
A Novel Architecture for Realizing Grid Workflow using Tuple Spaces

Jia Yu and Rajkumar Buyya
GRIDS Laboratory and NICTA Victoria Laboratory

Department of Computer Science and Software Engineering
The University of Melbourne, Australia

{jiayu, raj}@cs.mu.oz.au

Abstract
Grid workflow can be defined as the composition of
grid application services which execute on
heterogeneous and distributed resources in a
well-defined order to accomplish a specific goal.
Uncertainties within grid environments pose new
challenges for grid workflow management systems such
as lacking central control and undedicated resource
sharing. In this paper, we provide a workflow
enactment engine together with an XML-based
workflow language (xWFL). The workflow engine
supports a just in-time scheduling system, thus
allowing the resource allocation decision to be made at
the time of task execution and hence adapt to changing
grid environments. We also show that an event-driven
scheduling architecture using tuple spaces provides a
highly flexible approach for executing large scale
complex grid workflows.

1. Introduction
Grid computing �[1] facilitates the sharing and
aggregation of heterogeneous and distributed resources,
such as computing resources, data sources, instruments
and application services. With the advent of grid
technologies, scientists and engineers are building
more and more complex applications to manage and
process large data sets, and execute scientific
experiments on distributed grid resources. Means of
composition and executing distributed applications to
form complex workflow are needed. Some efforts in
the research of business workflow and Web services
orchestration can be reused in grid workflow systems.
However, there are new challenges needing to be
addressed.

In a typical Grid environment, organizational
structures known as virtual organizations (VOs) �[4] are
dynamic federations of individuals and organizations
aimed at solving a problem of common interests via
collaboration. Resources are shared between users in
the VOs, and added and removed all the time.
Therefore, computational and networking capabilities
can vary significantly over time.

Another difficulty for workflow management in
Grids is that there is no central ownership and control.
The control over grid resources is dispersed across

multiple administrative domains. The grid resources are
not under the exclusive and complete control of the
owner of the workflow systems. The local policy is
subject to change without informing the users of
workflow systems.

The execution of a grid workflow faces many
uncertain factors such as unavailability, incomplete
information and local policy changes. A full-ahead-plan
�[24] is not always suitable, since it requires the
specification of the exact location of resources assigned
to every task, as well as the physical files of the data in
advance before the workflow execution. The workflow
execution failure could be caused by the status change
of the specified resources during the workflow
execution. Therefore, the grid workflow enactment
engine must be able to adapt to the changing conditions
and be able to quickly re-allocate resources.
 Moreover, the processing of grid workflow could be
quite complex. The tasks of grid workflows are
expected to be executed on heterogeneous resources
which are geographically distributed. Many different
resources may be involved in one workflow execution.
For example, in a scientific experiment, one needs to
acquire data from an instrument, and run on resources
owned by other organizations in sequence or parallel to
analyze datasets. Therefore, the processing of resource
discovery and selection could be quite complicated. In
addition, a large number of tasks may be required to
execute in parallel and the location of intermediate data
may be known only at run-time.

In this paper, we propose a workflow enactment
engine (WFEE) with a just in-time scheduling system
using tuple spaces. It allows the decision of resources
allocation to be made dynamically at the time of the
execution of tasks in the workflow. Compared with the
approach of partial workflow submission �[5], we
believe a decentralized event-driven scheduling
architecture provides a more flexible and
loosely-coupled control. It also allows tasks to be
scheduled as data becomes available rather than
waiting for the completion of parent tasks.

The remainder of this paper is organized as follows:
In Section 2, we present related work. The overview of
WFEE is briefly introduced in Section 3. The workflow
description language for the engine is shown in Section

4. The mapping of applications approach for resource
discovery in VOs is discussed in Section 5. Detailed
design of the scheduling system is described in Section
6. Section 7 shows the implementation of WFEE.
Experiments and result discussion are presented in
Section 8. We conclude in Section 9 with discussion of
future work.

2. Related Work
Our workflow engine is an independent workflow
execution system and takes advantage of various
middleware services such as security, grid resource
access, file movement and replica management
services provided by the Globus middleware �[6], and
parametric application execution provided by the
Gridbus Broker �[7] and VO directory service provided
by the Grid Market Directory (GMD) �[8].

Many efforts toward grid workflow management
have been made. DAGMan �[9] was developed to
schedule jobs to Condor system in an order represented
by a DAG and to process them. With the integration of
Chimera �[10], Pegasus �[5] map and execute complex
workflow based on full-ahead-planning. In Pegasus, a
workflow can be generated from metadata description
of the desired data product using AI-based planning
technologies. The Taverna project �[11] has developed a
tool for the composition and enactment of
bioinformatics workflow for the life science
community. The tool provides a graphical user
interface for the composition of workflows. Other
workflow projects in the grid context include ScyFlow
�[12], GridFlow�[2], Unicore�[13], ICENI�[14],
GridAnt�[15] and Triana �[29].

Compared with the work listed above, we provide a
decentralized, just in-time, meta-scheduling system
which enables workflow resources to be discovered
and reallocated at run-time. Another feature of our
WFEE is to schedule tasks immediately after the
availability of required input data rather than waiting
for the complete execution of all tasks in the parents’
hierarchy.

There are a number of projects�[16]�[17] focused on
developing a grid workflow language. In addition,
many efforts on the composition of Web services �[18]
can also be complementary to the development of grid
workflow management systems. The main aim of our
workflow language is to support parameterization �[19],
which is important to scientific applications.

3. Overview of Workflow Enactment
Engine
The architecture of our workflow enactment engine
(WFEE) and its relationship with other components in
the Grid infrastructure are shown in Figure 1.

Workflow applications such as scientific application
portals, submit task definitions along with their
dependencies in the form of the workflow language as
well as QoS requirements to WFEE. WFEE schedules
tasks through grid middleware on the grid resources.

The key components of WFEE are: workflow
submission, workflow language parser, resource
discovery, dispatcher, data movement and workflow
scheduler.
� Workflow submission accepts workflow

enactment requests from planner level
applications.

� Workflow language parser converts workflow
description from XML format into Java objects,
Task, Parameter and DataConstraint (workflow
dependency) which can be accessed by workflow
scheduler.

� Resource discovery is intended to query grid
information services such as Globus MDS �[6],
GMD and replica catalogs, to locate suitable
resources for the tasks.

� There are several types of middleware used for
Grids such as Globus 2 GRAM �[6] , Web services
�[20] and OGSI�[21]. Grid resources may be
connected by different middleware. WFEE had
been designed to support different middleware by
creating dispatchers for each middleware to
support its interaction with resources.

� Data movement system enables data transfer
between grid nodes by using HTTP and GridFTP
�[22] protocols.

� Workflow scheduler is the central component in
WFEE. It interacts with resource discovery to find
suitable grid resources at run time; it locates a
task on resources by using the dispatcher
component; it controls input data transference
between task execution nodes through data
movement.

Figure1. The Architecture of WFEE.

DatabaseDatabase

Workflow Submission Handler

Workflow Language Parser

Tasks Parameters Dependencies

Resource Discovery

Dispatcher Data Movement

GMD

Replica
Catalog

Gridbus Broker Globus Web services HTTP GridFTP

Data transfer

Workflow Planner Application Composition …… Scientific Portal

Workflow
Enactment Engine

Workflow description & QoS

Info Service

MDS

Workflow Scheduler

DatabaseDatabase

Workflow Submission HandlerWorkflow Submission Handler

Workflow Language ParserWorkflow Language Parser

Tasks Parameters Dependencies

Resource DiscoveryResource Discovery

DispatcherDispatcher Data MovementData Movement

GMD

Replica
Catalog

Gridbus Broker Globus Web services HTTP GridFTP

Data transfer

Workflow Planner Application Composition …… Scientific Portal

Workflow
Enactment Engine

Workflow description & QoS

Info Service

MDS

Workflow SchedulerWorkflow Scheduler

4. Workflow Language and Structure
In order to allow users to describe tasks and their
dependencies, we defined a simple and flexible
XML-based workflow language (xWFL). The
workflow language provides the means to build new
applications by linking standalone applications.

Our workflow description expressed in XML format,
and its structure is shown in Figure 2. It consists of
three parts, namely parameter definitions, task
definitions and data link definitions.

4.1 Parameters
Supporting parameterization in the workflow language
is very important for scientific applications. It enables
scientists to do experiments on different parameters
easily by changing the value of parameters without
being concerned about the detailed workflow
description. Multiple parameters types such as single,
range, select, random, file and multi-files need to be
supported. An example for a single parameter type and
a range parameter type is given below:

<parameters>
 <para type= “single”>
 <name>X</name>
 <value type=integer>10</value>
 </para>
 <para type= “range”>
 <name>Y</name>
 <min>1</min>
 <max>20</max>
 <step>2</step>
 </para>
</parameters>

4.2 Tasks
Basically, <tasks> is a set of tasks that are to be
executed. Our workflow language supports both
abstract workflow and concrete workflow. As shown in
the Figure 2, host and accesspoint are optional. That is
the user or higher workflow planner, can either specify
the location of a particular resource providing required

application services or leave it to the engine to identify
their providers dynamically at run-time. In the below
example, task A executes dock.exe program on host
services.gridbus.com in the directory /services and
executable dock has two input I/O ports: port0 (a file)
and port1 (a parameter value). The example shows task
A only has one output named port2.

<tasks>
<task name= “A”>

<executable>
 <name>dock</name>
 <host>services.gridbus.com</host>

<accesspoint type= “GlobusGram”>/dock.exe</accesspoint>
 <input>
 <port0 type= “file” url= “http://www.gridbus.org/

datacenter/dock.in”>dock.in</port0>
 <port1 type= “msg”>$time_base_value</port1>
 </input>
 <output>
 <port2 type= “file”>dock.out</port2>
 </output>

</executable>
 …..
</task>

</tasks>

4.3 Data Links
Data link is used to specify the data flow of the tasks.
Below example is the data flow description of Figure 3.
The inputs of task B and task C rely on the output of A.
The task A’s output needs to be transferred to the node
on which task B and task C are executed. Input could
be a file, parameter value or data stream.

<workflow>

<tasks>
<task name= “A”>

 …..
</task>
<task name= “B”>

…...
</task>

<task name= “C”>
……

</task>
<task name= “D”>
……

</task>
</tasks>
<links>

<link>
<from>A:port2</from>
<to>B:port0</to>

</link>
<link>
<from>A:port2</from>
<to>C:port0</to>

</link>
<link>
<from>B:port1</from>
<to>D:port0</to>

</link>
<link>

Optional

Figure 2. The Structure of Workflow Language.

Figure 3. Flow Diagram
 of Task A, B, C and D.

A

B C

D

file

other

<from>C:port2</from>
<to>D:port1</to>

</link>
</links>

</workflow>

5. Mapping of Applications
In our previous work �[7], we have set up a directory
service called GMD which allows resource providers to
register themselves as service providers to a VO and
publish their services along with the price. In order to
support more broad services discovery, we had
extended GMD by providing Middleware Type and
Grid Application Model (GAM) publication, and
allowed providers to publish additional properties of
the services such as assess location.
 In a grid environment, many services, which have
same functionality and user interaction, may be
provided by different organizations. Also, a service
may be replicated and deployed in many locations.
From the user’s point of view, it is better to use a
service that offers a higher performance at a lower
price. Therefore, a method is needed to allow users to
find replicated services easily. We have created Grid
Application Model (GAM) which is derived from
tModel in UDDI �[22]. A GAM is a set of specifications
and APIs for a grid application. The GAM can be
published by the service providers within GMD, and
the users can search GMD for services conforming to a
particular GAM.

Unlike UDDI, GMD also provides more detailed
Grid service attributes. The major attributes of a Grid
service are service name, service type, hardware price,
software price, node host name, access point,
middleware type and grid application model.

In the case of our workflow system, if the locations
of the resources for tasks are not indicated in the
workflow description, the scheduler uses the
executable name as a GAM name to query GMD.
GMD will return a list of resources which are able to
execute the task.

6. Workflow Scheduling System
Given the complexity of the grid workflow execution,
we have designed a decentralized scheduling system
which supports just in-time planning and allows the
decisions of the resource allocation to be made and
changed at run-time.

6.1 Architecture
We believe that decentralized scheduling architecture is
more efficient over the centralized scheduling for
complex workflow processing, which handles all tasks
by one scheduler. In our system, every task has its own
scheduler called task manager (TM) which implements

a scheduling algorithm and handles the processing of
the task, including resource selection, resource
negotiation, task dispatcher and failure processing. The
lifetimes of TMs, as well as the whole workflow
execution, are controlled by a workflow coordinator
(WCO).

As shown in Figure 4, dedicated TMs are created by
WCO for each task. Each TM has its own monitor
which is responsible for monitoring the health of the
task execution on the remote node. Every TM
maintains a resource group which is a set of resources
that provided services required for the execution of an
assigned task. TMs and WCO communicate through a
event service server (ESS).

6.2 Communication Approach
A communication approach is needed for schedulers in
the decentralized scheduling system. On one hand,
every task manager is an independent scheduler and
they can be run in parallel. On the other hand, the
behavior of each task manager may depend on the
processing status of other task managers according to
the tasks dependencies. For example, a task manager
should not execute the task on a remote node if its
input generated by its parent tasks is not available for
any reason.

In addition, in a workflow, a task may have more
than one input that comes from different tasks.
Furthermore, the output of these tasks may also be
required by other task managers as well. So the
communication model between the task managers is
not just one-to-one or one-to-many, but it could be
many-to-many depending on task dependencies of the
workflow.

In our system, we use event-driven mechanism with
subscription-notification model supported by the tuple
spaces model to control and manage scheduling
activities.

6.2.1 Event-driven Mechanism
In the system, the behaviors of task managers and
workflow coordinator are driven by events. A task
manager is not required to handle communication with
others and only generates events according to task’s

Workflow
Coordinator

Task Manager

Resource
Group

TaskMonitor

Task Manager
Factory

Event
service

Workflow Scheduler

Figure 4. Scheduling Architecture.

processing status. At the same time, the task managers
take actions only according to occurred events without
concern for details of other task managers.

The event notification is based on
subscription-notification model. WCO and TMs just
subscribe the events of interest after activation, and
then they can do whatever they want. When a
subscribed event occurs, they will be informed.

The benefit of the event-driven mechanism is it
provides a loosely-coupled control; hence the design
and development of the system are very flexible.

6.2.2 Event Exchange and Tuple Spaces
Where to put event messages and how to get event
messages needs to be addressed. We have utilized tuple
spaces to exchange events.

The tuple space model originated at Yale with the
Linda system �[25]�[26]�[27]. A tuple is simply a vector
of typed values (Fields). A tuple space is a collection of
tuples which can be shared by multi-parties by using
operations such as read, write and delete. In our work,
we have leveraged IBM’s recent implementation of
tuple spaces called TSpaces �[28] to be ESS.

We defined three type event tuples: task status event,
output event and job status event. Task status events
sent by the TMs to inform the status of task managers.
Output events are sent by TMs to announce that its
output is ready along with location of its storage. Job
status events are used to indicate the execution status of
jobs on remote grid nodes. A job is a unit of work a TM
sends to a grid node, one task may create more than
one job.

As illustrated in Figure 5, TMs inform each other
and communicate with WCO through ESS. For
example, TMs put their task execution status (e.g.
executing, done, failure) into ESS, and then ESS
notifies WCO. Every executed TM subscribes its input
events generated by TMs of its parent’s tasks. Once a
TM sends an output event to ESS, ESS notifies
corresponding children TMs immediately.

The other benefit from using tuple spaces is:

additional components are easy to plug in. For example,

a monitoring portal, can subscribe status event from
tuple spaces without modifying scheduling system.

6.3 State Transition
The state transition of WCO is illustrated in Figure 6.
WCO registers to ESS and start TMs of first level tasks,
and then monitor activated TMs. Upon receiving
execution status from a TM, WCO starts the TMs of its
children tasks. If WCO receives a status done event, it
checks whether other TMs are still running. If so, WCO
goes back to monitoring, otherwise it exits. If WCO
receives a failed event from a TM, it goes to failure
processing, and then ends.

The state transition of TMs is illustrated in Figure 7.

TM registers its output events generated by its parent
tasks and waits for the output events, when an event
comes; TM goes to event processing state which
records the information of input data. If any other input
data is still not available, TM goes back to wait state;
otherwise, it transfers to the resource matching state. In
resource matching, it takes a resource from resource
group which is created by querying GMD. If a suitable
resource is available, TM submits job to the resource
and then monitors the status of job execution on the
remote resource. If the execution failed, TM goes to
resource matching again and takes another resource
from resource group and then submits job to it. If there
is no available resource, TM ends.

Figure 5. Event-driven Mechanism.

Event Service

Workflow Coordinator

Task Manager Task Manager Task Manager.

status

output

notify

notify

Grid resources

failure
processing

monitoring

children TMs
activation

status event
registration

workflow
execution
checking

terminated

first level
TMs activation

no event

executing event

succeeded

done event

no TM is running

Other TMs
are executing

failed event

Initial state

State

Final state

Figure 6. State Transition of WCO.

wait for
inputs

event
processing

resource
matching

Job
submitting

Job
monitoring

output
processing

output event occur

all inputs are ready

no available resource

Find a sufficient resource

Job completed

all inputs are not ready

no output event

remote node failed

submited

processed

terminated

Initial state

State

Final state

input event
registration

Figure 7. State Transition of TM.

6.4 Interaction
The interactions between the WCO, TMs, ESS and
remote resources are illustrated in Figure 8. Firstly,
WCO needs to register to ESS and subscribe the events
of task execution status. And then WCO activates task
managers of first level tasks, in the example, only one
TM1. After TM1 finishes the preprocessing of the task
execution, it sends a message to ESS saying “I am
executing the task”. ESS informs the WCO and WCO
activates TMs of children tasks of TM1, namely TM2
and TM3 in this example. The inputs of the task of
TM2 and TM3 rely on the output of the task of TM1,
so TM2 and TM3 register to ESS and listen to its
output events. Once TM1 identifies a suitable resource,
it submits task to that resource. As soon as TM1 knows
the output of the task, it informs TM2 and TM3
through ESS, saying “my output of port No. x is ready
and its location is xxxx”. If all input data of the task of
TM2 and TM3 are ready, TM2 and TM3 reports
execution status to ESS, and then proceeds to the

execution of their tasks. After WCO receives the
notification of the execution of TM2 and TM3, WCO
will activate their children task managers, so they can
begin to listen to their inputs and prepare task
execution. This process will be continued until the end
of workflow execution.

7. Objected Oriented Implementation
The basic technologies used in our WFEE
implementation are Java and IBM TSpaces �[26]�[28]
apart from grid technologies mentioned earlier.

7.1 Design Diagram
The class design diagram of WFEE is shown in Figure
9. XMLParsingToModel parses XML formatted
workflow description into java objects which are
instances of class of Task, Port, DataConstraint. These
objects are collected by WorkflowModel.
WorkflowModelToDiGraph converts WorkflowModel
into directed graph represented by class DiGraph which

WCO TM1 Resources TM3TM2Event service

register task status events

activate

activate task
managers of first
level tasks

on receiving a
task executing
status event,
activate the task
managers of
children tasks

submit job on a remote resource

send status[executing]

notify TM1 satus[executing]

activate

register input event[parentTaskName, portNo]

wait for
inputs

inform output location

notify output to registered taskmanager

activate

register inputs events

wait for
inputs

submit job on a remote resou...

submit job on a remote resource

send status[executing]
notify

activate the
chidren task
managers

send status[executing]
notify

send status[done]
notify TM1 Status

send status [done]

send status [done]notify

notify

Figure 8. Interaction sequence diagram.

encompasses many GraphNode objects. An instance of
GraphNode recodes its parent nodes and children nodes.
WorkflowCoordinator creates and controls the
instantiation of TaskManager according to the graph
node dependencies. Job class presents a unit work
assigned to a Grid resource. Every job has a monitor
implemented by JobMonitor to monitor job execution
status on the remote node. In order to extend WFEE to
support multiple Grid middleware, we abstract class
Resource and Dispatcher which provides interfaces to
interact with Grid resources.

7.2 Event Messages
There are three types of event tuples whose format is
shown in Table 1. Task status event is sent by TMs and
WCO use it to control TMs activation. The first field is
the ID of the task, second field is string “status” to
indicate the type of tuple for the registration purpose,
and third field gives the value of status.

TMs need output events sent by their parent TMs to
know whether their inputs are available. Task ID is
given in the first field, second field is port No. and
third field is the location of output.

Job status events are sent by the job monitor. Every
job status event gives job ID and its task ID with status
value. TMs make decisions according to the job events.
For example, when a job is failed, the TM can
reschedule this job to another resource in the resource
group.

The tuple templates are used for subscribing to the

corresponding event. For example, registration to the
tuples whose second field is a string “status” can
receive all task status events.

8. Experiments
We tested WFEE by creating a synthetic
applications/workload that attempted to simulate a real
workflow. We used Australian Belle Grid test-bed
resources located in Sydney, Canberra, and Melbourne
(see Table 2). The synthetic programs we created for
experiments are xcalc, ycalc, addcalc and merge.
Basically, xcalc, ycalc and addcalc programs execute
mathematical functions and have varying computation
complexity based on the values of two inputs. The
inputs of these three programs have different formats;
both inputs of the xcalc are parameter type; ycalc has
one file type input and one parameter input, while
addcalc has two file type inputs. They all save the
result in a file. The merge program merges three input
files into one file.

We have created a multi-stage workflow shown in
Figure 10. The result output Fa of task A is needed
by tasks B, C and D. The tasks E, G and F depend on
the output from B, C and D. Finally the results of E, G
and F are merged together by the task H. The program
that tasks used and their input and output information
are shown in Table 3 with the execution time when run
independent of each other on belle.cs.mu.oz.au node.

Event name Field1 Field2 Field3 Tuple template for registration
task status event task No. “status” value new Tuple(new Field(String), status, new Field(String))
output event task No. port No. value new Tuple(taskNo, portNo, new Field(String))
job status event job No. task No. value new Tuple(new Field(String), taskNo, new Field(String))

Figure 9. Class Diagram of WFEE.

Table 1. The Format of Events.

Thread

GT2Dispatcher

GT2Resrouce <<Abstract>>Dispatcher

JobMonitor

<<Abstract>>Resource

Job

WorkflowCoordinator

TaskManger

1..n1..n

1..n1..n
DiGraph

GraphNode
children : List
parents : List

1..n1..n

XMLParsingToModel WorkflowModelToDiGraph

TaskPortDataConstraint

WorkflowModel

1..n1..n1..n1..n1..n1..n

We initiated the workflow execution on a resource
located in Melbourne and workflow tasks are
distributed to resources located in Sydney, Canberra
and Melbourne. We registered the details of the
deployed applications such as access point, middleware
type within GMD. Figure 11 presents the definition of
task C, D and F with the data flow between them
defined in the datalink tag. Task C is specified to
execute on belle.anu.edu.au. As there is no location
defined for task D, the WFEE locates it by querying
GMD at run time.

The start time of submitting tasks on the discovered
remote nodes and end time of the task execution for
each task are shown in Table 4. Its process diagram is
illustrated in Figure 12. After completion of task A, the
children tasks B, C and D were run in parallel. The task
E started earlier than G and F, since they had to wait for
completion of D.

The start time we measured is the time TM started to
submit job to a remote resource. Theoretically, after
task A finishes, its children tasks should be submitted
immediately, however, there are some time intervals
between the parent tasks end time and children task
start time. That gap can be regarded as due to WFEE
running overhead, including Tuple-space
communication delay, event notification process, GMD
query delay and event processing. However, compared
to the running time of tasks, the gap is insignificant.

Node Type CPU Location
belle.cs.mu.oz.au IBM eServer 4 Melbourne
belle.anu.edu.au IBM eServer 4 Canberra
belle.physics.usyd.edu.au IBM eServer 4 Sydney
fleagle.ph.unimelb.edu.au PC 1 Melbourne

Input 1 Input 2 Output
Task Program

type value type value type value
Time

A xcalc parameter 3 parameter 4 file 0121869 3m59.849s

B ycalc file 0.121869 parameter 4 file 0.071878 3m59.997s

C ycalc file 0.121869 parameter 5 file 0.089274 4m59.997s

D ycalc file 0.121869 parameter 6 file 0.106644 5m59.997s

E addcalc file 0.071878 file 0.089274 file 0.002813 4.996s

F addcalc file 0.089274 file 0.106644 file 0.003116 5.996s

G addcalc file 0.071878 file 0.106644 file 0.003419 5.996s

H merge merge three input files into one file 0.005s

Total 19m13s

<task name="C">
<executable>

<name>ycalc</name>
<host>belle.anu.edu.au</host>

 <accesspoint type="GT2Gram">/data/ycalc.sh</accesspoint>
 <input>
 <port0 type="file">para</port0>
 <port1 type="msg">5</port1>

</input>
<output>

 <port2 type="file">output</port2>
 </output>

</executable>
</task>
<task name="D">

<executable>
<name>ycalc</name>

 <input>
 <port0 type="file">para</port0>
 <port1 type="msg">6</port1>
 </input>
 <output>
 <port2 type="file">output</port2>
 </output>

</executable>
</task>
<task name="F">

<executable>
 <name>addcalc</name>
 <input>
 <port0 type="file">para1</port0>
 <port1 type="file">para2</port1>
 </input>
 <output>
 <port2 type="file">output</port2>
 </output>

</executable>
</task>

A

B C D

E G F

H

Fa Fa Fa

Fb
Fc

Fb Fd Fc Fd

Fe Fg Ff

Figure 10. Workflow Diagram of the Experiment.

Table 2. Test-bed Machine List in Australia.

Figure 11. XML workflow description for C, D and F.

<datalink>
<link>

 <from>C:port2</from>
 <to>F:port0</to>

</link>
<link>

 <from>D:port2</from>
 <to>F:port1</to>

</link>
</datalink>

Table 3. Task Details and the Execution Time on belle.cs.mu.oz.au.

.

We also simulated a dynamic environment for

WFEE. After we started WFEE again, we moved the
application for task D and F from
belle.physics.usyd.edu.au to fleagle.ph.unimelb.edu.au
and updated the entries in GMD. We accomplished
updates before D and F execution. At the time of D and
F execution, the TMs of D and F discovered the new
location and submitted to fleagle.

From the results of serial and parallel execution of
workflow, it can be observed that in some cases the
execution of a task on a remote node takes more time.
This is mainly due to overhead involved in initiating
remote execution and transmission of inputs and
outputs between user and remote nodes. However, we
notice that the total time of running all tasks on one
machine in serial (19min 13sec) is larger than
concurrent execution on distributed grid resources (11
min 23sec).
 The experiment proves that WFEE can discover
resources at run time, execute distributed installed
applications in parallel and sequence, and transfer input
and output data for applications automatically. Thus,
new application services can be derived by composing
standalone distributed resources using WFEE.
Additionally, high throughput can be achieved by
taking advantage of distributed computational
resources.

9. Conclusion and Future Work
In this paper, we presented our current work for the
Grid workflow enactment engine. The new contribution
of the work is that it provides decentralized just-in-time
scheduling which can adapt to heterogeneous and
dynamic grid environments. Using tuple spaces model,
event-driven mechanism and subscription-notification
approach makes the workflow execution
loosely-coupled and flexible. We also achieved services
discovery at run-time by using Grid Market Directory.
WFEE links geographically distributed standalone
applications and takes advantage of distributed
computational resources to achieve high throughput.
Also the intermediated data can be transferred between
Grid nodes automatically.

We have integrated our WFEE into a grid
middleware – Globus 2.4 for remote job execution.
Basic XML based data flow language is also provided
for end users.

Our future work will focus on workflow execution
optimization. We will be extending resource allocation
algorithms to support optimal and QoS (Quality of
Service) requirements based scheduling, using
computational economy. In addition, we are extending
WFEE to support loop and advanced workflow control
patterns whose requirements are derived from
applications in biology and natural language processing
domains.

Acknowledgements
We would like to thank Srikumar Venugopal, Chee
Shin Yeo, Anthony Sulistio and Rob Gray for
reviewing the paper. We also want to thank Baden
Hughes and Kim Branson for providing workflow
requirements of their applications in natural language
engineering and molecular modeling.

The work presented in this paper is partially
supported through the Australian Research Council
Discovery Project grant and Storage Technology
Corporation sponsorship of Grid fellowship.

References
[1]. I. Foster and C. Kesselman (editors), The Grid

Blueprint for a Future Computing Infrastructure,
Morgan Kaufmann Publishers, USA, 1999.

[2]. JunWei Cao, et al., GridFlow: Workflow
Management for Grid Computing, 3rd
International Symposium on Cluster Computing
and the Grid, May 12 - 15, 2003 Tokyo, Japan.

[3]. Giacomo Piccinelli, Workflow for a Grid of
Services, http://www.cs.ucl.ac.uk/staff/G.Piccinelli
/GridWorkflow.pdf

[4]. I. Foster, C. Kesselman, S. Tuecke, The Anatomy

Task Node Start
time
(min)

End
time
(min)

Time
(min)

A belle.cs.mu.oz.au 0 4.137 4.137
B belle.cs.mu.oz.au 4.169 8.822 4.652
C belle.anu.edu.au 4.174 9.66 5.486
D belle.physics.usy

d.edu.au
4.281 10.684 6.403

E belle.anu.edu.au 9.669 10.097 0.427
F belle.physics.usy

d.edu.au
10.708 11.145 0.436

G belle.cs.mu.oz.au 10.688 11.152 0.463
H belle.cs.mu.oz.au 11.172 11.394 0.222
WFEE Execution time 0 11.394 11.394

Figure 12. Execution Progress.

Table 4. Concurrent Workflow Execution on Grid Resources.

of the Grid: Enabling Scalable Virtual
Organizations, International J. Supercomputer
Application, 15(3), 2001

[5]. Ewa Deelman, et al., Pegasus : Mapping
Scientific Workflows onto the Grid, Across Grids
Conference 2004, Nicosia, Cyprus

[6]. Globus Project. http://www.globus.org
[7]. Srikumar Venugopal, Rajkumar Buyya and Lyle

Winton, A Grid Service Broker for Scheduling
Distributed Data-Oriented Applications on Global
Grids, Technical Report, The University of
Melbourne, February 2004.
http://www.gridbus.org/papers/gridbusbroker.pdf

[8]. Jia Yu, Srikumar Venugopal, and Rajkumar Buyya,
A Market-Oriented Grid Directory Service for
Publication and Discovery of Grid Service
Providers and their Services, Technical report, The
University of Melbourne, 2003
http://www.gridbus.org/~raj/papers/gmd.pdf

[9]. Condor Team. The directed acyclic graph manager,
http://www.cs.wisc.edu/condor/dagman, 2004

[10]. I. Foster, J. Voeckler, M. Wilde, and Y. Zhao,
Chimera: A Virtual Data System for Representing,
Querying, and Automating Data Derivation,
presented at Scientific and Statistical Database
Management, 2002

[11]. MyGrid Project. http://www.mygrid.org.uk/
[12]. McCann, Karen M., Maurice Yarrow, Adrian

DeVivo, and Piyush Mehrotra, ScyFlow:An
Environment for the Visual Specification and
Execution of Scientific Workflows, In Proceedings
of Workflow in Grid Systems Workshop in GGF10,
at Berlin, Germany,March, 2004.

[13]. Romberg, M. The UNICORE Architecture-
Seamless Access to Distributed Resources,
Proceedings of 8th IEEE International Symposium
on High Performance Computing, Redondo Beach,
CA, USA, August 1999, pp. 287-293

[14]. ICENI Project. http://www.lesc.ic.ac.uk/iceni/
[15]. Kaizar Amin, et. al., GridAnt: A

Client-Controllable Grid Workflow System, 37th
Hawaii International Conference on System
Sciences, 2004

[16]. SWFL-Service Workflow Language. http://
http://www.cs.cf.ac.uk/User/Yan.Huang/GridWF/S
WFL.htm

[17]. Sriram Krishnan, Patrick Wagstrom and Gregor
von Laszewski, GSFL: A Workflow Framework for
Grid Services, http://www-unix.globus.org/cog
/papers/ gsfl-paper.pdf

[18]. BPEL4WS Specification. http://www-106.ibm.
com/developerworks/library/ws-bpel/

[19]. D. Abramson, J. Giddy, and L. Kotler, High
Performance Parametric Modeling with Nimrod/G:

Killer Application for the Global Grid?,
International Parallel and Distributed Processing
Symposium (IPDPS 2000), May 1-5, 2000,
Cancun, Mexico, IEEE CS Press, USA, 2000.

[20]. W3C Web Services.
 http://www.w3.org/TR/ws-arch/

[21]. OGSI - Open Grid Services Infrastructure.
http://www.ggf.org/documents/GWD-R/GFD-R.01
5.pdf

[22]. UDDI Specifications. http://www.uddi.org
[23]. GridFTP

http://www.globus.org/datagrid/gridftp.html
[24]. Ewa Deelman, James Blythe, Yolanda Gil, and

Carl Kesselman, Workflow Management in
GriPhyN, The Grid Resource Management,
Kluwer 2003

[25]. Carriero, N., and Gelernter, D., Linda in
Context, Communications of the ACM, Vol. 32,
No. 4, pp.444-458, April 1989

[26]. D. Gelernter, Generative Communication in
Linda, TOPLAS 7, No. 1, 80-112 (1985)

[27]. D. Gelernter and A. J. Bernstein, Distributed
Communication via Global Buffer, Proceedings
of the ACM Principles of Distributed
Computing Conference (1982), pp. 10-18

[28]. P. Wyckoff, T Spaces, IBM Systems Journal,
Vol. 37, Nov 3, 1998, http://researchweb.watson.
ibm.com/journal/sj/373/wyckoff.html

[29]. Ian Taylor, Matt Shields, Ian Wang and Roger
Philp, Distributed P2P Computing within Triana:
A Galaxy Visualization Test Case, IPDPS 2003
Conference, April 2003

