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Abstract 
Grid workflow can be defined as the composition of 
grid application services which execute on 
heterogeneous and distributed resources in a 
well-defined order to accomplish a specific goal. 
Uncertainties within grid environments pose new 
challenges for grid workflow management systems such 
as lacking central control and undedicated resource 
sharing. In this paper, we provide a workflow 
enactment engine together with an XML-based 
workflow language (xWFL). The workflow engine 
supports a just in-time scheduling system, thus 
allowing the resource allocation decision to be made at 
the time of task execution and hence adapt to changing 
grid environments. We also show that an event-driven 
scheduling architecture using tuple spaces provides a 
highly flexible approach for executing large scale 
complex grid workflows. 
 
1. Introduction 
Grid computing �[1] facilitates the sharing and 
aggregation of heterogeneous and distributed resources, 
such as computing resources, data sources, instruments 
and application services.  With the advent of grid 
technologies, scientists and engineers are building 
more and more complex applications to manage and 
process large data sets, and execute scientific 
experiments on distributed grid resources. Means of 
composition and executing distributed applications to 
form complex workflow are needed. Some efforts in 
the research of business workflow and Web services 
orchestration can be reused in grid workflow systems. 
However, there are new challenges needing to be 
addressed.  

In a typical Grid environment, organizational 
structures known as virtual organizations (VOs) �[4] are 
dynamic federations of individuals and organizations 
aimed at solving a problem of common interests via 
collaboration. Resources are shared between users in 
the VOs, and added and removed all the time. 
Therefore, computational and networking capabilities 
can vary significantly over time.  

Another difficulty for workflow management in 
Grids is that there is no central ownership and control. 
The control over grid resources is dispersed across 

multiple administrative domains. The grid resources are 
not under the exclusive and complete control of the 
owner of the workflow systems. The local policy is 
subject to change without informing the users of 
workflow systems.  

The execution of a grid workflow faces many 
uncertain factors such as unavailability, incomplete 
information and local policy changes. A full-ahead-plan 
�[24] is not always suitable, since it requires the 
specification of the exact location of resources assigned 
to every task, as well as the physical files of the data in 
advance before the workflow execution. The workflow 
execution failure could be caused by the status change 
of the specified resources during the workflow 
execution. Therefore, the grid workflow enactment 
engine must be able to adapt to the changing conditions 
and be able to quickly re-allocate resources.  
  Moreover, the processing of grid workflow could be 
quite complex. The tasks of grid workflows are 
expected to be executed on heterogeneous resources 
which are geographically distributed. Many different 
resources may be involved in one workflow execution. 
For example, in a scientific experiment, one needs to 
acquire data from an instrument, and run on resources 
owned by other organizations in sequence or parallel to 
analyze datasets. Therefore, the processing of resource 
discovery and selection could be quite complicated. In 
addition, a large number of tasks may be required to 
execute in parallel and the location of intermediate data 
may be known only at run-time.  

In this paper, we propose a workflow enactment 
engine (WFEE) with a just in-time scheduling system 
using tuple spaces. It allows the decision of resources 
allocation to be made dynamically at the time of the 
execution of tasks in the workflow. Compared with the 
approach of partial workflow submission �[5], we 
believe a decentralized event-driven scheduling 
architecture provides a more flexible and 
loosely-coupled control. It also allows tasks to be 
scheduled as data becomes available rather than 
waiting for the completion of parent tasks.  

The remainder of this paper is organized as follows: 
In Section 2, we present related work. The overview of 
WFEE is briefly introduced in Section 3. The workflow 
description language for the engine is shown in Section 



4. The mapping of applications approach for resource 
discovery in VOs is discussed in Section 5. Detailed 
design of the scheduling system is described in Section 
6. Section 7 shows the implementation of WFEE. 
Experiments and result discussion are presented in 
Section 8. We conclude in Section 9 with discussion of 
future work. 
 
2. Related Work 
Our workflow engine is an independent workflow 
execution system and takes advantage of various 
middleware services such as security, grid resource 
access, file movement and replica management 
services provided by the Globus middleware �[6], and 
parametric application execution provided by the 
Gridbus Broker �[7] and VO directory service provided 
by the Grid Market Directory (GMD) �[8]. 

Many efforts toward grid workflow management 
have been made. DAGMan �[9] was developed to 
schedule jobs to Condor system in an order represented 
by a DAG and to process them. With the integration of 
Chimera �[10], Pegasus �[5] map and execute complex 
workflow based on full-ahead-planning. In Pegasus, a 
workflow can be generated from metadata description 
of the desired data product using AI-based planning 
technologies. The Taverna project �[11] has developed a 
tool for the composition and enactment of 
bioinformatics workflow for the life science 
community. The tool provides a graphical user 
interface for the composition of workflows. Other 
workflow projects in the grid context include ScyFlow 
�[12], GridFlow�[2], Unicore�[13], ICENI�[14], 
GridAnt�[15] and Triana �[29].  

Compared with the work listed above, we provide a 
decentralized, just in-time, meta-scheduling system 
which enables workflow resources to be discovered 
and reallocated at run-time. Another feature of our 
WFEE is to schedule tasks immediately after the 
availability of required input data rather than waiting 
for the complete execution of all tasks in the parents’ 
hierarchy.  

There are a number of projects�[16]�[17] focused on 
developing a grid workflow language. In addition, 
many efforts on the composition of Web services �[18] 
can also be complementary to the development of grid 
workflow management systems. The main aim of our 
workflow language is to support parameterization �[19], 
which is important to scientific applications.   
 
3. Overview of Workflow Enactment 
Engine 
The architecture of our workflow enactment engine 
(WFEE) and its relationship with other components in 
the Grid infrastructure are shown in Figure 1. 

Workflow applications such as scientific application 
portals, submit task definitions along with their 
dependencies in the form of the workflow language as 
well as QoS requirements to WFEE. WFEE schedules 
tasks through grid middleware on the grid resources.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The key components of WFEE are: workflow 
submission, workflow language parser, resource 
discovery, dispatcher, data movement and workflow 
scheduler.  
� Workflow submission accepts workflow 

enactment requests from planner level 
applications.  

� Workflow language parser converts workflow 
description from XML format into Java objects, 
Task, Parameter and DataConstraint (workflow 
dependency) which can be accessed by workflow 
scheduler.  

� Resource discovery is intended to query grid 
information services such as Globus MDS �[6], 
GMD and replica catalogs, to locate suitable 
resources for the tasks.  

� There are several types of middleware used for 
Grids such as Globus 2 GRAM �[6] , Web services 
�[20] and OGSI�[21]. Grid resources may be 
connected by different middleware. WFEE had 
been designed to support different middleware by 
creating   dispatchers for each middleware to 
support its interaction with resources.   

� Data movement system enables data transfer 
between grid nodes by using HTTP and GridFTP 
�[22] protocols.  

� Workflow scheduler is the central component in 
WFEE. It interacts with resource discovery to find 
suitable grid resources at run time; it locates a 
task on resources by using the dispatcher 
component; it controls input data transference 
between task execution nodes through data 
movement.  

Figure1. The Architecture of WFEE. 
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4. Workflow Language and Structure  
In order to allow users to describe tasks and their 
dependencies, we defined a simple and flexible 
XML-based workflow language (xWFL). The 
workflow language provides the means to build new 
applications by linking standalone applications.  

Our workflow description expressed in XML format, 
and its structure is shown in Figure 2. It consists of 
three parts, namely parameter definitions, task 
definitions and data link definitions.  

 

 
 

 

4.1 Parameters 
Supporting parameterization in the workflow language 
is very important for scientific applications. It enables 
scientists to do experiments on different parameters 
easily by changing the value of parameters without 
being concerned about the detailed workflow 
description. Multiple parameters types such as single, 
range, select, random, file and multi-files need to be 
supported. An example for a single parameter type and 
a range parameter type is given below:  
 
<parameters> 
 <para type= “single”> 
  <name>X</name> 
  <value type=integer>10</value>   
 </para> 
 <para type= “range”> 
  <name>Y</name> 
  <min>1</min> 
  <max>20</max> 
  <step>2</step> 
 </para> 
</parameters> 
 
4.2 Tasks 
Basically, <tasks> is a set of tasks that are to be 
executed. Our workflow language supports both 
abstract workflow and concrete workflow. As shown in 
the Figure 2, host and accesspoint are optional. That is 
the user or higher workflow planner, can either specify 
the location of a particular resource providing required 

application services or leave it to the engine to identify 
their providers dynamically at run-time. In the below 
example, task A executes dock.exe program on host 
services.gridbus.com in the directory /services and 
executable dock has two input I/O ports: port0 (a file) 
and port1 (a parameter value). The example shows task 
A only has one output named port2.   
 
<tasks> 
<task name= “A”> 

<executable>  
 <name>dock</name> 
    <host>services.gridbus.com</host> 

<accesspoint type= “GlobusGram”>/dock.exe</accesspoint> 
 <input> 
   <port0 type= “file” url= “http://www.gridbus.org/ 

datacenter/dock.in”>dock.in</port0> 
   <port1 type= “msg”>$time_base_value</port1> 
 </input> 
 <output> 
   <port2 type= “file”>dock.out</port2> 
 </output> 

</executable> 
 ….. 
</task> 

</tasks> 
 
4.3 Data Links 
Data link is used to specify the data flow of the tasks. 
Below example is the data flow description of Figure 3. 
The inputs of task B and task C rely on the output of A. 
The task A’s output needs to be transferred to the node 
on which task B and task C are executed.  Input could 
be a file, parameter value or data stream.  
 
<workflow> 

<tasks> 
<task name= “A”> 

   ….. 
</task> 
<task name= “B”> 

…... 
</task> 

<task name= “C”> 
…… 

</task> 
<task name= “D”> 
…… 

</task> 
</tasks> 
<links> 

<link>  
<from>A:port2</from>   
<to>B:port0</to> 

</link> 
<link>  
<from>A:port2</from> 
<to>C:port0</to> 

</link> 
<link> 
<from>B:port1</from> 
<to>D:port0</to> 

</link> 
<link>  

Optional 

Figure 2. The Structure of Workflow Language. 
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<from>C:port2</from> 
<to>D:port1</to> 

</link> 
</links> 

</workflow> 
 
5. Mapping of Applications 
In our previous work �[7], we have set up a directory 
service called GMD which allows resource providers to 
register themselves as service providers to a VO and 
publish their services along with the price. In order to 
support more broad services discovery, we had 
extended GMD by providing Middleware Type and 
Grid Application Model (GAM) publication, and 
allowed providers to publish additional properties of 
the services such as assess location.  
  In a grid environment, many services, which have 
same functionality and user interaction, may be 
provided by different organizations. Also, a service 
may be replicated and deployed in many locations. 
From the user’s point of view, it is better to use a 
service that offers a higher performance at a lower 
price. Therefore, a method is needed to allow users to 
find replicated services easily. We have created Grid 
Application Model (GAM) which is derived from 
tModel in UDDI �[22]. A GAM is a set of specifications 
and APIs for a grid application. The GAM can be 
published by the service providers within GMD, and 
the users can search GMD for services conforming to a 
particular GAM.  

Unlike UDDI, GMD also provides more detailed 
Grid service attributes. The major attributes of a Grid 
service are service name, service type, hardware price, 
software price, node host name, access point, 
middleware type and grid application model.   

In the case of our workflow system, if the locations 
of the resources for tasks are not indicated in the 
workflow description, the scheduler uses the 
executable name as a GAM name to query GMD. 
GMD will return a list of resources which are able to 
execute the task. 
 
6. Workflow Scheduling System 
Given the complexity of the grid workflow execution, 
we have designed a decentralized scheduling system 
which supports just in-time planning and allows the 
decisions of the resource allocation to be made and 
changed at run-time.  
 
6.1 Architecture  
We believe that decentralized scheduling architecture is 
more efficient over the centralized scheduling for 
complex workflow processing, which handles all tasks 
by one scheduler. In our system, every task has its own 
scheduler called task manager (TM) which implements 

a scheduling algorithm and handles the processing of 
the task, including resource selection, resource 
negotiation, task dispatcher and failure processing. The 
lifetimes of TMs, as well as the whole workflow 
execution, are controlled by a workflow coordinator 
(WCO).  

As shown in Figure 4, dedicated TMs are created by 
WCO for each task. Each TM has its own monitor 
which is responsible for monitoring the health of the 
task execution on the remote node. Every TM 
maintains a resource group which is a set of resources 
that provided services required for the execution of an 
assigned task. TMs and WCO communicate through a 
event service server (ESS). 
 
 
 
 
 
 
 
 
 
 
   
6.2 Communication Approach 
A communication approach is needed for schedulers in 
the decentralized scheduling system. On one hand, 
every task manager is an independent scheduler and 
they can be run in parallel. On the other hand, the 
behavior of each task manager may depend on the 
processing status of other task managers according to 
the tasks dependencies. For example, a task manager 
should not execute the task on a remote node if its 
input generated by its parent tasks is not available for 
any reason.  

In addition, in a workflow, a task may have more 
than one input that comes from different tasks. 
Furthermore, the output of these tasks may also be 
required by other task managers as well. So the 
communication model between the task managers is 
not just one-to-one or one-to-many, but it could be 
many-to-many depending on task dependencies of the 
workflow.  

In our system, we use event-driven mechanism with 
subscription-notification model supported by the tuple 
spaces model to control and manage scheduling 
activities.  

 
6.2.1 Event-driven Mechanism 
In the system, the behaviors of task managers and 
workflow coordinator are driven by events. A task 
manager is not required to handle communication with 
others and only generates events according to task’s 

Workflow 
Coordinator

Task Manager

Resource
Group

TaskMonitor

Task Manager
Factory

Event
service

Workflow Scheduler  

Figure 4. Scheduling Architecture. 



processing status. At the same time, the task managers 
take actions only according to occurred events without 
concern for details of other task managers.  

The event notification is based on 
subscription-notification model. WCO and TMs just 
subscribe the events of interest after activation, and 
then they can do whatever they want. When a 
subscribed event occurs, they will be informed.  

The benefit of the event-driven mechanism is it 
provides a loosely-coupled control; hence the design 
and development of the system are very flexible.  

 
6.2.2 Event Exchange and Tuple Spaces  
Where to put event messages and how to get event 
messages needs to be addressed. We have utilized tuple 
spaces to exchange events.  

The tuple space model originated at Yale with the 
Linda system �[25]�[26]�[27]. A tuple is simply a vector 
of typed values (Fields). A tuple space is a collection of 
tuples which can be shared by multi-parties by using 
operations such as read, write and delete. In our work, 
we have leveraged IBM’s recent implementation of 
tuple spaces called TSpaces �[28] to be ESS. 

We defined three type event tuples: task status event, 
output event and job status event. Task status events 
sent by the TMs to inform the status of task managers. 
Output events are sent by TMs to announce that its 
output is ready along with location of its storage. Job 
status events are used to indicate the execution status of 
jobs on remote grid nodes. A job is a unit of work a TM 
sends to a grid node, one task may create more than 
one job. 

As illustrated in Figure 5, TMs inform each other 
and communicate with WCO through ESS. For 
example, TMs put their task execution status (e.g. 
executing, done, failure) into ESS, and then ESS 
notifies WCO. Every executed TM subscribes its input 
events generated by TMs of its parent’s tasks. Once a 
TM sends an output event to ESS, ESS notifies 
corresponding children TMs immediately. 

 
 
 
 
 
 
 
 
 
 
 
 
 
The other benefit from using tuple spaces is: 

additional components are easy to plug in. For example, 

a monitoring portal, can subscribe status event from 
tuple spaces without modifying scheduling system.  

 
6.3 State Transition 
The state transition of WCO is illustrated in Figure 6. 
WCO registers to ESS and start TMs of first level tasks, 
and then monitor activated TMs. Upon receiving 
execution status from a TM, WCO starts the TMs of its 
children tasks. If WCO receives a status done event, it 
checks whether other TMs are still running. If so, WCO 
goes back to monitoring, otherwise it exits. If WCO 
receives a failed event from a TM, it goes to failure 
processing, and then ends.  

 
 
 
 
 
 
 
 
 
 
 
 
The state transition of TMs is illustrated in Figure 7.  

TM registers its output events generated by its parent 
tasks and waits for the output events, when an event 
comes; TM goes to event processing state which 
records the information of input data. If any other input 
data is still not available, TM goes back to wait state; 
otherwise, it transfers to the resource matching state. In 
resource matching, it takes a resource from resource 
group which is created by querying GMD. If a suitable 
resource is available, TM submits job to the resource 
and then monitors the status of job execution on the 
remote resource. If the execution failed, TM goes to 
resource matching again and takes another resource 
from resource group and then submits job to it. If there 
is no available resource, TM ends. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Event-driven Mechanism.  
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Figure 6. State Transition of WCO. 
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6.4 Interaction 
The interactions between the WCO, TMs, ESS and 
remote resources are illustrated in Figure 8. Firstly, 
WCO needs to register to ESS and subscribe the events 
of task execution status. And then WCO activates task 
managers of first level tasks, in the example, only one 
TM1. After TM1 finishes the preprocessing of the task 
execution, it sends a message to ESS saying “I am 
executing the task”. ESS informs the WCO and WCO 
activates TMs of children tasks of TM1, namely TM2 
and TM3 in this example. The inputs of the task of 
TM2 and TM3 rely on the output of the task of TM1, 
so TM2 and TM3 register to ESS and listen to its 
output events. Once TM1 identifies a suitable resource, 
it submits task to that resource. As soon as TM1 knows 
the output of the task, it informs TM2 and TM3 
through ESS, saying “my output of port No. x is ready 
and its location is xxxx”. If all input data of the task of 
TM2 and TM3 are ready, TM2 and TM3 reports 
execution status to ESS, and then proceeds to the 

execution of their tasks. After WCO receives the 
notification of the execution of TM2 and TM3, WCO 
will activate their children task managers, so they can 
begin to listen to their inputs and prepare task 
execution. This process will be continued until the end 
of workflow execution. 

 
7. Objected Oriented Implementation 
The basic technologies used in our WFEE 
implementation are Java and IBM TSpaces �[26]�[28] 
apart from grid technologies mentioned earlier.  
 
7.1 Design Diagram 
The class design diagram of WFEE is shown in Figure 
9. XMLParsingToModel parses XML formatted 
workflow description into java objects which are 
instances of class of Task, Port, DataConstraint. These 
objects are collected by WorkflowModel. 
WorkflowModelToDiGraph converts WorkflowModel 
into directed graph represented by class DiGraph which 
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Figure 8. Interaction sequence diagram. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
encompasses many GraphNode objects. An instance of 
GraphNode recodes its parent nodes and children nodes. 
WorkflowCoordinator creates and controls the 
instantiation of TaskManager according to the graph 
node dependencies. Job class presents a unit work 
assigned to a Grid resource. Every job has a monitor 
implemented by JobMonitor to monitor job execution 
status on the remote node. In order to extend WFEE to 
support multiple Grid middleware, we abstract class 
Resource and Dispatcher which provides interfaces to 
interact with Grid resources.  
   
7.2 Event Messages 
There are three types of event tuples whose format is 
shown in Table 1. Task status event is sent by TMs and 
WCO use it to control TMs activation. The first field is 
the ID of the task, second field is string “status” to 
indicate the type of tuple for the registration purpose, 
and third field gives the value of status.  

TMs need output events sent by their parent TMs to 
know whether their inputs are available. Task ID is 
given in the first field, second field is port No. and 
third field is the location of output.  

Job status events are sent by the job monitor. Every 
job status event gives job ID and its task ID with status 
value. TMs make decisions according to the job events. 
For example, when a job is failed, the TM can 
reschedule this job to another resource in the resource 
group. 

The tuple templates are used for subscribing to the 

corresponding event. For example, registration to the 
tuples whose second field is a string “status” can 
receive all task status events. 
 
8. Experiments 
We tested WFEE by creating a synthetic 
applications/workload that attempted to simulate a real 
workflow. We used Australian Belle Grid test-bed 
resources located in Sydney, Canberra, and Melbourne 
(see Table 2). The synthetic programs we created for 
experiments are xcalc, ycalc, addcalc and merge. 
Basically, xcalc, ycalc and addcalc programs execute 
mathematical functions and have varying computation 
complexity based on the values of two inputs. The 
inputs of these three programs have different formats; 
both inputs of the xcalc are parameter type; ycalc has 
one file type input and one parameter input, while 
addcalc has two file type inputs. They all save the 
result in a file. The merge program merges three input 
files into one file.  

We have created a multi-stage workflow shown in 
Figure 10.  The result output Fa of task A is needed 
by tasks B, C and D. The tasks E, G and F depend on 
the output from B, C and D. Finally the results of E, G 
and F are merged together by the task H. The program 
that tasks used and their input and output information 
are shown in Table 3 with the execution time when run 
independent of each other on belle.cs.mu.oz.au node.  

Event name Field1 Field2 Field3 Tuple template for registration 
task status event task No. “status” value new Tuple(new Field(String), status, new Field(String)) 
output event task No. port No. value new Tuple(taskNo, portNo, new Field(String)) 
job status event job No.  task No. value new Tuple(new Field(String), taskNo, new Field(String)) 

Figure 9. Class Diagram of WFEE. 

Table 1. The Format of Events. 
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We initiated the workflow execution on a resource 
located in Melbourne and workflow tasks are 
distributed to resources located in Sydney, Canberra 
and Melbourne. We registered the details of the 
deployed applications such as access point, middleware 
type within GMD. Figure 11 presents the definition of 
task C, D and F with the data flow between them 
defined in the datalink tag. Task C is specified to 
execute on belle.anu.edu.au. As there is no location 
defined for task D, the WFEE locates it by querying 
GMD at run time.  

The start time of submitting tasks on the discovered 
remote nodes and end time of the task execution for 
each task are shown in Table 4. Its process diagram is 
illustrated in Figure 12. After completion of task A, the 
children tasks B, C and D were run in parallel. The task 
E started earlier than G and F, since they had to wait for 
completion of D.  

The start time we measured is the time TM started to 
submit job to a remote resource. Theoretically, after 
task A finishes, its children tasks should be submitted 
immediately, however, there are some time intervals 
between the parent tasks end time and children task 
start time. That gap can be regarded as due to WFEE 
running overhead, including Tuple-space 
communication delay, event notification process, GMD 
query delay and event processing. However, compared 
to the running time of tasks, the gap is insignificant.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Node Type CPU Location 
belle.cs.mu.oz.au IBM eServer 4 Melbourne 
belle.anu.edu.au IBM eServer 4 Canberra 
belle.physics.usyd.edu.au IBM eServer 4 Sydney 
fleagle.ph.unimelb.edu.au PC 1 Melbourne 

Input 1 Input 2 Output 
Task Program 

type value type value type value 
Time 

A xcalc parameter 3 parameter 4 file 0121869 3m59.849s 

B ycalc file 0.121869 parameter 4 file 0.071878 3m59.997s 

C ycalc file 0.121869 parameter 5 file 0.089274 4m59.997s 

D ycalc file 0.121869 parameter 6 file 0.106644 5m59.997s 

E addcalc file 0.071878 file 0.089274 file 0.002813 4.996s 

F addcalc file 0.089274 file 0.106644 file 0.003116 5.996s 

G addcalc file 0.071878 file 0.106644 file 0.003419 5.996s 

H merge merge three input files into one file 0.005s 

Total 19m13s 

<task name="C"> 
<executable> 

<name>ycalc</name> 
<host>belle.anu.edu.au</host> 

  <accesspoint type="GT2Gram">/data/ycalc.sh</accesspoint> 
 <input> 
  <port0 type="file">para</port0> 
      <port1 type="msg">5</port1> 

</input> 
<output> 

      <port2 type="file">output</port2> 
 </output> 

</executable> 
</task> 
<task name="D"> 

<executable> 
<name>ycalc</name>   

 <input> 
  <port0 type="file">para</port0> 
  <port1 type="msg">6</port1> 
 </input> 
 <output> 
  <port2 type="file">output</port2> 
 </output> 

</executable> 
</task> 
<task name="F"> 

<executable> 
 <name>addcalc</name> 
 <input> 
    <port0 type="file">para1</port0> 
  <port1 type="file">para2</port1> 
 </input> 
 <output> 
  <port2 type="file">output</port2> 
 </output> 

</executable> 
</task> 
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Figure 10. Workflow Diagram of the Experiment. 

Table 2. Test-bed Machine List in Australia.  

Figure 11. XML workflow description for C, D and F.  

<datalink> 
<link>  

   <from>C:port2</from> 
   <to>F:port0</to> 

</link> 
<link>  

   <from>D:port2</from> 
   <to>F:port1</to> 

</link> 
</datalink> 

Table 3. Task Details and the Execution Time on belle.cs.mu.oz.au.   
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We also simulated a dynamic environment for 

WFEE. After we started WFEE again, we moved the 
application for task D and F from 
belle.physics.usyd.edu.au to fleagle.ph.unimelb.edu.au 
and updated the entries in GMD. We accomplished 
updates before D and F execution. At the time of D and 
F execution, the TMs of D and F discovered the new 
location and submitted to fleagle.    

From the results of serial and parallel execution of 
workflow, it can be observed that in some cases the 
execution of a task on a remote node takes more time. 
This is mainly due to overhead involved in initiating 
remote execution and transmission of inputs and 
outputs between user and remote nodes. However, we 
notice that the total time of running all tasks on one 
machine in serial (19min 13sec) is larger than 
concurrent execution on distributed grid resources (11 
min 23sec).  
  The experiment proves that WFEE can discover 
resources at run time, execute distributed installed 
applications in parallel and sequence, and transfer input 
and output data for applications automatically. Thus, 
new application services can be derived by composing 
standalone distributed resources using WFEE. 
Additionally, high throughput can be achieved by 
taking advantage of distributed computational 
resources.  
 

9. Conclusion and Future Work 
In this paper, we presented our current work for the 
Grid workflow enactment engine. The new contribution 
of the work is that it provides decentralized just-in-time 
scheduling which can adapt to heterogeneous and 
dynamic grid environments. Using tuple spaces model, 
event-driven mechanism and subscription-notification 
approach makes the workflow execution 
loosely-coupled and flexible. We also achieved services 
discovery at run-time by using Grid Market Directory. 
WFEE links geographically distributed standalone 
applications and takes advantage of distributed 
computational resources to achieve high throughput. 
Also the intermediated data can be transferred between 
Grid nodes automatically.  

We have integrated our WFEE into a grid 
middleware – Globus 2.4 for remote job execution. 
Basic XML based data flow language is also provided 
for end users.  

Our future work will focus on workflow execution 
optimization. We will be extending resource allocation 
algorithms to support optimal and QoS (Quality of 
Service) requirements based scheduling, using 
computational economy. In addition, we are extending 
WFEE to support loop and advanced workflow control 
patterns whose requirements are derived from 
applications in biology and natural language processing 
domains.  
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