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Abstract—Over the last few years, Grid technologies 

have progressed towards a service-oriented paradigm 
that enables a new way of service provisioning based on 
utility computing models. Users consume these services 
based on their QoS (Quality of Service) requirements. 
In such “pay-per-use” Grids, workflow execution cost 
must be considered during scheduling based on users’ 
QoS constraints. In this paper, we propose a budget 
constraint based scheduling, which minimizes execution 
time while meeting a specified budget for delivering 
results.  A new type of genetic algorithm is developed to 
solve the scheduling optimization problem and we test 
the scheduling algorithm in a simulated Grid testbed.  

I. INTRODUCTION 
Utility computing [29] has emerged as a new service 

provisioning model [9] and is capable of supporting diverse 
computing services such as servers, storage, network and 
applications for e-Business and e-Science over a global 
network. For utility computing based services, users 
consume the services when they need to, and pay only for 
what they use. With economy incentive, utility computing 
encourages organizations to offer their specialized 
applications and other computing utilities as services so 
that other individuals/organizations can access these 
resources remotely. Therefore, it facilitates 
individuals/organizations to develop their own core 
activities without maintaining and developing fundamental 
infrastructure. In the recent past, providing utility 
computing services has been reinforced by service-oriented 
Grid computing[2][12], that creates an infrastructure for 
enabling users to consume services transparently over a 
secure, shared, scalable, sustainable and standard world-
wide network environment.   

Table I shows some differences between community 
Grids and utility Grids in terms of availability, Quality of 
Services (QoS) and pricing. In utility Grids, users can make 
a reservation with a service provider in advance to ensure 
the service availability, and users can also negotiate with 
service providers on service level agreements for required 
QoS. Compared with utility Grids, service availability and 
QoS in community Grids may not be guaranteed. However, 
community Grids provide free access, whereas users need 
to pay for service access in utility Grids. In general, the 
service pricing is based on the QoS level and current 
market supply and demand.  

Many Grid applications in areas such as bioinformatics 
and astronomy require workflow processing in which tasks 
are executed based on their control or data dependencies. 

As a result, a number of Grid workflow management 
systems [8][10][16][18][20][22][28][31] with scheduling 
algorithms have been developed. They facilitate the 
execution of workflow applications and minimize their 
execution time on Grids. However, to impose a workflow 
paradigm on utility Grids, execution cost must also be 
considered when scheduling tasks on resources. The price 
of a utility service is mainly determined by its QoS level 
such as the processing speed of the service. Typically, 
service providers charge higher prices for higher QoS. 
Users may not always need to complete workflows earlier 
than they require. They sometimes may prefer to use 
cheaper services with a lower QoS that is sufficient to meet 
their requirements.  

 
Table I. Community Grids vs. Utility Grids 

  Community 
Grids 

Utility Grids 

Availability Best effort Advanced 
Reservation 

QoS Best effort Contract/SLA 

Pricing Not considered 
or free access 

Usage, QoS level, 
Market supply and 
demand 

 
Given this motivation, we focus on developing workflow 

scheduling based on user’s QoS constraints such as 
deadline and budget. In general, processing time and 
execution cost are two typical QoS constraints for the 
workflow execution on “pay-per-use” services. We have 
presented a cost based scheduling heuristic in [32], which 
minimizes workflow execution cost within a certain 
deadline. In this paper, we develop a genetic algorithm 
based scheduling heuristic to minimize execution time 
while meeting user’s budget constraint. 
    The proposed workflow scheduling approach can be 
used by both end-users and utility providers. End users can 
use the approach to orchestrate Grid services, whereas 
utility providers can outsource computing resources to 
meet customers’ service-level requirements.  

The remainder of the paper is organized as follows. We 
introduce the problem overview in Section II including 
problem definition, general genetic algorithms and 
performance estimation approaches. Our proposed genetic-
based workflow scheduling algorithm is presented in 
Section III. Experimental details and simulation results are 
presented in Section IV. We introduce related work and 
compare them with our work in Section V. Finally, we 
conclude the paper with directions for further work in 
Section VI.  
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II. PROBLEM OVERVIEW 

A. Problem Description  
We model a workflow application as a Directed Acyclic 

Graph (DAG). Let Γ be the finite set of tasks )ni( Ti ≤≤1 . 
Let Λbe the set of directed arcs of the form ),( ji TT where 

iT is called a parent task of jT , and jT the child task of iT . 
We assume that a child task cannot be executed until all of 
its parent tasks are completed. Let B be the cost constraint 
(budget) specified by the users for workflow execution. 
Then, the workflow application can be described as a 
tuple )B,Γ,Λ(Ω .  

Let m be the total number of services available. There is 
a set of services )mm  ,mjn, 1i1(cond:S ii

j
i ≤≤≤≤≤≡ , 

capable of executing the task iT , but only one service can 
be assigned for the execution of a task. Services have 
varied processing capability delivered at different prices. 
We denote j

it as the sum of the processing time and data 

transmission time, and j
ic  as the sum of the service price 

and data transmission cost for processing iT  on service j
iS .  

The scheduling problem is to map every iT  onto a 

suitable j
iS to minimize the execution time of the workflow 

and complete it within the budget B.  
 

B.  Genetic Algorithms  
Workflow scheduling focuses on mapping and managing 

the execution of inter-dependent tasks on diverse utility 
services. In general, the problem of mapping tasks on 
distributed services belongs to a class of problems known 
as “NP hard problem”. For such problems, no known 
algorithms are able to generate the optimal solution within 
polynomial time.  Although the workflow scheduling 
problem can be solved by using exhaustive search, the 
complexity of the methods for solving it is very large. In 
Grid environments, scheduling decision must be produced 
in the shortest time possible, because there are many users 
compute for resources and desired time slots could be 
occupied by others at any time.  

Genetic algorithms (GAs)[14] provide robust search 
techniques that allow a high-quality solution to be derived 
from a large search space in polynomial time, by applying 
the principle of evolution. A genetic algorithm combines 
the exploitation of best solutions from past searches with 
the exploration of new regions of the solution space. Any 
solution in the search space of the problem is represented 
by an individual (chromosomes). A genetic algorithm 
maintains a population of individuals that evolves over 
generations. The quality of an individual in the population 
is determined by a fitness-function. The fitness value 
indicates how good the individual is compared to others in 
the population.  A typical genetic algorithm consists of the 
following steps: 

 
1.  Create an initial population consists of randomly 

generated solutions. 

2. Generate new offspring by applying genetic operators, 
namely selection, crossover and mutation, one after the 
other. 

3. Evaluate the fitness value of each individual in the 
population. 

4. Repeat step 2 and 3 until the algorithm converges. 
 

C. Performance Estimation 
Performance estimation is crucial to generate an accurate 

schedule for advance reservations. Different performance 
estimation approaches can be applied to different types of 
utility service. We classify existing utility services as either 
reservation-enabled resource or application services. 

Resource services provide hardware resources such as 
computing processors, network resources, storage and 
memory, as a service for remote clients. To submit tasks to 
resource services, the scheduler needs to determine the 
number of resources and duration required to run tasks on 
the discovered services. The performance estimation for 
resource services can be achieved by using existing 
performance estimation techniques (e.g. analytical 
modeling [21], empirical and historical data [19][25]) to 
predict task execution time on every discovered resource 
service. Duration reservT  required to be reserved on a 
resource service can be calculated by α/estimatreserv TT = , 
where estimatT the execution time is generated by a 
prediction approach and α  is the corresponding accuracy 
rate and α ≤1.   

Application services allow remote clients to use their 
specialized applications. Unlike resource services, a 
reservation-enabled application service is capable of 
providing estimated service times based on the metadata of 
users’ service requests [1]. As a result, the task execution 
time can be obtained by the application providers. 

 

III. PROPOSED APPROACH 

A. Problem Encoding 
For the workflow scheduling problem, a feasible 

solution is required to meet following conditions:  
• A task can only be started after all its predecessors 

have completed.  
• Every task appears once and only once in the 

schedule. 
• Each task must be allocated to one available time 

slot of a service capable of executing the task. 
 

Each individual in the population represents a feasible 
solution to the problem, and consists of a vector of task 
assignments. Each task assignment includes four elements: 
taskID, serviceID, startTime, and endTime. taskID and 
serviceID identify to which service each task is assigned. 
startTime and endTime indicate the time frame allocated on 
the service for the task execution. However, evolving time 
frames during the genetic operation may lead to a very 
complicated situation, because any change made to a task 
could require adjusting the values of startTime and 
endTime of its successive tasks. Therefore, we simplify the 
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operation strings used for genetic manipulation by ignoring 
the time frames. The operation strings encode only the 
allocation for each task and the order of tasks allocated on 
each service. After crossover and mutations, a time slot 
assignment method is deployed to transfer an operation 
string to a feasible schedule.  

A simple one-dimensional string shown in Fig. 1 is not 
suitable for representing a workflow schedule. In a 
workflow, the execution order of interdependent tasks is 
controlled by their dependencies, e.g. a task is always 
executed after its immediate parent tasks. However, many 
independent tasks, e.g. T3 and T4 in the example workflow 
shown in Fig. 1, may compete for the same time slot on a 
service. Different execution priorities of independent tasks 
within the workflow may impact the performance of 
workflow execution significantly. Therefore, encoded 
strings are required to show the order of task assignments 
on each service. The simple string method shown Fig. 1 
sets a constant position for each task and then assigns 
services to tasks. This only describes which service is 
allocated to each task, but ignores their execution order. 
For example, in individual 1, both T3 and T4 are assigned to 
S3, but it is not clear which one is executed first if they are 
ready to be executed at the same time and only one time 
slot is available on S3.  

 
 
 
 
 
 
 
 

Fig. 1.  A simple string encoding. 
 
In order to solve this problem, we use a 2D string to 

represent a schedule as illustrated in Fig. 2.  One dimension 
represents the numbers of services while the other 
dimension shows the order of tasks on each service. Two-
dimensional strings are then converted into a one-
dimensional string for genetic manipulations. The number 
in brackets in the one-dimensional string represents the 
identity number of the service on which the task is 
allocated.  
 
 
 
 
 
 
 
 
 
 

Fig. 2. Illustration of problem encoding. 
 

B. Initial Population 
Each individual of the initial population is generated 

through a random heuristic.  For each individual, the task 
to be scheduled is determined by the following rules: 

1. Choose a ready task Ti, that has already had all of its 
parent tasks scheduled. 

2.  Compute the ready time of Ti by:  
readyTime(Ti)=

ij PT ∈
max endTime(Tj),    where Pi is the set 

of parent tasks of Ti. 
3.  Randomly select a service Si , from those that are able 

to run Ti. 
4. Compute the transmission time, transTime(Ti), of I/O 

data transfer between services that execute parent 
tasks of Ti and Si.  

5. Query available time slots after startTime(Ti) on Si, 
where startTime(Ti) = readyTime(Ti)+transTime(Ti).  

6.  Allocate a free time slot for Ti at random. 
 

C. Fitness Function 
A fitness function is used to measure the quality of the 

individuals in the population according to the given 
optimization objective. As the goal of the scheduling is to 
minimize the execution time while still meeting the user’s 
specified budget, the fitness function separates evaluation 
into two parts: cost-fitness and time-fitness.  

The cost-fitness component encourages the formation of 
the solutions that achieve the budget constraint. The cost 
fitness function of an individual I is defined by: 

 

                              
B
IcIF t
)()(cos = ,  

 
where c(I) is the sum of the task execution cost and data 
transmission cost of I and c(I)= ∑

∈IT

k
i

i

c , imk ≤≤1 , and B is 

the budget of the workflow.  
The time-fitness component is designed to encourage the 

genetic algorithm to choose individuals with earliest 
completion time in the current population. The time fitness 
function is defined by: 
 

        
maxTime

ItIFtime
)()( =  , 

 
where t(I) is the completion time of I and maxTime is the 
largest completion time of the current population.  

The fitness function combines two parts and it is 
expressed as: 
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D. Genetic operators 
1) Selection 

After the fitness evaluation process, the new individuals 
are compared with the previous generation. All individuals 
from both generations are ranked based on their fitness 
values. An individual with a small value of fitness is better 
than the one with a large value of fitness. The fittest 
individuals are retained in the population as successive 
generations evolve.  

 

T0 T1 T2

T3 T4

T5 T6

T7

T0 T1 T2

T3 T4

T5 T6

T7

Workflow

S1

S2

S3

S4

time

Schedule

T0 T2 T7

T1

T3 T5

T4 T6

T0(1)-T2(1)-T7(1)-T1(2)-T3(3)-T5(3)-T4(4)-T6(4)

S1:T0-T2-T7
S2:T1
S3:T3-T5
S4:T4-T6

Two-dimensional strings

One-dimensional string

T0 T1 T2 T3 T4 T5   T6 T7

S1- S2- S1- S3- S3- S4- S4- S1   individual 1
S2- S4- S2- S4- S1- S3- S1- S4 individual 2

T0 T1 T2

T3 T4

T5 T6

T7

T0 T1 T2

T3 T4

T5 T6

T7

workflow Simple strings
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2) Crossover 
Crossovers are used to create new individuals on the 

current population by combining of rearranging parts of the 
existing individuals. The idea behind the crossover is that it 
may result in an even better individual by combining two 
fittest individuals [15]. As illustrated in Fig.3, the crossover 
operator is implemented as follows: (1) Two parents are 
chosen at random in the current population. (2) Two 
random points are selected from the schedule order of the 
first parent. (3) All tasks between these two points are 
chosen as successive crossover points. (4) The locations of 
all tasks of the crossover points between parent1 and 
parent2 are exchanged. (5) Two new offspring are 
generated by combining task assignments taken from two 
parents. In this example, offspring1 inherits task 
assignments of T0, T2, T4 and T6 from parent1, and the task 
assignments of the rest tasks are taken from parent2.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  Illustration of crossover operation. 
 
3) Mutation  

In genetic algorithms, mutations occasionally occur in 
order to allow a certain children to obtain features that are 
not possessed by either parent. It helps a genetic algorithm 
to explore a new and better genetic material than 
previously considered. We have developed two types of 
mutation, namely swapping mutation and replacing 
mutation, in order to promote further exploration of the 
search space.  The mutation operators are applied to the 
chosen individuals with a certain probability.   

Swapping mutation aims to change the execution order 
of tasks in an individual that compete for a same time slot. 
It is implemented as follows: (1) A service in the individual 
is randomly selected. (2) The positions of two randomly 
selected independent tasks on the service are swapped. An 
example of swapping mutation is shown in Fig. 4.  After 
the mutation, the time slot initially assigned to T0 is 
occupied by T1.  

 
 

 
 
 

 
Fig. 4.  Illustration of swapping mutation operation. 

 

 Replacing mutation aims to re-allocate an alternative 
service to a task in an individual. It is implemented as 
follows: (1) A task is randomly selected in the individual. 
(2) An alternative service which is capable of executing the 
task is randomly selected to replace the current task 
allocation.  

An example of replacing mutation is shown in Fig. 5.  
Given the heterogeneous nature of execution environments 
required by workflow tasks, we classify processing 
services into groups. Each service group provides a certain 
type of service that satisfies the execution condition of a 
task in the workflow. In the example, all services are 
grouped together to support service type A, B, and C and 
different tasks in the workflow require different types of 
services. For example, T0, T3 and T4 require services of 
type A, B and C respectively. In the example, task T2 is 
selected for mutation and T2 is supported by services of 
type A. The mutation process randomly selects S2 in the 
service group of type A and re-allocates it to T2.  

 
 
 

 
 
 
 
 
 
 

 
 

Fig. 5.  Illustration of replacing mutation operation. 
 

E. Time Slot Assignment 
The string representing offspring produced by crossover 

and mutation operators are not a real schedule, since we 
ignore the time frames during the operations. We develop a 
time slot assignment process in order to transfer an 
offspring string to a feasible solution. As illustrated in Fig. 
6, it queries available time slots from services based on the 
information of resource allocations and task execution 
orders in the offspring, and assign a time slot to each task. 
The produced schedule satisfies the conditions of a feasible 
solution defined in the previous sub-section. Algorithm 1 
shows the pseudo-code of the reorder algorithm.    

 
Algorithm 1. time slot assignment algorithm   
Input:     A workflow graph Ω , two-dimensional strings 2D 
Output:  A feasible schedule  
  ready ← get first level tasks in the workflowΩ  
  while ready ≠ Φ repeat 
        for all Si ∈2D do 
              T← remove first task allocated on Si 
               if T∈ ready  then  
                   compute the ready time of T 
                   query and assign a free slot on Si for T 
                    remove T from ready 
                    CT ← get ready child tasks of T 
            for each  cti∈CT  do  

                  if  cti ∉ ready then 
                           ready ← put cti 

T0(1)-T2(1)-T1(1)-T4(4)-T6(4)-T7(7)-T3(6)-T5(10)
swap

T1(1)-T2(1)-T0(1)-T4(4)-T6(4)-T7(7)-T3(6)-T5(10)

Before mutation

After mutation

Before crossover

Crossover

After crossover

S1:T0-T2-T7
S2:T1
S3:T3-T5
S4:T4-T6

parent1

S1: T0-T1
S7: T2-T7
S8: T3
S9: T4-T6
S10:T5

parent2

T0(1)-T2(1)-T7(1)-T1(2)-T3(3)-T5(3)-T4(4)-T6(4)

T0(1)-T1(1)-T2(7)-T7(7)-T3(8)-T4(9)-T6(9)-T5(10)

Randomly select crossover window

S1: T0-T2-T1
S4: T4-T6
S7: T7
S8: T3
S10:T5

S1: T0-T7
S2: T1
S3: T3-T5
S7: T2
S9:T4-T6

offspring1 offspring2

T0(1)-T2(1)-T1(1)-T4(4)-T6(4)-T7(7)-T3(6)-T5(10)

T1(1)-T0(1)-T2(2)-T4(4)-T6(4)-T7(7)-T3(6)-T5(10)

Before mutation

After mutation

S1 S5
S2 S6 S7

S3 S8
S10

S4 S9

Service  Type

Task

ACBCBAAA

T7T6T5T4T3T2T1T0

Service  Type

Task

ACBCBAAA

T7T6T5T4T3T2T1T0

A B C
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Fig. 6.  Illustration of problem decoding. 

 

F. Schedule Refinement 
Although the solution generated by the genetic 

operations and the time slot assignment process is feasible, 
it may not be very efficient. Fig. 7 shows a sample of the 
time assignments of a schedule. Note that the end time of 
T4 is significantly larger than that of T5. Scheduling T3 and 
T5 on faster services does not contribute to the entire 
workflow execution, since T6 cannot start until T4 is 
completed. However, it may incur unnecessary execution 
cost, since faster services charge higher prices.  Therefore, 
we develop a refinement method to refine the schedule 
generated by genetic operations. Instead of waiting for 
other paths to be completed, a path capable of being 
completed earlier is rescheduled on slower but cheaper 
services through a schedule refinement process. Applying a 
refinement process after the genetic operations may help 
the genetic algorithm to converge faster, especially when 
the budget is very low. However, similar to mutation 
operations, it also disrupts the genetic algorithm evolution. 
Therefore, the frequency of refinement occurrence should 
be controlled by the refinement rate whose value is 
determined experimentally.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In order to refine a workflow schedule, we group tasks 
in a workflow into branches and synchronization tasks as 

shown in Fig. 8.  A synchronization task is a task which 
has more than one child task or parent task, whereas a 
branch consists of a set of interdependent simple tasks that 
are executed sequentially between two synchronization 
tasks. The refinement process goes through all branches in 
the workflow. It reschedules tasks of a branch whose end 
time is much less than the ready time of its child 
synchronization task. The ready time of a synchronization 
task is the maximum end time of its parent branches.   
 
 
 
 
 
 
 
 
 
 
       (a)  Before partitioning.               (b)  After partitioning. 

Fig. 8. Workflow task partition.  
 

The refinement process is used to solve the scheduling 
optimization problem of branch tasks. A new schedule 
generated by the refinement process should be the optimal 
schedule that minimizes the execution cost while 
completing the branch execution by the time its child 
synchronization task starts.  For a branch with only one 
task, the optimal decision is simple. The optimal service is 
the cheapest service that can process the task on time. For a 
branch with multiple tasks, we model its scheduling 
decision problem as a Markov Decision Process (MDP) 
[27]. We set the ready time of its child synchronization task 
as the deadline of the branch. The details of the MDP 
definition can be found in [32]. We use value iteration, a 
standard dynamic programming method, to compute 
optimal policy for each MDP state and thus obtain the 
optimal schedule of the branch. Fig. 9 shows the time and 
cost of task assignments before and after refinement.   
 
 
 
 
 
 
 
 
 
 

      

Fig. 9.  Time and cost of task assignments. 

IV. PERFORMANCE EVALUATION 
We use GridSim [6][26] to simulate a Grid environment 

for our experiments. Fig. 10 shows the simulation 
environment in which simulated services are discovered by 
querying the GridSim Index Service (GIS) and every 
service is able to handle a free slot query, reservation 
request and commitment. 

We compare our proposed scheduling algorithm denoted 
as  Genetic Algorithm (GA) with a scheduling approach 

T9 T12 

Branch 

T1 T6 

T7 

T14 T5 

T10 
T8 

T2 T3 
T4 

T11 

T13 

Simple task 
Synchronization  task 

T1 T6

T7

T14 T5

T10 
T8

T2

T9

T3

T4

T11 

T12 
T13 

Fig. 7.  The time assignments of workflow tasks. The number 
attached to each task is the time slot of the form of [start 
time]-[end time]. Network transmission time is ignored in this 
example, so the start time of a task is equal to the ready time 
of the task.  

T0 T1 T2

T3 T4

T5

T6

0-1878

1878-
2050

2050-
2650

5166-
5666

4450-
5166

0-2450 0-4450

T0 T1 T2

T3 T4

T5

T6

0-1878

1878-
2050

2050-
2650

5166-
5666

4450-
5166

0-2450 0-4450
T0 T1 T2

T3 T4

T5

T6

0-1878

1878-
3050

3050-
5000

5166-
5666

4450-
5166

0-4440 0-4450

Rescheduled tasks

(a) Before refinement (b) After refinement

(G$300) (G$200)

(G$150) (G$100)

(G$180) (G$100)

S1

S2

S3

S4

time

Schedule

T0 T2 T7

T1

T3 T5

T4 T6

T0(1)-T2(1)-T7(1)-T1(2)-T3(3)-T5(3)-T4(4)-T6(4)

S1:T0-T2-T7
S2:T1
S3:T3-T5
S4:T4-T6

Two-dimensional strings

One-dimensional string

Time slot assignment

S1

S2

S3

S4

Sn

……

queryFreeTimeSlot(Ti, Si)

time slots



 

 6

derived from existing market based workflow scheduling 
[5] [13] denoted as Greedy Time (GT).  The greedy time 
approach assigns a planed budget to each task in the 
workflow based on the average estimated execution costs 
of tasks and the total budget of the workflow. The actual 
costs of allocated tasks and their planned costs are also 
computed successively at runtime. If the aggregated actual 
cost is less than the aggregated planned cost, the scheduler 
uses the unspent aggregated budget to schedule current task.  
During the workflow execution, the greedy time approach 
attempts to allocate a fastest service to each task among the 
services, which are able to complete the task execution 
within its planned budget. 

 

 
 
 
We simulate two common workflow structures in 

scientific workflow applications for our experiments: 
parallel and hybrid. A parallel application (see Fig. 11a) 
requires multiple pipelines to be executed in parallel. A 
pipeline executes a number of tasks in a single sequential 
order. For example, in Fig. 11a, there are 4 pipelines (1-2, 
3-4, 5-6 and 7-8) before task 9. A hybrid structure 
application (see Fig. 11b) is a complex combination of 
parallel and sequential execution. In our experiments, we 
used a neuro-science workflow [36] for our parallel 
application and a protein annotation workflow [4] 
developed by London e-Science Centre for our hybrid 
workflow structure application.  

Since the execution requirements for tasks in scientific 
workflows are heterogeneous, we use the service type 
attribute to represent the different types of services. Every 
task in our experimental workflow applications requires a 
certain type of service. For example, task 1, 3, 5, 7 in a 
parallel application require service type Align_wap and 
task 2, 4, 6 and 8 require reslice. In the simulation, we use 
MI (million instructions) to represent the length of tasks 
and use MIPS (Million Instructions per Second) to 
represent the processing capability of services.  We 
simulate 15 types of services, each supported by 10 service 
providers with various processing capability. The values of 
MIPS for services range from 100 to 5000 and the value of 
MI for each task is indicated in brackets next to the task in 
Fig. 11. 

 In our experiments, every task in the workflows 
generates output data required by its child tasks as inputs. 
The data needs to be staged out from the task processing 
node and staged into the processing node of its child tasks. 
The I/O data of the workflows ranges from 10MB to 1024 
MB. The available network bandwidths between services 
are 100Mbps, 200Mbps, 512Mbps and 1024Mbps and the 
topology of all services are that they are fully connected.  

For our experiments, the cost that a user needs to pay for 
a workflow execution comprises of two parts: processing 

cost and data transmission cost. Table II shows an example 
of processing cost, while Table III shows an example of 
data transmission cost. It can be seen that the processing 
cost and transmission cost are inversely proportional to the 
processing time and transmission time respectively. 

The two metrics used to evaluate the scheduling 
approaches are budget constraint and execution time. The 
former indicates whether the schedule produced by the 
scheduling approach meets the required budget, while the 
latter indicates how long it take to schedule the workflow 
tasks on the testbed.  

 
 
 
 
 
 
 
 
 

 
  

a. Parallel application  (fMRI workflow [36]) 
 

   
 

 

 

 

 

 

 

 

 

 

       b. Hybrid structure (protein annotation workflow [4]) 
Fig. 11.  Workflow applications. The label on the left of a task 
denotes the required service type. The number in brackets 
represents the length of the task in MI. 

 
 
 
           

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Bandwidth
(Mbps) 

Cost/sec 
(G$/sec) 

100 1 
200 2 
512 5.12 

1024 10.24 

Workflow 
System 

GIS 

Grid 
Service 

1.register(service type) 

1. register 

4. AvailableSlotQuery(duration) 
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6. makeReservation(task ) 

Service 
ID 

Processing Time 
(sec) 

Cost 
(G$) 

1 1200 300 
2 600 600 
3 400 900 
4 300 1200 

 

Table II. Service speed and corresponding 
price for executing a task. 
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The following parameter settings are the default 
configuration for producing results of the genetic algorithm: 
population size of 10, swapping mutation and replacing 
mutation probability of 0.5, a generation limit of 30, 
refinement probability of 0.5. Since the genetic algorithm is 
a stochastic search algorithm, each of the experiments was 
repeated ten times and average values are used to report the 
results.  
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b. Execution time of two approaches. 

Fig. 12. Execution time and cost using two approaches for 
scheduling the hybrid structure application. 
 

Fig. 12  and Fig. 13 compare the execution time and cost 
of using the GA and the GT for scheduling parallel and 
hybrid structure applications with budget G$3000,  G$4000, 
G$5000, G$6000, G$7000 and G$8000 respectively. It can 
be seen that the GT takes much longer to complete even 
though it incurs a higher execution cost. This is because the 
decision making of the GT based only on the information 
of the current task. It may produce the best schedule for the 
current task but it could consequently reduce the entire 
workflow performance. However, as the user’s budget 
increases, the results of the two approaches are closer.    
Compared these two application structures, the 
performance of the parallel application produced by the 
greedy time is better than that of the hybrid structure 
application.  
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b. Execution time of two approaches.  

Fig. 13. Execution time and cost using two approaches for 
scheduling the parallel application. 
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We observe the performance of the GA when the 
number of generation cycles is altered. Fig. 14a shows that 
the execution cost is significantly reduced to the specified 
budget as the number of generations is increased from 1 to 
5. Consequently, as shown in Fig. 14b the execution time 
increases during these generation cycles; this is because 
individuals which take longer to process are selected in 
order to reduce the execution cost. However, once the GA 
has found the individuals which are able to complete the 
execution within the budget, it starts to improve the 
performance, and execution time is reduced for successive 
generations. 

Fig. 15 shows the results generated by various 
refinement rates for scheduling the hybrid structure 
application when the budget is G$3000.  It is observed 
from Fig. 15a that the GA cannot meet the budget within 
30 generation cycles without the refinement process. We 
also observe from Fig. 15b that there is no significant 
performance improvement, when the rate is relatively low, 
i.e. 0.1 and 0.3 in this case, or relatively high, i.e. 0.7 and 
0.9. This is because the GA converges slower as less of the 
refinement process is involved. The refinement process 
helps the GA evolve faster from high cost solutions to the 
solutions that meet budget constraints, since it replaces the 
higher cost task assignments of the selected individuals 
with cheaper task assignments. However, overly applying 
the refinement process can cause the parents to lose task 
assignments with shorter execution time, and thus result in 
the children with longer execution time.  
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Fig. 16. Execution cost and time for sizes of the population 
ranged from 2 to 40 when user’s budget is G$4000. 
 

Fig. 16 shows execution cost and time for sizes of the 
population ranging from 2 to 40. We observe from Fig. 16a 
that the solutions produced by the GA cannot even meet 
the specified budget when the size of population is very 
small. Once the population size is greater than 5, it is 
observed that increasing the population size does not affect 
execution cost significantly. However, large populations 
give the GA more opportunity to find faster solutions for 
the same execution costs.   

V. RELATED WORK  
Many heuristics have been investigated by several 

projects for scheduling workflows on Grids. The heuristics 
can be classified as either task level or workflow level. Task 
level heuristics make scheduling decisions based only on 
the information about a task or a set of independent tasks, 
while workflow level heuristics take into account the 
information of the entire workflow. Min-Min, Max-Min and 
Sufferage are three major task level heuristics employed for 
scheduling workflows on Grids. They have been used by 
Mandal et al [17] to schedule EMAN bio-imaging 
applications. Blythe et al [3] developed a workflow level 
scheduling algorithm based on Greedy Randomized 
Adaptive Search Procedure (GRASP) [11] and compared it 
with Min-Min in compute- and data-intensive scenarios. 
Another two workflow level heuristics have been employed 
by the ASKALON project [23][34]. One is based on 
Genetic Algorithms and the other is a Heterogeneous-
Earliest-Finish-Time (HEFT) algorithm. Sakellariou and 
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Zhao [24] developed a low-cost rescheduling policy. It 
intends to reduce the overhead produced by rescheduling 
by conducting rescheduling only when the delay of a task 
execution impacts on the entire workflow execution. 
However, these works only attempt to minimize workflow 
execution time and do not consider users’ budget 
constraints.   

Several works have been proposed to address scheduling 
problems based on users’ budget constraints. Nimrod-G [5] 
schedules independent tasks for parameter-sweep 
applications to meet users’ budget. A market-based 
workflow management system [13] locates an optimal bid 
based on the budget of the current task in the workflow. 
More recently, Tsiakkouri et al [30] developed scheduling 
approaches, LOSS and GAIN, to adjust a schedule which is 
generated by a time optimized heuristic and a cost 
optimized heuristic to meet users’ budget constraints 
respectively. A time optimized heuristic attempts to 
minimize execution time while a cost optimization attempts 
to minimize execution cost. In contrast, we focus on using 
genetic algorithms to solve the problems of scheduling 
inter-dependent tasks based on the budget of entire 
workflow.  

Using the genetic algorithm approach to schedule tasks 
in homogenous multiprocessor systems has been presented 
in many literature such as [15][35][37][38]. The proposed 
approach in this paper intends to introduce a new type of 
genetic algorithm for large heterogeneous environments for 
which the existing genetic operations algorithms cannot be 
directly applied.  

 
 

VI. CONCLUSION AND FUTURE WORK 
Utility Grids enable users to consume utility services 

transparently over a secure, shared, scalable and standard 
world-wide network environment. Users are required to 
pay for access to services based on their usage and the level 
of QoS required for this network environment to be 
commercially sustainable. Therefore, workflow execution 
cost must be considered during scheduling.  In this paper, 
we have proposed a budget constraint based workflow 
scheduling approach that minimizes the execution time 
while meeting a specified budget. A new type of genetic 
algorithm has also been developed, as the crossover and 
mutation operations of existing genetic algorithms focused 
on homogenous and non reservation-enabled 
multiprocessor systems and therefore cannot be applied to 
the problem directly. The fitness function is developed to 
encourage the formation of the solutions to achieve the 
budget constraint and time minimization. We have also 
presented a workflow refinement approach using Markov 
decision processes to make the genetic algorithm converge 
faster when the budget is very low.  

We will be further enhancing our scheduling algorithm 
by supporting different service negotiation models and 
runtime rescheduling, along with duplication of critical 
tasks to meet users QoS requirements even under failures. 
We will also study how the GA approach can be applied 
for scheduling workflows based on other QoS constraints 
such as reliability and security.   
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