

 1

Abstract—Over the last few years, Grid technologies

have progressed towards a service-oriented paradigm
that enables a new way of service provisioning based on
utility computing models. Users consume these services
based on their QoS (Quality of Service) requirements.
In such “pay-per-use” Grids, workflow execution cost
must be considered during scheduling based on users’
QoS constraints. In this paper, we propose a budget
constraint based scheduling, which minimizes execution
time while meeting a specified budget for delivering
results. A new type of genetic algorithm is developed to
solve the scheduling optimization problem and we test
the scheduling algorithm in a simulated Grid testbed.

I. INTRODUCTION
Utility computing [29] has emerged as a new service

provisioning model [9] and is capable of supporting diverse
computing services such as servers, storage, network and
applications for e-Business and e-Science over a global
network. For utility computing based services, users
consume the services when they need to, and pay only for
what they use. With economy incentive, utility computing
encourages organizations to offer their specialized
applications and other computing utilities as services so
that other individuals/organizations can access these
resources remotely. Therefore, it facilitates
individuals/organizations to develop their own core
activities without maintaining and developing fundamental
infrastructure. In the recent past, providing utility
computing services has been reinforced by service-oriented
Grid computing[2][12], that creates an infrastructure for
enabling users to consume services transparently over a
secure, shared, scalable, sustainable and standard world-
wide network environment.

Table I shows some differences between community
Grids and utility Grids in terms of availability, Quality of
Services (QoS) and pricing. In utility Grids, users can make
a reservation with a service provider in advance to ensure
the service availability, and users can also negotiate with
service providers on service level agreements for required
QoS. Compared with utility Grids, service availability and
QoS in community Grids may not be guaranteed. However,
community Grids provide free access, whereas users need
to pay for service access in utility Grids. In general, the
service pricing is based on the QoS level and current
market supply and demand.

Many Grid applications in areas such as bioinformatics
and astronomy require workflow processing in which tasks
are executed based on their control or data dependencies.

As a result, a number of Grid workflow management
systems [8][10][16][18][20][22][28][31] with scheduling
algorithms have been developed. They facilitate the
execution of workflow applications and minimize their
execution time on Grids. However, to impose a workflow
paradigm on utility Grids, execution cost must also be
considered when scheduling tasks on resources. The price
of a utility service is mainly determined by its QoS level
such as the processing speed of the service. Typically,
service providers charge higher prices for higher QoS.
Users may not always need to complete workflows earlier
than they require. They sometimes may prefer to use
cheaper services with a lower QoS that is sufficient to meet
their requirements.

Table I. Community Grids vs. Utility Grids

 Community
Grids

Utility Grids

Availability Best effort Advanced
Reservation

QoS Best effort Contract/SLA

Pricing Not considered
or free access

Usage, QoS level,
Market supply and
demand

Given this motivation, we focus on developing workflow

scheduling based on user’s QoS constraints such as
deadline and budget. In general, processing time and
execution cost are two typical QoS constraints for the
workflow execution on “pay-per-use” services. We have
presented a cost based scheduling heuristic in [32], which
minimizes workflow execution cost within a certain
deadline. In this paper, we develop a genetic algorithm
based scheduling heuristic to minimize execution time
while meeting user’s budget constraint.
 The proposed workflow scheduling approach can be
used by both end-users and utility providers. End users can
use the approach to orchestrate Grid services, whereas
utility providers can outsource computing resources to
meet customers’ service-level requirements.

The remainder of the paper is organized as follows. We
introduce the problem overview in Section II including
problem definition, general genetic algorithms and
performance estimation approaches. Our proposed genetic-
based workflow scheduling algorithm is presented in
Section III. Experimental details and simulation results are
presented in Section IV. We introduce related work and
compare them with our work in Section V. Finally, we
conclude the paper with directions for further work in
Section VI.

A Budget Constrained Scheduling of Workflow Applications on
Utility Grids using Genetic Algorithms

Jia Yu and Rajkumar Buyya

Grid Computing and Distributed Systems (GRIDS) Laboratory
Dept. of Computer Science and Software Engineering

The University of Melbourne, VIC 3010 Australia
{jiayu, raj}@csse.unimelb.edu.au

 2

II. PROBLEM OVERVIEW

A. Problem Description
We model a workflow application as a Directed Acyclic

Graph (DAG). Let Γ be the finite set of tasks)ni(Ti ≤≤1 .
Let Λbe the set of directed arcs of the form),(ji TT where

iT is called a parent task of jT , and jT the child task of iT .
We assume that a child task cannot be executed until all of
its parent tasks are completed. Let B be the cost constraint
(budget) specified by the users for workflow execution.
Then, the workflow application can be described as a
tuple)B,Γ,Λ(Ω .

Let m be the total number of services available. There is
a set of services)mm ,mjn, 1i1(cond:S ii

j
i ≤≤≤≤≤≡ ,

capable of executing the task iT , but only one service can
be assigned for the execution of a task. Services have
varied processing capability delivered at different prices.
We denote j

it as the sum of the processing time and data

transmission time, and j
ic as the sum of the service price

and data transmission cost for processing iT on service j
iS .

The scheduling problem is to map every iT onto a

suitable j
iS to minimize the execution time of the workflow

and complete it within the budget B.

B. Genetic Algorithms
Workflow scheduling focuses on mapping and managing

the execution of inter-dependent tasks on diverse utility
services. In general, the problem of mapping tasks on
distributed services belongs to a class of problems known
as “NP hard problem”. For such problems, no known
algorithms are able to generate the optimal solution within
polynomial time. Although the workflow scheduling
problem can be solved by using exhaustive search, the
complexity of the methods for solving it is very large. In
Grid environments, scheduling decision must be produced
in the shortest time possible, because there are many users
compute for resources and desired time slots could be
occupied by others at any time.

Genetic algorithms (GAs)[14] provide robust search
techniques that allow a high-quality solution to be derived
from a large search space in polynomial time, by applying
the principle of evolution. A genetic algorithm combines
the exploitation of best solutions from past searches with
the exploration of new regions of the solution space. Any
solution in the search space of the problem is represented
by an individual (chromosomes). A genetic algorithm
maintains a population of individuals that evolves over
generations. The quality of an individual in the population
is determined by a fitness-function. The fitness value
indicates how good the individual is compared to others in
the population. A typical genetic algorithm consists of the
following steps:

1. Create an initial population consists of randomly

generated solutions.

2. Generate new offspring by applying genetic operators,
namely selection, crossover and mutation, one after the
other.

3. Evaluate the fitness value of each individual in the
population.

4. Repeat step 2 and 3 until the algorithm converges.

C. Performance Estimation
Performance estimation is crucial to generate an accurate

schedule for advance reservations. Different performance
estimation approaches can be applied to different types of
utility service. We classify existing utility services as either
reservation-enabled resource or application services.

Resource services provide hardware resources such as
computing processors, network resources, storage and
memory, as a service for remote clients. To submit tasks to
resource services, the scheduler needs to determine the
number of resources and duration required to run tasks on
the discovered services. The performance estimation for
resource services can be achieved by using existing
performance estimation techniques (e.g. analytical
modeling [21], empirical and historical data [19][25]) to
predict task execution time on every discovered resource
service. Duration reservT required to be reserved on a
resource service can be calculated by α/estimatreserv TT = ,
where estimatT the execution time is generated by a
prediction approach and α is the corresponding accuracy
rate and α ≤1.

Application services allow remote clients to use their
specialized applications. Unlike resource services, a
reservation-enabled application service is capable of
providing estimated service times based on the metadata of
users’ service requests [1]. As a result, the task execution
time can be obtained by the application providers.

III. PROPOSED APPROACH

A. Problem Encoding
For the workflow scheduling problem, a feasible

solution is required to meet following conditions:
• A task can only be started after all its predecessors

have completed.
• Every task appears once and only once in the

schedule.
• Each task must be allocated to one available time

slot of a service capable of executing the task.

Each individual in the population represents a feasible
solution to the problem, and consists of a vector of task
assignments. Each task assignment includes four elements:
taskID, serviceID, startTime, and endTime. taskID and
serviceID identify to which service each task is assigned.
startTime and endTime indicate the time frame allocated on
the service for the task execution. However, evolving time
frames during the genetic operation may lead to a very
complicated situation, because any change made to a task
could require adjusting the values of startTime and
endTime of its successive tasks. Therefore, we simplify the

 3

operation strings used for genetic manipulation by ignoring
the time frames. The operation strings encode only the
allocation for each task and the order of tasks allocated on
each service. After crossover and mutations, a time slot
assignment method is deployed to transfer an operation
string to a feasible schedule.

A simple one-dimensional string shown in Fig. 1 is not
suitable for representing a workflow schedule. In a
workflow, the execution order of interdependent tasks is
controlled by their dependencies, e.g. a task is always
executed after its immediate parent tasks. However, many
independent tasks, e.g. T3 and T4 in the example workflow
shown in Fig. 1, may compete for the same time slot on a
service. Different execution priorities of independent tasks
within the workflow may impact the performance of
workflow execution significantly. Therefore, encoded
strings are required to show the order of task assignments
on each service. The simple string method shown Fig. 1
sets a constant position for each task and then assigns
services to tasks. This only describes which service is
allocated to each task, but ignores their execution order.
For example, in individual 1, both T3 and T4 are assigned to
S3, but it is not clear which one is executed first if they are
ready to be executed at the same time and only one time
slot is available on S3.

Fig. 1. A simple string encoding.

In order to solve this problem, we use a 2D string to

represent a schedule as illustrated in Fig. 2. One dimension
represents the numbers of services while the other
dimension shows the order of tasks on each service. Two-
dimensional strings are then converted into a one-
dimensional string for genetic manipulations. The number
in brackets in the one-dimensional string represents the
identity number of the service on which the task is
allocated.

Fig. 2. Illustration of problem encoding.

B. Initial Population
Each individual of the initial population is generated

through a random heuristic. For each individual, the task
to be scheduled is determined by the following rules:

1. Choose a ready task Ti, that has already had all of its
parent tasks scheduled.

2. Compute the ready time of Ti by:
readyTime(Ti)=

ij PT ∈
max endTime(Tj), where Pi is the set

of parent tasks of Ti.
3. Randomly select a service Si , from those that are able

to run Ti.
4. Compute the transmission time, transTime(Ti), of I/O

data transfer between services that execute parent
tasks of Ti and Si.

5. Query available time slots after startTime(Ti) on Si,
where startTime(Ti) = readyTime(Ti)+transTime(Ti).

6. Allocate a free time slot for Ti at random.

C. Fitness Function
A fitness function is used to measure the quality of the

individuals in the population according to the given
optimization objective. As the goal of the scheduling is to
minimize the execution time while still meeting the user’s
specified budget, the fitness function separates evaluation
into two parts: cost-fitness and time-fitness.

The cost-fitness component encourages the formation of
the solutions that achieve the budget constraint. The cost
fitness function of an individual I is defined by:

B
IcIF t
)()(cos = ,

where c(I) is the sum of the task execution cost and data
transmission cost of I and c(I)= ∑

∈IT

k
i

i

c , imk ≤≤1 , and B is

the budget of the workflow.
The time-fitness component is designed to encourage the

genetic algorithm to choose individuals with earliest
completion time in the current population. The time fitness
function is defined by:

maxTime

ItIFtime
)()(= ,

where t(I) is the completion time of I and maxTime is the
largest completion time of the current population.

The fitness function combines two parts and it is
expressed as:

otherwise

1)(

),(
,1)(

)(coscos >

 +

=
IFif

IF
IF

IF t

time

t

D. Genetic operators
1) Selection

After the fitness evaluation process, the new individuals
are compared with the previous generation. All individuals
from both generations are ranked based on their fitness
values. An individual with a small value of fitness is better
than the one with a large value of fitness. The fittest
individuals are retained in the population as successive
generations evolve.

T0 T1 T2

T3 T4

T5 T6

T7

T0 T1 T2

T3 T4

T5 T6

T7

Workflow

S1

S2

S3

S4

time

Schedule

T0 T2 T7

T1

T3 T5

T4 T6

T0(1)-T2(1)-T7(1)-T1(2)-T3(3)-T5(3)-T4(4)-T6(4)

S1:T0-T2-T7
S2:T1
S3:T3-T5
S4:T4-T6

Two-dimensional strings

One-dimensional string

T0 T1 T2 T3 T4 T5 T6 T7

S1- S2- S1- S3- S3- S4- S4- S1 individual 1
S2- S4- S2- S4- S1- S3- S1- S4 individual 2

T0 T1 T2

T3 T4

T5 T6

T7

T0 T1 T2

T3 T4

T5 T6

T7

workflow Simple strings

 4

2) Crossover
Crossovers are used to create new individuals on the

current population by combining of rearranging parts of the
existing individuals. The idea behind the crossover is that it
may result in an even better individual by combining two
fittest individuals [15]. As illustrated in Fig.3, the crossover
operator is implemented as follows: (1) Two parents are
chosen at random in the current population. (2) Two
random points are selected from the schedule order of the
first parent. (3) All tasks between these two points are
chosen as successive crossover points. (4) The locations of
all tasks of the crossover points between parent1 and
parent2 are exchanged. (5) Two new offspring are
generated by combining task assignments taken from two
parents. In this example, offspring1 inherits task
assignments of T0, T2, T4 and T6 from parent1, and the task
assignments of the rest tasks are taken from parent2.

Fig. 3. Illustration of crossover operation.

3) Mutation

In genetic algorithms, mutations occasionally occur in
order to allow a certain children to obtain features that are
not possessed by either parent. It helps a genetic algorithm
to explore a new and better genetic material than
previously considered. We have developed two types of
mutation, namely swapping mutation and replacing
mutation, in order to promote further exploration of the
search space. The mutation operators are applied to the
chosen individuals with a certain probability.

Swapping mutation aims to change the execution order
of tasks in an individual that compete for a same time slot.
It is implemented as follows: (1) A service in the individual
is randomly selected. (2) The positions of two randomly
selected independent tasks on the service are swapped. An
example of swapping mutation is shown in Fig. 4. After
the mutation, the time slot initially assigned to T0 is
occupied by T1.

Fig. 4. Illustration of swapping mutation operation.

 Replacing mutation aims to re-allocate an alternative
service to a task in an individual. It is implemented as
follows: (1) A task is randomly selected in the individual.
(2) An alternative service which is capable of executing the
task is randomly selected to replace the current task
allocation.

An example of replacing mutation is shown in Fig. 5.
Given the heterogeneous nature of execution environments
required by workflow tasks, we classify processing
services into groups. Each service group provides a certain
type of service that satisfies the execution condition of a
task in the workflow. In the example, all services are
grouped together to support service type A, B, and C and
different tasks in the workflow require different types of
services. For example, T0, T3 and T4 require services of
type A, B and C respectively. In the example, task T2 is
selected for mutation and T2 is supported by services of
type A. The mutation process randomly selects S2 in the
service group of type A and re-allocates it to T2.

Fig. 5. Illustration of replacing mutation operation.

E. Time Slot Assignment
The string representing offspring produced by crossover

and mutation operators are not a real schedule, since we
ignore the time frames during the operations. We develop a
time slot assignment process in order to transfer an
offspring string to a feasible solution. As illustrated in Fig.
6, it queries available time slots from services based on the
information of resource allocations and task execution
orders in the offspring, and assign a time slot to each task.
The produced schedule satisfies the conditions of a feasible
solution defined in the previous sub-section. Algorithm 1
shows the pseudo-code of the reorder algorithm.

Algorithm 1. time slot assignment algorithm
Input: A workflow graph Ω , two-dimensional strings 2D
Output: A feasible schedule
 ready ← get first level tasks in the workflowΩ
 while ready ≠ Φ repeat
 for all Si ∈2D do
 T← remove first task allocated on Si
 if T∈ ready then
 compute the ready time of T
 query and assign a free slot on Si for T
 remove T from ready
 CT ← get ready child tasks of T
 for each cti∈CT do

 if cti ∉ ready then
 ready ← put cti

T0(1)-T2(1)-T1(1)-T4(4)-T6(4)-T7(7)-T3(6)-T5(10)
swap

T1(1)-T2(1)-T0(1)-T4(4)-T6(4)-T7(7)-T3(6)-T5(10)

Before mutation

After mutation

Before crossover

Crossover

After crossover

S1:T0-T2-T7
S2:T1
S3:T3-T5
S4:T4-T6

parent1

S1: T0-T1
S7: T2-T7
S8: T3
S9: T4-T6
S10:T5

parent2

T0(1)-T2(1)-T7(1)-T1(2)-T3(3)-T5(3)-T4(4)-T6(4)

T0(1)-T1(1)-T2(7)-T7(7)-T3(8)-T4(9)-T6(9)-T5(10)

Randomly select crossover window

S1: T0-T2-T1
S4: T4-T6
S7: T7
S8: T3
S10:T5

S1: T0-T7
S2: T1
S3: T3-T5
S7: T2
S9:T4-T6

offspring1 offspring2

T0(1)-T2(1)-T1(1)-T4(4)-T6(4)-T7(7)-T3(6)-T5(10)

T1(1)-T0(1)-T2(2)-T4(4)-T6(4)-T7(7)-T3(6)-T5(10)

Before mutation

After mutation

S1 S5
S2 S6 S7

S3 S8
S10

S4 S9

Service Type

Task

ACBCBAAA

T7T6T5T4T3T2T1T0

Service Type

Task

ACBCBAAA

T7T6T5T4T3T2T1T0

A B C

 5

Fig. 6. Illustration of problem decoding.

F. Schedule Refinement
Although the solution generated by the genetic

operations and the time slot assignment process is feasible,
it may not be very efficient. Fig. 7 shows a sample of the
time assignments of a schedule. Note that the end time of
T4 is significantly larger than that of T5. Scheduling T3 and
T5 on faster services does not contribute to the entire
workflow execution, since T6 cannot start until T4 is
completed. However, it may incur unnecessary execution
cost, since faster services charge higher prices. Therefore,
we develop a refinement method to refine the schedule
generated by genetic operations. Instead of waiting for
other paths to be completed, a path capable of being
completed earlier is rescheduled on slower but cheaper
services through a schedule refinement process. Applying a
refinement process after the genetic operations may help
the genetic algorithm to converge faster, especially when
the budget is very low. However, similar to mutation
operations, it also disrupts the genetic algorithm evolution.
Therefore, the frequency of refinement occurrence should
be controlled by the refinement rate whose value is
determined experimentally.

In order to refine a workflow schedule, we group tasks
in a workflow into branches and synchronization tasks as

shown in Fig. 8. A synchronization task is a task which
has more than one child task or parent task, whereas a
branch consists of a set of interdependent simple tasks that
are executed sequentially between two synchronization
tasks. The refinement process goes through all branches in
the workflow. It reschedules tasks of a branch whose end
time is much less than the ready time of its child
synchronization task. The ready time of a synchronization
task is the maximum end time of its parent branches.

 (a) Before partitioning. (b) After partitioning.

Fig. 8. Workflow task partition.

The refinement process is used to solve the scheduling
optimization problem of branch tasks. A new schedule
generated by the refinement process should be the optimal
schedule that minimizes the execution cost while
completing the branch execution by the time its child
synchronization task starts. For a branch with only one
task, the optimal decision is simple. The optimal service is
the cheapest service that can process the task on time. For a
branch with multiple tasks, we model its scheduling
decision problem as a Markov Decision Process (MDP)
[27]. We set the ready time of its child synchronization task
as the deadline of the branch. The details of the MDP
definition can be found in [32]. We use value iteration, a
standard dynamic programming method, to compute
optimal policy for each MDP state and thus obtain the
optimal schedule of the branch. Fig. 9 shows the time and
cost of task assignments before and after refinement.

Fig. 9. Time and cost of task assignments.

IV. PERFORMANCE EVALUATION
We use GridSim [6][26] to simulate a Grid environment

for our experiments. Fig. 10 shows the simulation
environment in which simulated services are discovered by
querying the GridSim Index Service (GIS) and every
service is able to handle a free slot query, reservation
request and commitment.

We compare our proposed scheduling algorithm denoted
as Genetic Algorithm (GA) with a scheduling approach

T9 T12

Branch

T1 T6

T7

T14 T5

T10
T8

T2 T3
T4

T11

T13

Simple task
Synchronization task

T1 T6

T7

T14 T5

T10
T8

T2

T9

T3

T4

T11

T12
T13

Fig. 7. The time assignments of workflow tasks. The number
attached to each task is the time slot of the form of [start
time]-[end time]. Network transmission time is ignored in this
example, so the start time of a task is equal to the ready time
of the task.

T0 T1 T2

T3 T4

T5

T6

0-1878

1878-
2050

2050-
2650

5166-
5666

4450-
5166

0-2450 0-4450

T0 T1 T2

T3 T4

T5

T6

0-1878

1878-
2050

2050-
2650

5166-
5666

4450-
5166

0-2450 0-4450
T0 T1 T2

T3 T4

T5

T6

0-1878

1878-
3050

3050-
5000

5166-
5666

4450-
5166

0-4440 0-4450

Rescheduled tasks

(a) Before refinement (b) After refinement

(G$300) (G$200)

(G$150) (G$100)

(G$180) (G$100)

S1

S2

S3

S4

time

Schedule

T0 T2 T7

T1

T3 T5

T4 T6

T0(1)-T2(1)-T7(1)-T1(2)-T3(3)-T5(3)-T4(4)-T6(4)

S1:T0-T2-T7
S2:T1
S3:T3-T5
S4:T4-T6

Two-dimensional strings

One-dimensional string

Time slot assignment

S1

S2

S3

S4

Sn

……

queryFreeTimeSlot(Ti, Si)

time slots

 6

derived from existing market based workflow scheduling
[5] [13] denoted as Greedy Time (GT). The greedy time
approach assigns a planed budget to each task in the
workflow based on the average estimated execution costs
of tasks and the total budget of the workflow. The actual
costs of allocated tasks and their planned costs are also
computed successively at runtime. If the aggregated actual
cost is less than the aggregated planned cost, the scheduler
uses the unspent aggregated budget to schedule current task.
During the workflow execution, the greedy time approach
attempts to allocate a fastest service to each task among the
services, which are able to complete the task execution
within its planned budget.

We simulate two common workflow structures in

scientific workflow applications for our experiments:
parallel and hybrid. A parallel application (see Fig. 11a)
requires multiple pipelines to be executed in parallel. A
pipeline executes a number of tasks in a single sequential
order. For example, in Fig. 11a, there are 4 pipelines (1-2,
3-4, 5-6 and 7-8) before task 9. A hybrid structure
application (see Fig. 11b) is a complex combination of
parallel and sequential execution. In our experiments, we
used a neuro-science workflow [36] for our parallel
application and a protein annotation workflow [4]
developed by London e-Science Centre for our hybrid
workflow structure application.

Since the execution requirements for tasks in scientific
workflows are heterogeneous, we use the service type
attribute to represent the different types of services. Every
task in our experimental workflow applications requires a
certain type of service. For example, task 1, 3, 5, 7 in a
parallel application require service type Align_wap and
task 2, 4, 6 and 8 require reslice. In the simulation, we use
MI (million instructions) to represent the length of tasks
and use MIPS (Million Instructions per Second) to
represent the processing capability of services. We
simulate 15 types of services, each supported by 10 service
providers with various processing capability. The values of
MIPS for services range from 100 to 5000 and the value of
MI for each task is indicated in brackets next to the task in
Fig. 11.

 In our experiments, every task in the workflows
generates output data required by its child tasks as inputs.
The data needs to be staged out from the task processing
node and staged into the processing node of its child tasks.
The I/O data of the workflows ranges from 10MB to 1024
MB. The available network bandwidths between services
are 100Mbps, 200Mbps, 512Mbps and 1024Mbps and the
topology of all services are that they are fully connected.

For our experiments, the cost that a user needs to pay for
a workflow execution comprises of two parts: processing

cost and data transmission cost. Table II shows an example
of processing cost, while Table III shows an example of
data transmission cost. It can be seen that the processing
cost and transmission cost are inversely proportional to the
processing time and transmission time respectively.

The two metrics used to evaluate the scheduling
approaches are budget constraint and execution time. The
former indicates whether the schedule produced by the
scheduling approach meets the required budget, while the
latter indicates how long it take to schedule the workflow
tasks on the testbed.

a. Parallel application (fMRI workflow [36])

 b. Hybrid structure (protein annotation workflow [4])
Fig. 11. Workflow applications. The label on the left of a task
denotes the required service type. The number in brackets
represents the length of the task in MI.

Bandwidth
(Mbps)

Cost/sec
(G$/sec)

100 1
200 2
512 5.12

1024 10.24

Workflow
System

GIS

Grid
Service

1.register(service type)

1. register

4. AvailableSlotQuery(duration)

Grid
Service

2. query(type A)

3.service list

 5. slots

Fig. 10. Simulation environment.

6. makeReservation(task)

Service
ID

Processing Time
(sec)

Cost
(G$)

1 1200 300
2 600 600
3 400 900
4 300 1200

Table II. Service speed and corresponding
price for executing a task.

(900000)
1

5

6

2 3 4

109

11

12 13

15

7

14

SignalP COILS2 SEG PROSITE

TMHMM

Prospero HMMer

PSI-BLAST BLAST IMPALA

Summary

PSI-PRED

3D-PSSM

Genome

Summary

SCOP

(300000) (600000) (600000)

(300000)

(150000)

8

(150000)

(300000) (300000) (300000)

(600000)

(600000)

(300000)

(150000)

(300000)

(900000)
1

5

6

2 3 4

109

11

12 13

15

7

14

SignalP COILS2 SEG PROSITE

TMHMM

Prospero HMMer

PSI-BLAST BLAST IMPALA

Summary

PSI-PRED

3D-PSSM

Genome

Summary

SCOP

(300000) (600000) (600000)

(300000)

(150000)

8

(150000)

(300000) (300000) (300000)

(600000)

(600000)

(300000)

(150000)

(300000)

1

5

6

2 3 4

109

11

12 13

15

7

14

SignalP COILS2 SEG PROSITE

TMHMM

Prospero HMMer

PSI-BLAST BLAST IMPALA

Summary

PSI-PRED

3D-PSSM

Genome

Summary

SCOP

(300000) (600000) (600000)

(300000)

(150000)

8

(150000)

(300000) (300000) (300000)

(600000)

(600000)

(300000)

(150000)

(300000)

Table III. Transmission bandwidth and
corresponding price.

1 3 5 7

2 4 6 8

10 11 12

13 14 15

Align_wap

reslice

softmean

slicer

convert

(400000)

9

(600000)

(500000)

(600000)

(300000)

Align_wap

reslice

Align_wap Align_wap

reslice reslice

slicer slicer

convert convert

(400000) (400000) (400000)

(600000) (600000) (600000)

(500000) (500000)

(600000) (600000)

3

convert

 7

The following parameter settings are the default
configuration for producing results of the genetic algorithm:
population size of 10, swapping mutation and replacing
mutation probability of 0.5, a generation limit of 30,
refinement probability of 0.5. Since the genetic algorithm is
a stochastic search algorithm, each of the experiments was
repeated ten times and average values are used to report the
results.

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

800070006000500040003000

E
xe

cu
tio

n
C

os
t (

G
$)

User Budgets (G$)

Hybrid Structure Application (Execution Cost)

Greedy Time
Genetic Algorithm

a . Execution cost of two approaches.

 0

 0.5

 1

 1.5

 2

 2.5

 3

800070006000500040003000

E
xe

cu
tio

n
T

im
e

(H
ou

rs
)

User Budgets (G$)

Hybrid Structure Application (Execution Time)

Greedy Time
Genetic Algorithm

b. Execution time of two approaches.

Fig. 12. Execution time and cost using two approaches for
scheduling the hybrid structure application.

Fig. 12 and Fig. 13 compare the execution time and cost
of using the GA and the GT for scheduling parallel and
hybrid structure applications with budget G$3000, G$4000,
G$5000, G$6000, G$7000 and G$8000 respectively. It can
be seen that the GT takes much longer to complete even
though it incurs a higher execution cost. This is because the
decision making of the GT based only on the information
of the current task. It may produce the best schedule for the
current task but it could consequently reduce the entire
workflow performance. However, as the user’s budget
increases, the results of the two approaches are closer.
Compared these two application structures, the
performance of the parallel application produced by the
greedy time is better than that of the hybrid structure
application.

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

800070006000500040003000

E
xe

cu
tio

n
C

os
t (

G
$)

User Budgets (G$)

Parallel Application (Execution Cost)

Greedy Time
Genetic Algorithm

a. Execution cost of two approaches.

 0

 1

 2

 3

 4

 5

 6

 7

800070006000500040003000

E
xe

cu
tio

n
T

im
e

(H
ou

rs
)

User Budgets (G$)

Parallel Application (Execution Time)

Greedy Time
Genetic Algorithm

b. Execution time of two approaches.

Fig. 13. Execution time and cost using two approaches for
scheduling the parallel application.

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 20 40 60 80 100

E
xe

cu
tio

n
C

os
t(

G
$)

Number of Generations

Budget

a. Execution cost.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 20 40 60 80 100

E
xe

cu
tio

n
T

im
e(

H
ou

rs
)

Number of Generations
b. Execution time.

Fig. 14. Evolution of execution time and cost during 100
generations.

 8

We observe the performance of the GA when the
number of generation cycles is altered. Fig. 14a shows that
the execution cost is significantly reduced to the specified
budget as the number of generations is increased from 1 to
5. Consequently, as shown in Fig. 14b the execution time
increases during these generation cycles; this is because
individuals which take longer to process are selected in
order to reduce the execution cost. However, once the GA
has found the individuals which are able to complete the
execution within the budget, it starts to improve the
performance, and execution time is reduced for successive
generations.

Fig. 15 shows the results generated by various
refinement rates for scheduling the hybrid structure
application when the budget is G$3000. It is observed
from Fig. 15a that the GA cannot meet the budget within
30 generation cycles without the refinement process. We
also observe from Fig. 15b that there is no significant
performance improvement, when the rate is relatively low,
i.e. 0.1 and 0.3 in this case, or relatively high, i.e. 0.7 and
0.9. This is because the GA converges slower as less of the
refinement process is involved. The refinement process
helps the GA evolve faster from high cost solutions to the
solutions that meet budget constraints, since it replaces the
higher cost task assignments of the selected individuals
with cheaper task assignments. However, overly applying
the refinement process can cause the parents to lose task
assignments with shorter execution time, and thus result in
the children with longer execution time.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
C

os
t (

G
$)

Number of Generations

Budget

Rate 0
Rate 0.1
Rate 0.3
Rate 0.5
Rate 0.7
Rate 0.9

a. Execution cost.

b. Execution time.
Fig.15. Evolution of execution time and cost in response to
different refinement rate when budget is G$3000.

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 0 5 10 15 20 25 30 35 40

E
xe

cu
tio

n
C

os
t (

G
$)

Population Size

Budget

a. Execution cost vs. population size.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 5 10 15 20 25 30 35 40

E
xe

cu
tio

n
T

im
e(

H
ou

rs
)

Population Size
b. Execution time vs. population size.

Fig. 16. Execution cost and time for sizes of the population
ranged from 2 to 40 when user’s budget is G$4000.

Fig. 16 shows execution cost and time for sizes of the
population ranging from 2 to 40. We observe from Fig. 16a
that the solutions produced by the GA cannot even meet
the specified budget when the size of population is very
small. Once the population size is greater than 5, it is
observed that increasing the population size does not affect
execution cost significantly. However, large populations
give the GA more opportunity to find faster solutions for
the same execution costs.

V. RELATED WORK
Many heuristics have been investigated by several

projects for scheduling workflows on Grids. The heuristics
can be classified as either task level or workflow level. Task
level heuristics make scheduling decisions based only on
the information about a task or a set of independent tasks,
while workflow level heuristics take into account the
information of the entire workflow. Min-Min, Max-Min and
Sufferage are three major task level heuristics employed for
scheduling workflows on Grids. They have been used by
Mandal et al [17] to schedule EMAN bio-imaging
applications. Blythe et al [3] developed a workflow level
scheduling algorithm based on Greedy Randomized
Adaptive Search Procedure (GRASP) [11] and compared it
with Min-Min in compute- and data-intensive scenarios.
Another two workflow level heuristics have been employed
by the ASKALON project [23][34]. One is based on
Genetic Algorithms and the other is a Heterogeneous-
Earliest-Finish-Time (HEFT) algorithm. Sakellariou and

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(H
ou

rs
)

Number of Generations

Rate 0
Rate 0.1
Rate 0.3
Rate 0.5
Rate 0.7
Rate 0.9

 9

Zhao [24] developed a low-cost rescheduling policy. It
intends to reduce the overhead produced by rescheduling
by conducting rescheduling only when the delay of a task
execution impacts on the entire workflow execution.
However, these works only attempt to minimize workflow
execution time and do not consider users’ budget
constraints.

Several works have been proposed to address scheduling
problems based on users’ budget constraints. Nimrod-G [5]
schedules independent tasks for parameter-sweep
applications to meet users’ budget. A market-based
workflow management system [13] locates an optimal bid
based on the budget of the current task in the workflow.
More recently, Tsiakkouri et al [30] developed scheduling
approaches, LOSS and GAIN, to adjust a schedule which is
generated by a time optimized heuristic and a cost
optimized heuristic to meet users’ budget constraints
respectively. A time optimized heuristic attempts to
minimize execution time while a cost optimization attempts
to minimize execution cost. In contrast, we focus on using
genetic algorithms to solve the problems of scheduling
inter-dependent tasks based on the budget of entire
workflow.

Using the genetic algorithm approach to schedule tasks
in homogenous multiprocessor systems has been presented
in many literature such as [15][35][37][38]. The proposed
approach in this paper intends to introduce a new type of
genetic algorithm for large heterogeneous environments for
which the existing genetic operations algorithms cannot be
directly applied.

VI. CONCLUSION AND FUTURE WORK
Utility Grids enable users to consume utility services

transparently over a secure, shared, scalable and standard
world-wide network environment. Users are required to
pay for access to services based on their usage and the level
of QoS required for this network environment to be
commercially sustainable. Therefore, workflow execution
cost must be considered during scheduling. In this paper,
we have proposed a budget constraint based workflow
scheduling approach that minimizes the execution time
while meeting a specified budget. A new type of genetic
algorithm has also been developed, as the crossover and
mutation operations of existing genetic algorithms focused
on homogenous and non reservation-enabled
multiprocessor systems and therefore cannot be applied to
the problem directly. The fitness function is developed to
encourage the formation of the solutions to achieve the
budget constraint and time minimization. We have also
presented a workflow refinement approach using Markov
decision processes to make the genetic algorithm converge
faster when the budget is very low.

We will be further enhancing our scheduling algorithm
by supporting different service negotiation models and
runtime rescheduling, along with duplication of critical
tasks to meet users QoS requirements even under failures.
We will also study how the GA approach can be applied
for scheduling workflows based on other QoS constraints
such as reliability and security.

ACKNOWLEDGMENTS
We would like to thank Hussein Gibbins and Krishna

Nadiminti for their comments on this paper. We thank
Anthony Sulistio for his support with the use of GridSim.
This work is partially supported through an Australian
Research Council (ARC) Discovery Project grant.

REFERENCES
[1] S. Benkner et al., GEMSS: Grid-infrastructure for

Medical Service Provision, In HealthGrid 2004
Conference, 29th-30th Jan. 2004, Clermont-Ferrand,
France.

[2] S. Benkner et al., “VGE - A Service-Oriented Grid
Environment for On-Demand Supercomputing”, In the
Fifth IEEE/ACM International Workshop on Grid
Computing (Grid 2004), Pittsburgh, PA, USA,
November 2004.

[3] J. Blythe et al., “Task Scheduling Strategies for
Workflow-based Applications in Grids”, In IEEE
International Symposium on Cluster Computing and
Grid (CCGrid), 2005.

[4] A. O’Brien, S. Newhouse and J. Darlington, “Mapping
of Scientific Workflow within the e-Protein project to
Distributed Resources”, In UK e-Science All Hands
Meeting, Nottingham, UK, Sep. 2004.

[5] R. Buyya, J. Giddy, and D. Abramson, “ An
Evaluation of Economy-based Resource Trading and
Scheduling on Computational Power Grids for
Parameter Sweep Applications”, In 2nd Workshop on
Active Middleware Services (AMS 2000), Kluwer
Academic Press, August 1, 2000, Pittsburgh, USA.

[6] R. Buyya and M. Murshed, “GridSim: A Toolkit for
the Modeling and Simulation of Distributed Resource
Management and Scheduling for Grid Computing”
Concurrency and Computation: Practice and
Experience, 14(13-15):1175-1220, Wiley Press, USA,
2002.

[7] K. Cooper et al., “New Grid Scheduling and
Rescheduling Methods in the GrADS Project”, NSF
Next Generation Software Workshop, International
Parallel and Distributed Processing Symposium, Santa
Fe, IEEE CS Press, Los Alamitos, CA, USA, April
2004.

[8] E. Deelman et al., “Mapping Abstract Complex
Workflows onto Grid Environments”, Journal of Grid
Computing, 1:25-39, 2003.

[9] T. Eilam et al., “A utility computing framework to
develop utility systems”, IBM System Journal,
43(1):97-120, 2004.

[10] T. Fahringer et al, “ASKALON: a tool set for cluster
and Grid computing”, Concurrency and Computation:
Practice and Experience, 17:143-169, Wiley
InterScience, 2005.

[11] T. A. Feo and M. G. C. Resende, Greedy Randomized
Adaptive Search Procedures, Journal of Global
Optimization, 6:109-133, 1995.

[12] I. Foster et al., “The Physiology of the Grid”, Open
Grid Service Infrastructure WG, Global Grid Forum,
2002.

 10

[13] A. Geppert, M. Kradolfer, and D. Tombros. “Market-
based Workflow Management”, International Journal
of Cooperative Information Systems, World Scientific
Publishing Co., NJ, USA, 1998.

[14] D. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-Wesley,
1989.

[15] E. S. H. Hou, N. Ansari, and H. Ren, “A Genetic
Algorithm for Multiprocessor Scheduling”, IEEE
Transactions on Parallel and Distributed Systems,
5(2):113-120, February 1994.

[16] B. Ludäscher et al., “Scientific Workflow Management
and the KEPLER System”, Concurrency and
Computation: Practice & Experience, Special Issue on
Scientific Workflows, to appear, 2005

[17] A. Mandal et al., “Scheduling Strategies for Mapping
Application Workflows onto the Grid”, IEEE
International Symposium on High Performance
Distributed Computing (HPDC 2005), 2005.

[18] A. Mayer et al, “ICENI Dataflow and Workflow:
Composition and Scheduling in Space and Time”, In
UK e-Science All Hands Meeting, Nottingham, UK,
IOP Publishing Ltd, Bristol, UK, September 2003.

[19] S. Jang et al., “Using Performance Prediction to
Allocate Grid Resources”. Technical Report 2004-25,
GriPhyN Project, USA.

[20] F. Neubauer, A. Hoheisel and J. Geiler, “Workflow-
based Grid Applications”, Future Generation
Computer Systems, 22:6-15, 2006.

[21] G. R. Nudd et al, “PACE- A Toolset for the
performance Prediction of Parallel and Distributed
Systems”, International Journal of High Performance
Computing Applications (JHPCA), Special Issues on
Performance Modelling- Part I, 14(3): 228-251, SAGE
Publications Inc., London, UK, 2000.

[22] T. Oinn et al., “Taverna: a tool for the composition and
enactment of bioinformatics workflows”,
Bioinformatics, 20(17):3045-3054, Oxford University
Press, London, UK, 2004.

[23] R. Prodan and T. Fahringer, “Dynamic Scheduling of
Scientific Workflow Applications on the Grid using a
Modular Optimisation Tool: A Case Study”, In 20th
Symposium of Applied Computing (SAC 2005), Santa
Fe, New Mexico, USA, March 2005. ACM Press.

[24] R. Sakellariou and H. Zhao. "A Low-Cost
Rescheduling Policy for Efficient Mapping of
Workflows on Grid Systems''. Scientific Programming,
12(4), pages 253-262, December 2004.

[25] W. Smith, I. Foster, and V. Taylor, “Predicting
Application Run Times Using Historical Information”,
In Workshop on Job Scheduling Strategies for Parallel
Processing, 12th International Parallel Processing
Symposium & 9th Symposium on Parallel and
Distributed Processing (IPPS/SPDP '98), IEEE
Computer Society Press, Los Alamitos, CA, USA,
1998.

[26] A. Sulistio and R. Buyya, “A Grid Simulation
Infrastructure Supporting Advance Reservation”, In
16th International Conference on Parallel and
Distributed Computing and Systems (PDCS 2004),
ACTA Press, Anaheim, California, November 9-11,
2004, MIT Cambridge, Boston, USA.

[27] R. S. Sutton and A. G. Barto, Reinforcement Learning:
An Introduction, MIT Press, Cambridge, MA, 1998.

[28] I. Taylor, M. Shields, and I. Wang, “Resource
Management of Triana P2P Services, Grid Resources
Management, Kluwer, Netherlands, June 2003.

[29] G. Thickins, “Utility Computing: The Next New IT
Model”, Darwin Magazine, April 2003.

[30] E. Tsiakkouri et al., “Scheduling Workflows with
Budget Constraints”, In the CoreGRID Workshop on
Integrated research in Grid Computing, S. Gorlatch
and M. Danelutto (Eds.), Technical Report TR-05-22,
University of Pisa, Dipartimento Di Informatica, Pisa,
Italy, Nov. 28-30, 2005, pages 347-357 .

[31] J. Yu and R. Buyya, “A Taxonomy of Workflow
Management Systems for Grid Computing”, Journal of
Grid Computing, Springer, 3(3-4): 171-200, Spring
Science+Business Media B.V., New York, USA, Sept.
2005.

[32] J. Yu, R. Buyya, and C.K. Tham, “A Cost-based
Scheduling of Scientific Workflow Applications on
Utility Grids”, In 1st IEEE International Conference
on e-Science and Grid Computing, Melbourne,
Australia, Dec. 5-8, 2005.

[33] A. Birnbaum et al., “Grid workflow software for High-
Throughput Proteome Annotation Pipeline”, In 1st
International Workshop on Life Science Grid
(LSGRID2004), Ishikawa, Japan, June 2004.

[34] M. Wieczorek, R. Prodan and T. Fahringer,
“Scheduling of Scientific Workflows in the
ASKALON Grid Environment”, Special Issues on
scientific workflows, ACM SIDMOD Record,
34(3):56-62, ACM Press, 2005.

[35] A. S. Wu et al., “An Incremental Genetic Algorithm
Approach to Multiprocessor Scheduling”, IEEE
Transactions on Parallel and Distributed Systems,
15(9):824-834, September 2004.

[36] Y. Zhao et al., “Grid Middleware Services for Virtual
Data Discovery, Composition, and Integration”, In 2nd
Workshop on Middleware for Grid Computing,
October 18, 2004, Toronto, Ontario, Canada.

[37] A. Y. Zomaya, C. Ward, and B. Macey, “Genetic
Scheduling for Parallel Processor Systems:
Comparative Studies and Performance Issues”, IEEE
Transactions on Parallel and Distributed Systems,
10(8):795-812, August 1999.

[38] A. Y. Zomaya and Y. H. Teh, The, “Observations on
Using Genetic Algorithms for Dynamic Load-
Balancing”, IEEE Transactions on Parallel and
Distributed Systems, 12(9):899-911, September 2001.

