, distributed resources such as

computational devices, data, applications, and scientific

instruments need to be orchestrated while managing

workflow operations within Grid environments [15].

Scientific workflow is concerned with the automation of

scientific processes in which tasks are structured based on

their control and data dependencies. The workflow

paradigm for scientific applications on Grids offers several

advantages, such as (a) ability to build dynamic

applications which orchestrate distributed resources, (b)

utilizing resources that are located in a particular domain to

increase throughput or reduce execution costs, (c) execution

spanning multiple administrative domains to obtain specific

processing capabilities, and (d) integration of multiple

teams involved in management of different parts of the

experiment workflow – thus promoting inter-organizational

collaborations.

In the recent past, several Grid workflow systems have

been proposed and developed for defining, managing and

executing scientific workflows. In order to enhance

understanding of the field, we propose a taxonomy that

primarily (a) captures architectural styles and (b) identifies

design and engineering similarities and differences between

them. The taxonomy provides an in-depth understanding of

building and executing workflows on Grids. It compares

different approaches and also helps users to decide on

minimum subset of features required for their systems.

The rest of the paper is organized as follows: Section 2

presents taxonomy that classifies approaches based on

major functions and architectural styles of Grid workflow

systems. In Section 3, we map the proposed taxonomy onto

selected Grid workflow systems and conclude in Section 4.

2. TAXONOMY
The taxonomy characterizes and classifies approaches of

scientific workflow systems in the context of Grid

computing. It consists of four elements of a Grid workflow

management system: (a) workflow design, (b) workflow

scheduling, (c) fault tolerance and (d) data movement (see

Figure 1). In this section, we look at each element and its

taxonomy briefly. A detailed taxonomy and in depth

discussion on its mapping can be found in [23].

2.1 Workflow Design

Workflow design determines how workflow components

can be defined and composed.

2.1.1 Workflow Structure

 A workflow is composed by connecting multiple scientific

tasks according to their dependencies. Workflow structure

indicates the temporal relationship between there tasks. In

general, a workflow can be represented as a Directed

Acyclic Graph (DAG) or a non-DAG.

In DAG-based workflow, workflow structure can be

categorized as sequence, parallelism, and choice.

Sequence is defined as an ordered series of tasks, with one

task starting after a previous task has completed.

Parallelism represents tasks which are performed

concurrently, rather than serially. In choice structured

workflows, a task is selected to execute at run-time when its

associated conditions are true. In addition to all structures

contained in a DAG-based, a non-DAG workflow also

includes iteration structure, in which sections of workflow

tasks in an iteration block are allowed to be repeated.

*Corresponding author, raj@cs.mu.oz.au

44 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

 2

2.1.2 Workflow Model/Specification

Workflow Model (also called workflow specification)

defines a workflow including its task definition and

structure definition. There are two types of workflow

models, namely abstract and concrete.

In the abstract model, a workflow is described in an

abstract form, in which the workflow is specified without

referring to specific Grid resources for task execution. In

contrast, the concrete model binds workflow tasks to

specific resources. Given the dynamic nature of the Grid

environment, it is more suitable for users to define

workflow applications in the abstract model. A full or

partial concrete model can be generated just before or

during workflow execution, according to the current status

of resources.

Figure 1. A taxonomy of scientific workflow systems for Grid computing.

2.1.3 Workflow Composition System

Workflow composition systems are designed for enabling

users to assemble components into workflows. They need

to provide a high level view for the construction of Grid

workflow applications and hide the complexity of

Workflow

Design

Workflow

Scheduling

Fault

Tolerance

Data

Movement

Grid

Workflow

 System

Workflow Structure

Workflow

Composition System

Workflow

Model/Specification

DAG

Non-DAG

Sequence

Choice

Iteration

Parallelism

Sequence

Choice

Parallelism

Concrete

Abstract

User-directed
Graph-based Modeling

Automatic

Language-based Modeling

Architecture

Scheduling Strategies

Decision Making

Planning Scheme

Decentralized

Hierarchical

Centralized

Global

Local

Static

Dynamic

User-directed

Simulation-based

 Prediction-based

Just in-time

Trust-driven

Market-driven

Performance-driven

Checkpoint /Restart

Replication

Alternate Task

Redundancy

Task-level

Workflow-level

Alternate Resource

Retry

User-directed

Automatic

Centralized

 Mediated

Peer-to-Peer

User-defined Exception Handling

Rescue workflow

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 45

 3

underlying Grid systems. The composition systems are

categorized as user-directed and automatic.

User-directed systems require users to edit workflows

directly. In general, users can use workflow languages such

as Extensible Markup Language (XML) [21] for language-

based modeling and the tools such as Kepler [2] for graph-

based modeling to compose workflows. Compared with

language-based modeling, Graphical representation is very

intuitive and can be handled easily even by a non-expert

user. However, workflow languages are more appropriate

for storing and transfer whereas the graphical representation

is required to be converted into other form for such

manipulation.

Automatic systems generate workflows for users

automatically according to their higher level requirements,

such as data products and initial input values. Compared

with user-directed systems, automatic systems are ideal for

large scale workflows which are very time consuming to

compose manually. However, the automatic composition of

application components is challenging because it is difficult

to capture the functionality of components and data types

used by the components.

2.2 Workflow Scheduling

Workflow scheduling focuses on mapping and managing

the execution of workflow tasks on shared resources that

are not directly under the control of workflow systems.

2.2.1 Scheduling Architecture

The architecture of the scheduling infrastructure is very

important for the scalability, autonomy, quality and

performance of the system [11]. Three major categories of

workflow scheduling architecture are centralized,

hierarchical and decentralized scheduling schemes.

In the centralized workflow enactment environment, one

central scheduler makes scheduling decisions for all tasks in

the workflow. For hierarchical scheduling, there is a central

manager and multiple lower-level sub-workflow schedulers.

This central manager is responsible for controlling the

workflow execution and assigning sub-workflows to the

lower-level schedulers. In contrast with the centralized and

hierarchical schemes, there are multiple schedulers without

any central controller in decentralized scheduling. Every

scheduler can communicate each other and schedule a sub-

workflow to another scheduler with lower load.

It is believed that the centralized scheme can produce

efficient schedules because it has all necessary information

about all tasks in workflows. However, it is not scalable

with respect to the number of tasks, the classes and number

of Grid resources that are generally autonomous. The major

advantage of using the hierarchical architecture is that

different scheduling policies can be deployed in the central

manager and lower-level schedulers [11]. However, the

failure of the central manager will result in entire system

failure. Decentralized scheduling is more scalable but faces

more challenges to generate optimal solutions for overall

workflow performance.

2.2.2 Decision Making

It is difficult to find a single best solution for mapping

workflows onto resources for all workflow applications,

since applications can have very different characteristics. It

depends to some degree on the application models to be

scheduled. In general, decisions about mapping tasks in a

workflow onto resources can be based on the information of

the current task or of the entire workflow. Scheduling

decisions made with reference to just the task or sub-

workflow at hand are called local decisions while

scheduling decision made with reference to the whole

workflow are called global decisions [5].

It is believed that global decision based scheduling can

provide better overall results, since local decision

scheduling only takes one task or sub-workflow into

account. However, it also takes much more time in

scheduling decision making. The overhead produced by

global decision based scheduling will reduce the overall

benefit and can even exceed the benefits it will produce.

Therefore, the decision making of workflow scheduling

should consider both overall execution time and scheduling

time.

2.2.3 Planning Scheme

Schemes for translating abstract models to concrete models

can be categorized into either static or dynamic. In a static

scheme, concrete models have to be generated before the

execution, according to current information about the

execution environment, and the dynamically changing state

of the resources is not taken into account. In contrast, a

dynamic scheme uses both dynamic and static information

about resources in order to make scheduling decisions at

run-time.

Static schemes can be classified as user-directed or

simulation-based. In user-directed scheduling, users

emulate the scheduling process and make resource mapping

decisions according to their knowledge, preference and/or

performance criteria. In simulation-based scheduling, a

‘best’ schedule is achieved by simulating task execution on

a given set of resources before a workflow starts execution.

The simulation can be processed based on static

information or the result of performance estimation.

Dynamic schemes include prediction-based and just in-

time scheduling. Prediction-based dynamic scheduling uses

dynamic information in conjunction with some results based

on prediction. It is similar to simulation-based static

scheduling, in which the scheduler is required to predict the

performance of task execution on resources and generate a

near optimal schedule for the task before it starts the

execution. However, it changes the initial schedule

dynamically during the execution. Rather than making a

46 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

 4

schedule prior to scheduling, just in-time scheduling only

makes a scheduling decision at the time of task execution.

 Planning ahead in Grid environments may produce a

poor schedule, since it is a dynamic environment where

utilization and the availability of resources varies over time

and a better resource can join at any time. Moreover, it is

not easy to accurately predict execution time of all

application components on Grid resources. However, as the

technology of advance reservation for various resources

improve, it is believed that the role of static and prediction-

based planning will increase [5] .

2.2.4 Scheduling Strategy

In general, scheduling workflow applications in a

distributed system is an NP-complete problem [8]. Many

heuristics have been developed to obtain near-optimal

solutions to match users’ QoS constraints such as deadline

and budget.

Performance-driven strategies try to find a mapping of

workflow tasks onto resources that achieves optimal

execution performance such as minimum overall execution

time. Market-driven strategies [10] employ market models

to manage resource allocation for processing workflow

tasks. Workflow schedulers with a market-driven strategy

act as consumers buying services from resource providers

and pay some form of electronic currency for executing

tasks in workflows. Unlike performance-driven strategies,

market-driven schedulers may choose a resource with later

deadline if its usage price is cheaper.

Recently trust-driven scheduling approaches [18] in

distributed systems are emerging. Trust-driven schedulers

select resources based on their trust properties such as

security policy, accumulated reputation, self-defense

capability, attack history, and site vulnerability. By using

trust-driven approaches, the overall reliability of workflow

systems can be increased by reducing the chance of

selecting malicious hosts and disreputable resources.

 2.3 Fault Tolerance

In Grid environments, workflow execution failures can

occur for various reasons such as network failure,

overloaded resource conditions, or non-availability of

required software components. Thus, Grid workflow

management systems should be able to identify and handle

failures and support reliable execution in the presence of

concurrency and failures. Workflow failure handling

techniques are classified as task-level and workflow-level

[12]. Task-level techniques mask the effects of the

execution failure of tasks in the workflow, while workflow-

level techniques manipulate the workflow structure such as

execution flow to deal with erroneous conditions.

Task-level techniques have been widely studied in

parallel and distributed systems. They can be classified as

retry, alternate resource, checkpoint/restart and

replication. The retry technique is the simplest failure

recovery technique, as it simply tries to execute the same

task on the same resource after failure. The alternate

resource technique submits failed task to another resource.

The checkpoint/restart technique moves failed tasks

transparently to other resources, so that the task can

continue its execution from the point of failure. The

replication technique runs the same task simultaneously on

different Grid resources to ensure task execution provided

that at least one of the replicas does not fail.

Workflow-level techniques are classified as alternate

task, redundancy, user-defined exception handling and

rescue workflow. The alternate task technique executes

another implementation of a certain task if the previous one

failed, while the redundancy technique executes multiple

alternative tasks simultaneously. User-defined exception

handling allows users to specify a special treatment for a

certain failure of a task in the workflow. The rescue

workflow technique generates a rescue workflow, which

records information about failed tasks, during the first

workflow execution. The rescue workflow is used for later

submission.

2.4 Intermediate Data Movement

For Grid workflow applications, the input files of tasks

need to be staged to a remote site before processing tasks.

Similarly, output files may be required by their children

tasks which are processed on other resources. Therefore,

intermediate data has to be staged out to corresponding

Grid sites. Some systems require users to manage

intermediate data transfer in the workflow specification

(user-directed approach), while some systems provide

automatic mechanisms to transfer intermediate data.

We classify approaches of automatic intermediate data

movement as centralized, mediated and peer-to-peer. A

centralized approach transfers intermediate data between

resources via a central point. In a mediated approach rather

than using a central point, the locations of the intermediate

data are managed by a distributed data management system.

A peer-to-peer approach transfers data between processing

resources.

 In general, centralized approaches are easily

implemented and suit workflow applications in which large-

scale data flow is not required. Mediated approaches are

more scalable and suitable for applications which need to

keep intermediate data for later use. Since data is

transmitted from a source resource to a destination resource

directly, without involving any third-party service, peer-to-

peer approaches save transmission time significantly and

reduce the bottleneck caused by the centralized and

mediated approaches. Thus, the peer-to-peer approach is

more suitable for large-scale intermediate data transfer.

However, there are more difficulties in deployment because

it requires a Grid site to be capable of providing both data

management and movement service.

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 47

 5

3. GRID WORKFLOW SYSTEM SURVEY
A mapping of taxonomy to several existing Grid workflow

systems is shown in Table 1. The detailed discussion on

these systems along with identification of areas that need

further work can be found in [23].

* user-defined – the architecture of the system has been explicitly designed for user extension.

4. CONCLUSION
We have presented a taxonomy for Grid workflow systems.

The taxonomy focuses on workflow design, workflow

scheduling, fault management and data movement. We also

survey some workflow management systems for Grid

computing and classify them into different categories using

the taxonomy. This paper thus helps to understand key

Workflow Design Workflow Scheduling

Project
Structure Model

Composition

System
Architecture

Decision

Making

Planning

Scheme
Strategies

Fault-tolerance
Data

Movement

DAGMan

[19]
DAG Abstract User-directed

-Language-based
Centralized Local Dynamic

 -Just in-time

Performance-

driven

Task Level

-Migration

-Retrying

Workflow Level

-Rescue workflow

User-directed

Pegasus

[6]
DAG Abstract

User-directed
-Language-based

Automatic

Centralized
Local

Global

Static

-user-directed

Dynamic

-Just in-time

Performance-

driven
Based on DAGMan Mediated

Triana

[20]
Non-DAG Abstract

User-directed

-Graph-based
Decentralized Local

Dynamic

-Just in-time

Performance

-driven
Based on GAT manger Peer-to-Peer

ICENI

[16]
Non-DAG Abstract

User-directed

-Language-based

-Graph-based

Centralized Global
Dynamic
-Prediction-

based

Performance-

driven

Market-

driven

Based on ICENI

middleware
Mediated

Taverna

[17]
DAG

Abstract

Concrete

User-directed
-Language-based

-Graph-based
Centralized Local

Dynamic

-Just in-time

Performance-

driven

Task Level
-Retry

-Alternate Resource
Centralized

GrADS

[3]
DAG Abstract

User-directed

-Language-based
Centralized

Local

Global

Dynamic

-Prediction-

based

Performance-

driven

Task Level in

rescheduling work in

GrADS, but not in

workflows.

Peer-to-Peer

GridFlow

[4]
DAG Abstract

User-directed
-Graph-based

-Language-based
Hierarchical Local

Static
-Simulation-

based

Performance-

driven

Task Level

-Alternate resource
Peer-to-Peer

UNICORE

[1]
Non-DAG Concrete User-directed

-Graph-based
Centralized

User-

defined*
Static
-User-directed

User-

defined*
Based on UNICORE

middleware Mediated

Gridbus

workflow

[22]

DAG
Abstract

Concrete
User-directed
-Language-based

Hierarchical Local

Static
-User-directed

Dynamic
-Just in-time

Market-

driven

Task Level

-Alternate resource

Centralized

Peer-to-Peer

Askalon

[7]
Non-DAG Abstract

User-directed
-Graph-based

-Language-based
Decentralized Global

Dynamic
-Just in-time

-Prediction-

based

Performance-

driven

Market-

driven

Task Level
-Retry

-Alternate resource

Workflow level
-Rescue workflow

Centralized

User-directed

Karajan

[13]

Non-DAG Abstract
User-directed

-Graph-based

-Language-based
Centralized User-defined*

Task Level
-Retry

-Alternate resource

-checkpoint/restart
Workflow Level

-User-defined exception

handling

User-directed

Kepler

[14]
Non-DAG

Abstract

Concrete

User-directed

-Graph-based
Centralized User-defined*

Task Level

- Alternate resource

Workflow Level
- User-defined exception

handling

- Workflow rescue

Centralized

Mediated

Peer-to-Peer

Table 1. Taxonomy mapping to Grid workflow systems.

48 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

 6

workflow management approaches and identify possible

future enhancements.

5. ACKNOWLEDGMENTS
We would like to acknowledge all developers of the

workflow management systems described in the paper. We

thank Chee Shin Yeo, Hussein Gibbins, Anthony Sulistio,

Srikumar Venugopal, Tianchi Ma, Sushant Goel, and

Baden Hughes (Melbourne University, Australia), Rob

Gray (Monash University, Australia), Wolfram Schiffmann

(FernUniversitaet in Hagen, Germany), Ivona Brandic

(University of Vienna, Austria), Soonwook Hwang

(National Institute of Informatics, Japan), Ewa Deelman

(University of Southern California, USA), Chris Mattmann

(NASA Jet Propulsion Laboratory, USA), Henan Zhao

(University of Manchester, UK), Bertram Ludaescher

(University of California, Davis), Thomas Fahringer

(University of Innsbruck, Austria), Gregor von Laszewski

(Argonne National Laboratory, USA), Ken Kennedy,

Anirban Mandal, and Chuck Koelbel (Rice University,

USA) for their comments on this paper. We thank

anonymous reviewers for their constructive comments. This

work is partially supported through the Australian Research

Council (ARC) Discovery Project grant and Storage

Technology Corporation sponsorship of Grid Fellowship.

6. REFERENCES
[1] J. Almond and D. Snelling. UNICORE: Secure and

Uniform Access to Distributed Resources via the World

Wide Web. White Paper, October 1998,

[2] I. Altintas et al. A Framework for the Design and Reuse of

Grid Workflows, International Workshop on Scientific

Applications on Grid Computing (SAG'04), LNCS 3458,

Springer, 2005

[3] F. Berman et al. The GrADS Project: Software Support for

High-Level Grid Application Development. International

Journal of High Performance Computing

Applications(JHPCA), 15(4):327-344, SAGE Publications

Inc., London, UK, Winter 2001.

[4] J. Cao et al. GridFlow:Workflow Management for Grid

Computing. In 3rd International Symposium on Cluster

Computing and the Grid (CCGrid), Tokyo, Japan, IEEE

CS Press, Los Alamitos, CA, USA, May 12-15, 2003.

[5] E. Deelman, J. Blythe, Y. Gil, and C. Kesselman.

Workflow Management in GriPhyN. The Grid Resource

Management, Kluwer, Netherlands, 2003.

[6] E. Deelman et al. Mapping Abstract Complex Workflows

onto Grid Environments. Journal of Grid Computing,

1:25-39, Kluwer Academic Publishers, Netherlands, 2003.

[7] T. Fahringer et al. Truong. ASKALON: a tool set for

cluster and Grid computing. Concurrency and

Computation: Practice and Experience, 17:143-169,

Wiley InterScience, 2005.

[8] D. Fernández-Baca. Allocating Modules to Processors in a

Distributed System. IEEE Transactions on Software

Engineering, 15(11): 1427-1436, November 1989.

[9] I. Foster and C. Kesselman (editors), The Grid: Blueprint

for a Future Computing Infrastructure, Morgan Kaufmann

Publishers, USA, 1999.

[10] A. Geppert, M. Kradolfer, and D. Tombros. Market-based

Workflow Management. International Journal of

Cooperative Information Systems, World Scientific

Publishing Co., NJ, USA, 1998.

[11] V. Hamscher et al. Evaluation of Job-Scheduling

Strategies for Grid Computing. In 1st IEEE/ACM

International Workshop on Grid Computing (Grid 2000),

Springer-Verlag, Heidelberg, Germany, 2000; 191-202.

[12] S. Hwang and C. Kesselman. Grid Workflow: A Flexible

Failure Handling Framework for the Grid. In 12th IEEE

International Symposium on High Performance

Distributed Computing (HPDC’03), Seattle, Washington,

USA, IEEE CS Press, Los Alamitos, CA, USA, June 22 -

24, 2003.

[13] G. von Laszewski. Java CoG Kit Workflow Concepts for

Scientific Experiments. Technical Report, Argonne

National Laboratory, Argonne, IL, USA, 2005.

[14] B. Ludäscher et al. Scientific Workflow Management and

the KEPLER System. Concurrency and Computation:

Practice & Experience, Special Issue on Scientific

Workflows, to appear, 2005

[15] A. Mayer et al. Workflow Expression: Comparison of

Spatial and Temporal Approaches. In Workflow in Grid

Systems Workshop, GGF-10, Berlin, March 9, 2004.

[16] S. McGough et al. Workflow Enactment in ICENI. In UK

e-Science All Hands Meeting, Nottingham, UK, IOP

Publishing Ltd, Bristol, UK, Sep. 2004; 894-900.

[17] T. Oinn et al. Taverna: a tool for the composition and

enactment of bioinformatics workflows. Bioinformatics,

20(17):3045-3054, Oxford University Press, London, UK,

2004.

[18] S. S. Song, Y. K. Kwok, and K. Hwang. Trusted Job

Scheduling in Open computational Grids: Security-Driven

heuristics and A Fast Genetic Algorithm. In 19th IEEE

International Parallel & Distributed Processing

Symposium (IPDPS-2005), Denver, CO, USA., IEEE CS

Press, Los Alamitos, CA, USA., April 4-8, 2005.

[19] T. Tannenbaum, D. Wright, K. Miller, and M. Livny.

Condor - A Distributed Job Scheduler. Beowulf Cluster

Computing with Linux, The MIT Press, MA, USA, 2002.

[20] I. Taylor, M. Shields, and I. Wang. Resource Management

of Triana P2P Services. Grid Resource Management,

Kluwer, Netherlands, June 2003.

[21] W3C. Extensible Markup Language (XML) 1.0

[22] J. Yu and R. Buyya. A Novel Architecture for Realizing

Grid Workflow using Tuple Spaces. In 5th IEEE/ACM

International Workshop on Grid Computing (GRID 2004),

Pittsburgh, USA, IEEE CS Press, Los Alamitos, CA,

USA, Nov. 8, 2004.

[23] J. Yu and R. Buyya. A Taxonomy of Workflow

Management Systems for Grid Computing. Technical

Report, GRIDS-TR-2005-1, Grid Computing and

Distributed Systems Laboratory, University of Melbourne,

Australia, March 10, 2005.

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 49

