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ABSTRACT 
With the advent of Grid and application technologies, 

scientists and engineers are building more and more 

complex applications to manage and process large data sets, 

and execute scientific experiments on distributed resources. 

Such application scenarios require means for composing 

and executing complex workflows. Therefore, many efforts 

have been made towards the development of workflow 

management systems for Grid computing. In this paper, we 

propose a taxonomy that characterizes and classifies 

various approaches for building and executing workflows 

on Grids. The taxonomy not only highlights the design and 

engineering similarities and differences of state-of-the-art in 

Grid workflow systems, but also identifies the areas that 

need further research.  
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1. INTRODUCTION 
Grids [9] have emerged as a global cyber-infrastructure for 

the next-generation of e-Science applications, by integrating 

large-scale, distributed and heterogeneous resources. 

Scientific communities, such as high-energy physics, 

gravitational-wave physics, geophysics, astronomy, and 

bioinformatics, are utilizing Grids to share, manage and 

process large data sets. In order to support complex 

scientific experiments, distributed resources such as 

computational devices, data, applications, and scientific 

instruments need to be orchestrated while managing 

workflow operations within Grid environments [15]. 

Scientific workflow is concerned with the automation of 

scientific processes in which tasks are structured based on 

their control and data dependencies. The workflow 

paradigm for scientific applications on Grids offers several 

advantages, such as (a) ability to build dynamic 

applications which orchestrate distributed resources, (b) 

utilizing resources that are located in a particular domain to 

increase throughput or reduce execution costs, (c) execution 

spanning multiple administrative domains to obtain specific 

processing capabilities, and (d) integration of multiple 

teams involved in management of different parts of the 

experiment workflow – thus promoting inter-organizational 

collaborations.  

In the recent past, several Grid workflow systems have 

been proposed and developed for defining, managing and 

executing scientific workflows. In order to enhance 

understanding of the field, we propose a taxonomy that 

primarily (a) captures architectural styles and (b) identifies 

design and engineering similarities and differences between 

them. The taxonomy provides an in-depth understanding of 

building and executing workflows on Grids. It compares 

different approaches and also helps users to decide on 

minimum subset of features required for their systems. 

The rest of the paper is organized as follows: Section 2 

presents taxonomy that classifies approaches based on 

major functions and architectural styles of Grid workflow 

systems. In Section 3, we map the proposed taxonomy onto 

selected Grid workflow systems and conclude in Section 4.  

 

2. TAXONOMY 
The taxonomy characterizes and classifies approaches of 

scientific workflow systems in the context of Grid 

computing. It consists of four elements of a Grid workflow 

management system: (a) workflow design, (b) workflow 

scheduling, (c) fault tolerance and (d) data movement (see 

Figure 1). In this section, we look at each element and its 

taxonomy briefly. A detailed taxonomy and in depth 

discussion on its mapping can be found in [23]. 

 

2.1   Workflow Design 

Workflow design determines how workflow components 

can be defined and composed.  

2.1.1 Workflow Structure 

 A workflow is composed by connecting multiple scientific 

tasks according to their dependencies. Workflow structure 

indicates the temporal relationship between there tasks. In 

general, a workflow can be represented as a Directed 

Acyclic Graph (DAG) or a non-DAG. 

In DAG-based workflow, workflow structure can be 

categorized as sequence, parallelism, and choice.  

Sequence is defined as an ordered series of tasks, with one 

task starting after a previous task has completed. 

Parallelism represents tasks which are performed 

concurrently, rather than serially. In choice structured 

workflows, a task is selected to execute at run-time when its 

associated conditions are true. In addition to all structures 

contained in a DAG-based, a non-DAG workflow also 

includes iteration structure, in which sections of workflow 

tasks in an iteration block are allowed to be repeated. 
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2.1.2 Workflow Model/Specification 

Workflow Model (also called workflow specification) 

defines a workflow including its task definition and 

structure definition. There are two types of workflow 

models, namely abstract and concrete.  

In the abstract model, a workflow is described in an 

abstract form, in which the workflow is specified without 

referring to specific Grid resources for task execution. In 

contrast, the concrete model binds workflow tasks to 

specific resources. Given the dynamic nature of the Grid 

environment, it is more suitable for users to define 

workflow applications in the abstract model. A full or 

partial concrete model can be generated just before or 

during workflow execution, according to the current status 

of resources. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A taxonomy of scientific workflow systems for Grid computing. 

2.1.3 Workflow Composition System 

Workflow composition systems are designed for enabling 

users to assemble components into workflows.  They need 

to provide a high level view for the construction of Grid 

workflow applications and hide the complexity of 
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underlying Grid systems. The composition systems are 

categorized as user-directed and automatic. 

User-directed systems require users to edit workflows 

directly. In general, users can use workflow languages such 

as Extensible Markup Language (XML) [21] for language-

based modeling and the tools such as Kepler [2] for graph-

based modeling to compose workflows. Compared with 

language-based modeling, Graphical representation is very 

intuitive and can be handled easily even by a non-expert 

user. However, workflow languages are more appropriate 

for storing and transfer whereas the graphical representation 

is required to be converted into other form for such 

manipulation.  

Automatic systems generate workflows for users 

automatically according to their higher level requirements, 

such as data products and initial input values. Compared 

with user-directed systems, automatic systems are ideal for 

large scale workflows which are very time consuming to 

compose manually. However, the automatic composition of 

application components is challenging because it is difficult 

to capture the functionality of components and data types 

used by the components. 
 

2.2 Workflow Scheduling 

Workflow scheduling focuses on mapping and managing 

the execution of workflow tasks on shared resources that 

are not directly under the control of workflow systems. 
 

2.2.1 Scheduling Architecture 

The architecture of the scheduling infrastructure is very 

important for the scalability, autonomy, quality and 

performance of the system [11]. Three major categories of 

workflow scheduling architecture are centralized, 

hierarchical and decentralized scheduling schemes.   

In the centralized workflow enactment environment, one 

central scheduler makes scheduling decisions for all tasks in 

the workflow. For hierarchical scheduling, there is a central 

manager and multiple lower-level sub-workflow schedulers. 

This central manager is responsible for controlling the 

workflow execution and assigning sub-workflows to the 

lower-level schedulers. In contrast with the centralized and 

hierarchical schemes, there are multiple schedulers without 

any central controller in decentralized scheduling. Every 

scheduler can communicate each other and schedule a sub-

workflow to another scheduler with lower load.   

It is believed that the centralized scheme can produce 

efficient schedules because it has all necessary information 

about all tasks in workflows. However, it is not scalable 

with respect to the number of tasks, the classes and number 

of Grid resources that are generally autonomous. The major 

advantage of using the hierarchical architecture is that 

different scheduling policies can be deployed in the central 

manager and lower-level schedulers [11]. However, the 

failure of the central manager will result in entire system 

failure. Decentralized scheduling is more scalable but faces 

more challenges to generate optimal solutions for overall 

workflow performance. 

 

2.2.2 Decision Making 

It is difficult to find a single best solution for mapping 

workflows onto resources for all workflow applications, 

since applications can have very different characteristics. It 

depends to some degree on the application models to be 

scheduled. In general, decisions about mapping tasks in a 

workflow onto resources can be based on the information of 

the current task or of the entire workflow. Scheduling 

decisions made with reference to just the task or sub-

workflow at hand are called local decisions while 

scheduling decision made with reference to the whole 

workflow are called global decisions [5].  

It is believed that global decision based scheduling can 

provide better overall results, since local decision 

scheduling only takes one task or sub-workflow into 

account. However, it also takes much more time in 

scheduling decision making. The overhead produced by 

global decision based scheduling will reduce the overall 

benefit and can even exceed the benefits it will produce. 

Therefore, the decision making of workflow scheduling 

should consider both overall execution time and scheduling 

time.  

 

2.2.3 Planning Scheme 

Schemes for translating abstract models to concrete models 

can be categorized into either static or dynamic. In a static 

scheme, concrete models have to be generated before the 

execution, according to current information about the 

execution environment, and the dynamically changing state 

of the resources is not taken into account. In contrast, a 

dynamic scheme uses both dynamic and static information 

about resources in order to make scheduling decisions at 

run-time. 

Static schemes can be classified as user-directed or 

simulation-based. In user-directed scheduling, users 

emulate the scheduling process and make resource mapping 

decisions according to their knowledge, preference and/or 

performance criteria. In simulation-based scheduling, a 

‘best’ schedule is achieved by simulating task execution on 

a given set of resources before a workflow starts execution. 

The simulation can be processed based on static 

information or the result of performance estimation.  

Dynamic schemes include prediction-based and just in-

time scheduling. Prediction-based dynamic scheduling uses 

dynamic information in conjunction with some results based 

on prediction. It is similar to simulation-based static 

scheduling, in which the scheduler is required to predict the 

performance of task execution on resources and generate a 

near optimal schedule for the task before it starts the 

execution. However, it changes the initial schedule 

dynamically during the execution. Rather than making a 
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schedule prior to scheduling, just in-time scheduling only 

makes a scheduling decision at the time of task execution.  

    Planning ahead in Grid environments may produce a 

poor schedule, since it is a dynamic environment where 

utilization and the availability of resources varies over time 

and a better resource can join at any time. Moreover, it is 

not easy to accurately predict execution time of all 

application components on Grid resources. However, as the 

technology of advance reservation for various resources 

improve, it is believed that the role of static and prediction-

based planning will increase [5] . 

 

2.2.4 Scheduling Strategy 

In general, scheduling workflow applications in a 

distributed system is an NP-complete problem [8]. Many 

heuristics have been developed to obtain near-optimal 

solutions to match users’ QoS constraints such as deadline 

and budget.  

Performance-driven strategies try to find a mapping of 

workflow tasks onto resources that achieves optimal 

execution performance such as minimum overall execution 

time. Market-driven strategies [10] employ market models 

to manage resource allocation for processing workflow 

tasks. Workflow schedulers with a market-driven strategy 

act as consumers buying services from resource providers 

and pay some form of electronic currency for executing 

tasks in workflows. Unlike performance-driven strategies, 

market-driven schedulers may choose a resource with later 

deadline if its usage price is cheaper. 

Recently trust-driven scheduling approaches [18] in 

distributed systems are emerging. Trust-driven schedulers 

select resources based on their trust properties such as 

security policy, accumulated reputation, self-defense 

capability, attack history, and site vulnerability. By using 

trust-driven approaches, the overall reliability of workflow 

systems can be increased by reducing the chance of 

selecting malicious hosts and disreputable resources. 

 

 2.3 Fault Tolerance 

In Grid environments, workflow execution failures can 

occur for various reasons such as network failure, 

overloaded resource conditions, or non-availability of 

required software components. Thus, Grid workflow 

management systems should be able to identify and handle 

failures and support reliable execution in the presence of 

concurrency and failures. Workflow failure handling 

techniques are classified as task-level and workflow-level 

[12]. Task-level techniques mask the effects of the 

execution failure of tasks in the workflow, while workflow-

level techniques manipulate the workflow structure such as 

execution flow to deal with erroneous conditions.  

Task-level techniques have been widely studied in 

parallel and distributed systems. They can be classified as 

retry, alternate resource, checkpoint/restart and 

replication. The retry technique is the simplest failure 

recovery technique, as it simply tries to execute the same 

task on the same resource after failure. The alternate 

resource technique submits failed task to another resource. 

The checkpoint/restart technique moves failed tasks 

transparently to other resources, so that the task can 

continue its execution from the point of failure. The 

replication technique runs the same task simultaneously on 

different Grid resources to ensure task execution provided 

that at least one of the replicas does not fail.  

Workflow-level techniques are classified as alternate 

task, redundancy, user-defined exception handling and 

rescue workflow. The alternate task technique executes 

another implementation of a certain task if the previous one 

failed, while the redundancy technique executes multiple 

alternative tasks simultaneously. User-defined exception 

handling allows users to specify a special treatment for a 

certain failure of a task in the workflow. The rescue 

workflow technique generates a rescue workflow, which 

records information about failed tasks, during the first 

workflow execution. The rescue workflow is used for later 

submission.  

 

2.4 Intermediate Data Movement 

For Grid workflow applications, the input files of tasks 

need to be staged to a remote site before processing tasks. 

Similarly, output files may be required by their children 

tasks which are processed on other resources. Therefore, 

intermediate data has to be staged out to corresponding 

Grid sites. Some systems require users to manage 

intermediate data transfer in the workflow specification 

(user-directed approach), while some systems provide 

automatic mechanisms to transfer intermediate data.  

We classify approaches of automatic intermediate data 

movement as centralized, mediated and peer-to-peer. A 

centralized approach transfers intermediate data between 

resources via a central point. In a mediated approach rather 

than using a central point, the locations of the intermediate 

data are managed by a distributed data management system. 

A peer-to-peer approach transfers data between processing 

resources.  

 In general, centralized approaches are easily 

implemented and suit workflow applications in which large-

scale data flow is not required. Mediated approaches are 

more scalable and suitable for applications which need to 

keep intermediate data for later use. Since data is 

transmitted from a source resource to a destination resource 

directly, without involving any third-party service, peer-to-

peer approaches save transmission time significantly and 

reduce the bottleneck caused by the centralized and 

mediated approaches. Thus, the peer-to-peer approach is 

more suitable for large-scale intermediate data transfer. 

However, there are more difficulties in deployment because 

it requires a Grid site to be capable of providing both data 

management and movement service. 
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3. GRID WORKFLOW SYSTEM SURVEY 
A mapping of taxonomy to several existing Grid workflow 

systems is shown in Table 1. The detailed discussion on 

these systems along with identification of areas that need 

further work can be found in [23]. 

 

  

* user-defined – the architecture of the system has been explicitly designed for user extension.    

4. CONCLUSION 
We have presented a taxonomy for Grid workflow systems. 

The taxonomy focuses on workflow design, workflow 

scheduling, fault management and data movement. We also 

survey some workflow management systems for Grid 

computing and classify them into different categories using 

the taxonomy. This paper thus helps to understand key 
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Table 1. Taxonomy mapping to Grid workflow systems. 
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workflow management approaches and identify possible 

future enhancements. 
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