
Visual Modeler for Grid Modeling and
Simulation (GridSim) Toolkit

Anthony Sulistio, Chee Shin Yeo, and Rajkumar Buyya

Grid Computing and Distributed Systems (GRIDS) Laboratory,
Department of Computer Science and Software Engineering,

The University of Melbourne, Australia
ICT Building, 111 Barry Street, Carlton, VIC 3053

{anthony, csyeo, raj}@cs.mu.oz.au
http://www.gridbus.org

Abstract. The Grid Modeling and Simulation (GridSim) toolkit pro-
vides a comprehensive facility for simulation of application scheduling
in different Grid computing environments. However, using the GridSim
toolkit to create a Grid simulation model can be a challenging task, espe-
cially when the user has no prior experience in using the toolkit before.
This paper presents a Java-based Graphical User Interface (GUI) tool
called Visual Modeler (VM) which is developed as an additional com-
ponent on top of the GridSim toolkit. It aims to reduce the learning
curve of users and enable fast creation of simulation models. The useful-
ness of VM is illustrated by a case study on simulating a Grid computing
environment similar to that of the World-Wide Grid (WWG) testbed [1].

1 Introduction

Grid computing has emerged as the next-generation parallel and distributed
computing that aggregates dispersed heterogeneous resources for solving all
kinds of large-scale parallel applications in science, engineering and commerce [2].
This introduces the need to have effective and reliable resource management and
scheduling systems for Grid computing. There is also the need to administer re-
sources and application execution depending on either resource users’ or owner’s
requirements, and to continuously keep track of changes in resource availability.

Managing various resources and applications scheduling in highly distributed
heterogeneous Grid environments is a complex and challenging process [3]. A
generic view of the World Wide Grid (WWG) computing environment is shown
in Figure 1. The Grid resource broker hides the complexities of the Grid comput-
ing environment from a user. It discovers resources that the user can access using
information services, negotiates for access costs using trading services, maps ap-
plication jobs to resources, starts execution and monitors the execution progress
of tasks.

Different scenarios need to be evaluated to ensure the effectiveness of the Grid
resource brokers and their scheduling algorithms. Given the inherent heterogene-
ity of a Grid environment, it is difficult to produce performance evaluation in a

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2659, pp. 1123–1132, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



1124 A. Sulistio, C.S. Yeo, and R. Buyya

repeatable and controllable manner. Therefore, the GridSim toolkit is developed
to overcome this critical limitation. The GridSim toolkit is a Java-based discrete-
event Grid simulation toolkit that provides features for application composition,
information services for resource discovery, and interfaces for assigning applica-
tion tasks to resources and managing their execution. The GridSim toolkit has
been applied successfully to simulate a Nimrod-G [4] like Grid resource broker
and to evaluate the performance of deadline and budget constrained cost- and
time- optimization scheduling algorithms [3].

Fig. 1. A generic view of World-Wide Grid (WWG) computing environment

Since the GridSim toolkit is an advanced and powerful simulation toolkit,
its users will experience a high learning curve in order to utilize the toolkit
functionalities for effective simulations. In addition, the users need to write Java
code that use the toolkit packages to create the desired experimental scenarios.
This process is repetitive and tedious. It is specially disadvantageous to those
who have little or no experience in Object-Oriented (OO) concepts in general,
and Java programming in specific. Therefore, it is necessary to build a Graphical
User Interface (GUI) for GridSim that enables its users to create and modify
simulation models easily and quickly as many times as required.

This paper presents a Java-based GUI tool called Visual Modeler (VM) that
is designed as a separate additional component residing in a layer above the
GridSim toolkit. Figure 2 illustrates the role of VM in creating a simulation
model. A GridSim user utilises VM as a tool to create and modify the Grid
simulation model (see Figure 2 step 1A). VM will then generate Java code for the
simulation (see Figure 2 step 1B). In the absence of VM, the user needs to write
Java code manually using a text editor or development tools such as JBuilder
(see Figure 2 step 2). However, this approach is prone to create programs with
syntax errors.



Visual Modeler for Grid Modeling 1125

VM provides a simple and user-friendly GUI to facilitate its user to be able
to create and modify different simulation models easily. This relieves the users
from spending a lot of time and effort trying to understand the GridSim toolkit
code. VM is designed to enable the users to create simulation models without
the need to know the actual Java code behind it or the GridSim toolkit code. In
addition, it automatically generates Java code that uses the GridSim toolkit, so
users can compile and run the simulation. Therefore, the aim of VM is to reduce
the learning curve of GridSim users and to enable them to build simulation
models easily and effectively. The initial prototype of VM has been implemented
and bundled together with the new release version of the GridSim toolkit 2.0 in
November 2002.

Fig. 2. Relationship between Visual Modeler,Grid Simulation Model &GridSim toolkit

This paper is organized as follows: Section 2 mentions related work. Section 3
presents the architecture and features of VM, while Section 4 discusses the design
and implementation of VM. Section 5 illustrates the use of VM for simulating a
Grid computing environment. Section 6 concludes the paper and suggests some
further work to be done on VM.

2 Related Work

The GridSim 1.0 toolkit does not have any additional GUI tools that enable
easier and faster modeling and simulation of Grid environments. It only com-
prises the Java-based packages that are to be called by users’ self-written Java



1126 A. Sulistio, C.S. Yeo, and R. Buyya

simulation programs. VM has now been included in the recently released Grid-
Sim 2.0 toolkit. There are many similar tools like VM that generate source code,
but are not related to Grid simulation in specific, such as SansGUITM [5] and
SimCreator [6].

Other than the GridSim toolkit, there are several other tools that support
application scheduling simulation in Grid computing environments. The notable
ones include Bricks [7], MicroGrid [8] and SimGrid [9]. For a brief comparison
of these tools with the GridSim toolkit, please refer to [3].

3 Architecture

VM adopts Model View Controller (MVC) architecture as illustrated in Figure 3.
The MVC architecture is designed to separate the user display from the control of
user input and the underlying information model. The following are the reasons
for using MVC architecture in VM [10]:

– opportunity to represent the same domain information in different ways.
Designers can therefore refine the user interfaces to satisfy certain tasks and
user characteristics.

– ability to develop the application and user interface separately.
– ability to inherit from different parts of the class hierarchy.
– ability to define control style classes which provide common features sepa-

rately from how these features may be displayed.

Fig. 3. The basic Model View Controller architecture

VM is programmed using Java as Java supports powerful Swing libraries that
facilitate easy GUI programming. In addition, Java works well with the MVC
architecture. VM support the following main features:

– enables the creation of many Grid testbed users and resources,
– generates the simulation scenario into Java code that the users can compile

and run the simulation with the GridSim toolkit,
– saves and retrieves a VM project file that contains an experiment scenario

in eXtensible Markup Language (XML) format, and
– works on different operating system platforms (as it is implemented in Java).



Visual Modeler for Grid Modeling 1127

4 Design and Implementation

The MVC paradigm proposes three class categories [10]:

1. Models – provide the core functionality of the system.
2. Views – present models to the user. There can be more than one view of

the same model.
3. Controllers – control how the user interacts with the view objects and

manipulates models or views.

Java supports MVC architecture with two classes:

– Observer – any object that wishes to be notified when the state of another
object changes.

– Observable – any object whose state may be of interest to another object.

4.1 Model

VM consists of three model classes, whose relationships are shown in Figure 4.
The models are:

– FileModel – deals with UserModel and ResourceModel for saving and re-
trieving an XML file format for the VM project file.

– UserModel – stores, creates and deletes one or more user objects.
– ResourceModel – stores, creates and deletes one or more resource objects.

Fig. 4. Class diagram that contains the model classes of VM and their relationships

Both UserModel and ResourceModel contain objects that are hybrids of both
model and view, i.e. they have their own widgets to display the stored values.
This technique reduces the number of classes needed and the overall design
complexity, thus saving significant development time. All models extend Java’s
Observable class, which provides the behaviours required to maintain a list of
observers and notify them when there are changes to the model. The initializa-
tion for UserModel and ResourceModel is straightforward with both classes not
requiring any parameters. However, FileModel needs to request a reference to
each of the UserModel and ResourceModel object. It thus becomes an observer
of UserModel and ResourceModel when dealing with the saving and retrieving
project file.



1128 A. Sulistio, C.S. Yeo, and R. Buyya

4.2 View

Views are registered as dependents of a model. The model broadcasts a message
to all dependents when it changes. The main views of VM are:

– MenuView – creates GUI components for menu bar.
– IconView – creates GUI components for icon toolbar.
– DisplayView – creates the main window to display the lists of Grid user

and resource.

These three main views are created first, by constructing their widgets in-
dependently and then adding their sub-views. This design ensures that the sub-
views are separate from their parents’ view [10]. Each main view contains one
or more references to the model since the model contains user/resource objects
that also display widgets. This design reduces the number of method calls and
any overheads associated with the interaction between the object and its view.

There are two possible approaches for creating user/resource objects: with
or without their widgets. These approaches are tested by using VM to create
500 Grid users and 1,000 Grid resources. Table 1 shows that creating objects
without their widgets requires much less time. However, Lines of Codes (LOC)
inside the object class is slightly larger than that of the approach with widgets.

The approach without widgets requires less passing of reference objects and
messages in comparison to the other method. In addition, the time taken and
the amount of memory needed to create components and to register their event
listeners are minimal. VM can thus supports fast creation of a large number
user/resource objects at any one time. This is helpful since a Grid simulation
model does not have a limited number of Grid users and resources.

Therefore, VM adopts the without-widgets approach by displaying its GUI
upon the user’s request. When the user closes its GUI window, the GUI com-
ponents are retained so that they need not be created again for future access
(similar to the cache concept in web browsers). This reduces the utilization of
memory and enables fast display of GUI components repeatedly.

Table 1. Comparison for the creation of 500 Grid users and 1,000 resources using VM,
running on a Pentium II 300 MHz with 64MB RAM

Approach Time completion Average LOC

Creating objects without their widgets 1 min 950
Creating objects with their widgets 20 mins 600

4.3 Controller

The controller needs to be informed of changes to the model as any modifications
of the model will also affect how the controller processes its input. The controller



Visual Modeler for Grid Modeling 1129

may also alter the view when there is no changes to the model. The primary
function of the controller is to manage mouse/keyboard event bindings (e.g. to
create pop-up menus). If an input event requires modification of application-
specific data, the controller notifies the model accordingly.

In this implementation, controllers which relate to views have several re-
sponsibilities. Firstly, they implement Java’s event-handler interfaces to listen
for appropriate events, e.g. the icon toolbar controller detects the clicking of
the save toolbar button and notifies FileModel to save a project file. Secondly,
views delegate the construction and maintenance of button panels to controllers.
Thirdly, controllers can broadcast semantic events (e.g. save file), to objects who
have informed the controller that they are interested in these events [10].

5 Use Case Study – Grid Computing Environment
Simulation

This section describes how a simulated Grid computing environment is created
using VM. First, the Grid users and resources for the simulated Grid environ-
ment have to be created. This can be done easily using the wizard dialog as
shown in Figure 5. The VM user only need to specify the required number of
users and resources to be created. Random properties can also be automatically
generated for these users and resources. The VM user can then view and modify
the properties of these Grid users and resources by activating their respective
property dialog.

Fig. 5. Wizard dialog to create Grid users and resources

Figure 6 shows the property dialog of a sample Grid resource. VM creates
Grid resources similar to those present in the WWG testbed [1]. Resources of
different capabilities and configurations can be simulated, by setting proper-
ties such as cost of using this resource, allocation policy of resource managers
(time/space-shared) and number of machines in the resource (with Processing El-



1130 A. Sulistio, C.S. Yeo, and R. Buyya

ements (PEs) in each machine and their Million Instructions Per Second (MIPS)
rating).

Fig. 6. Resource dialog to view Grid resource properties

Figure 7 shows the property dialog of a sample Grid user. Users can be
created with different requirements (application and quality of service require-
ments). These requirements include the baud rate of the network (connection
speed), maximum time to run the simulation, time delay between each simula-
tion, and scheduling strategy such as cost and/or time optimization for running
the application jobs. The application jobs are modelled as Gridlets. The param-
eters of Gridlets that can be defined includes number of Gridlets, job length of
Gridlets (in Million Instructions (MI)), and length of input and output data (in
bytes). VM provides a useful feature that supports random distribution of these
parameter values within the specified derivation range. Each Grid user has its
own economic requirements (deadline and budget) that constrains the running
of application jobs. VM supports the flexibility of defining deadline and budget
based on factors or values. If it is factor-based (between 0.0 and 1.0), a budget
factor close to 1.0 signifies the Grid user’s willingness to spend as much money
as required. The Grid user can have the exact cost amount that it is willing to
spend for the value-based option.



Visual Modeler for Grid Modeling 1131

VM will automatically generate Java code for running the Grid simulation.
This file can then be compiled and run with the GridSim toolkit packages to
simulate the required Grid computing environment.

Fig. 7. User dialog to view Grid user properties

6 Conclusion and Further Work

This paper describes a Java-based GUI tool called Visual Modeler (VM) that
facilitates GridSim users in creating and modifying Grid simulation models easily
and effectively. It incorporates features such as easy-to-use wizards that enables
users to create simulation models, and automatic source code generation facility
that outputs ready-to-run simulation scenario code.

The implementation of VM in Java is ideal since Java supports powerful GUI
components with its Swing packages. Moreover, the MVC architecture can be
adapted in Java using Observable and Observer class. Hence, Java and MVC
provide a perfect combination in creating a GUI for GridSim.

Possible improvements to be implemented include incorporating the GridSim
run-time environment into VM, and generating visual diagrams such as graphs
based on the GridSim simulation results. This will enable users to receive dy-
namic run-time feedback from GridSim through VM.



1132 A. Sulistio, C.S. Yeo, and R. Buyya

Acknowledgement. We thank Srikumar Venugopal for his comments on
the paper. We also thank anonymous reviewers for providing excellent feedbacks.

Software Availability
The GridSim toolkit and VM software with source code can be downloaded
from the following website:

http://www.gridbus.org/gridsim/

References

1. Buyya, R., Stockinger, H., Giddy, J., Abramson, D.: Economic Models for Man-
agement of Resources in Peer-to-peer and Grid Computing. SPIE International
Conference on Commercial Applications for High-Performance Computing, Den-
ver, USA (August 20–24, 2001)

2. Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a Future Computing In-
frastructure. Morgan Kaufmann Publishers, USA (1999)

3. Buyya, R., Murshed, M.: GridSim: A Toolkit for the Modeling and Simulation
of Distributed Resource Management and Scheduling for Grid Computing. The
Journal of Concurrency and Computation: Practice and Experience, Vol. 14, Is-
sue 13–15. Wiley Press (2002)

4. Buyya, R., Abramson, D., Giddy, J.: Nimrod-G: An Architecture for a Resource
Management and Scheduling System in a Global Computational Grid. Proceedings
of 4th International Conference and Exhibition on High Performance Computing
in Asia-Pacific Region (HPC Asia 2000). IEEE Computer Society Press, Beijing,
China (May 14–17, 2000)

5. ProtoDesign Inc. SansGuiTM. http://protodesign-inc.com/sansgui.htm
6. Realtime Technologies Inc. SimCreator.

http://www.simcreator.com/simtool.html
7. Aida, K., Takefusa, A., Nakada, H., Matsuoka, S., Sekiguchi, S., Nagashima, U.:
Performance Evaluation Model for Scheduling in a Global Computing System. The
International Journal of High Performance Computing Applications, Vol. 14, No. 3.
Sage Publications, USA (2000)

8. Song, X., Liu, X., Jakobsen, D., Bhagwan, R., Zhang, X., Taura, K., Chien, A.:
The MicroGrid: A Scientific Tool for Modelling Computational Grids. Proceedings
of IEEE Supercomputing (SC 2000). Dallas, USA (Nov 4–10, 2000)

9. Casanova, H.: Simgrid: A Toolkit for the Simulation of Application Scheduling.
Proceedings of the First IEEE/ACM International Symposium on Cluster Com-
puting and the Grid (CCGrid 2001). IEEE Computer Society Press, Brisbane,
Australia (May 15–18, 2001)

10. Mahemoff, M. J., Johnston, L. J.: Handling Multiple Domain Objects with Model-
View-Controller. In: Mingins, C., Meyer, B. (eds.): Technology of Object-Oriented
Languages and Systems 32. IEEE Computer Society Press, Los Alamitos, USA
(1999) 28–29


	Introduction
	Related Work
	Architecture
	Design and Implementation
	Model
	View
	Controller

	Use Case Study -- Grid Computing Environment Simulation
	Conclusion and Further Work

