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1. Introduction

Interest in Grid [21][22] and Peer-to-Peer (P2P) [5] computing has grown significantly over the past five
years. Both are concerned with large scale resource sharing and allows a number of competitive and/or
collaborative organizations to share their various resources including hardware, software, data etc. These
resources range from desktops to powerful clusters of many processing units. Management of cluster resources
is a key issue in grid computing while sharing and management of distributed data is of prime importance
to P2P networks. Clusters of computers have emerged as mainstream parallel and distributed platforms for
high-performance, high-throughput and high-availability computing. Grid [21] computing extends cluster
computing idea to wide-area networks. The Grid consists of cluster resources that are usually topologically
apart in multiple administrative domains, managed and owned by different organizations having different
resource management policies. With the large scale growth of networks and their connectivity, it is possible
to couple these cluster resources as a part of one large Grid system. Such large scale resource coupling and
application management is a complex undertaking, as it introduces a number of challenges in the domain of
security, resource and policy heterogeneity, resource discovery, fault tolerance, dynamic resource availability
and underlying network conditions [23]. Resource sharing on Grid involves collection of resource providers
(cluster owners) and resource consumers (end users) unified together towards harnessing power of distributed
computational resources. Such sharing mechanisms can be master-worker based or P2P [32] where providers
can be consumers as well, extending between any subset of participants. These resources and their users may
even be located in different time zones. There are three key types of cluster arrangement [24], which scale
from single systems to supercomputer-class compute farms that utilize thousands of processors:

Cluster Grids are the simplest, consisting of one or more systems working together to provide a single
point of access to users on a single project or department.

Campus Grids enable multiple projects or departments within an organization to share computing
resources. Organizations can use campus grids to handle a wide variety of tasks, from cyclical business
processes to rendering and data mining.

Global Grids are a collection of campus grids that cross organizational boundaries to create a very
large virtual systems. Users have access to compute power that far exceeds the resources available within
their own organization.

The evolution of resource intensive scientific and commercial applications has led many organizations
to own their own clusters. There are various national-level (e.g. CSIRO, APAC), state-level (e.g. VPAC,
AC3, SAPAC, TPAC, QPSF) and university-level (e.g. Unimelb, ANU) high performance computing (HPC)
platforms. In order to harness the computational power of these cluster resources in a efficient manner, a
large scale grid system is imperative. With the advancement in networking technology it is possible to couple
various cluster resources to form a logical cooperative environment driven by coordination mechanism. This
would lead to a greater pool of resources being utilized for various commercial and scientific purposes.

2. Problem Definition

Existing approach to resource allocation in the Grid environment is non-coordinated in nature. Application
schedulers (e.g. Resource Brokering System [4]) view Grid as a large pool of resource to which they hold
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2an exclusive access. They perform scheduling related activities independent of the other schedulers in the
system. They directly submit their applications to the underlying resources without taking into account
the current load, priorities, utilization scenarios of other application level schedulers. This enforces over-
utilization or bottleneck for some resources while leaving others largely underutilized. As these brokering
systems do not have a transparent co-ordination mechanism, so they lead to degraded load sharing and
utilization of distributed resources.

The resources on the Grid (e.g. clusters, supercomputers) are managed by local resource management
systems (LRMS) such as Condor [30] and PBS [9]. These resources can also be loosely coupled to form campus
Grids using multi-clustering systems such as SGE [24], LSF [2] that allow sharing of clusters owned by the
same organization. This makes the resource pool available for usage very limited and restricts one’s ability
to access or share external resources. Moreover, these systems do not support the cooperative federation of
the autonomous clusters to facilitate transparent sharing and load balancing.

End-users or their application-level schedulers submit jobs to the LRMS without having the knowledge
about response time or service utility. Sometimes these jobs are queued in for hours before being actually
processed, leading to degraded QoS. To minimize such long processing delay and enhance the value of
computation, a scheduling strategy can use priorities from competing user jobs that indicate varying levels
of importance and allocates resources accordingly. To perform these tasks effectively, the schedulers require
knowledge of how users value their computations and their QoS requirements, which usually varies with time.
The Schedulers also need to provide a feedback signal that prevents the user from submitting unbounded
amounts of work.

However, the current system-centric [9][15][20][24][30] approaches to batch scheduling used by the LRMS
provide limited support for QoS driven resource sharing. The system-centric schedulers, allocate resources
based on parameters that enhance system utilization or throughput. The scheduler either focuses on min-
imizing the response time (sum of queue time and actual execution time) or maximizing overall resource
utilization of the system and thus are not good measures of how satisfied the users are with their resource
allocations. The system-centric schedulers make decisions that are good for the system as a whole. The users
are thus unable to express their valuation of resources and QoS parameters. Further, they do not provide
any mechanism for resource owners to define what is shared, who is given the access and the scenario under
which sharing occurs [23].

3. Proposed Work

We propose a new model for distributed resource management, in particular federation of clusters. A large-
scale resource sharing grid system that consists of federation of cluster resources created through peer level
coupling, called as Grid-Federation. This approach hence enables complete decentralization of control, has
better scalability and the system is self-organizable and fault-tolerant. We consider a peer-to-peer network
model as a basis for modeling a queuing system that describes salient features/behaviour of grid-federation.
The proposed grid system is driven by computational economy methodology for clusters and their federation.
Computational economy[10][37][38] enables regulation of supply and demand of resources, resource owners
get incentive for sharing their resource. Further it promotes user’s centric resource allocation. User centric
model focus on increasing the user’s perceived value based on QoS level indicators and user requirements. In
this case the users can express their valuation of resources and QoS constraints. User-centric scheduling yields
a better level of system performance coupled with existing system-centric policies. Affect on QoS from the
use of economic based scheduling policies in the proposed model are studied. We consider the affect of various
parameters such as resource owner policy, user requirements, network delay, bandwidth, congestion on the
behaviour of our proposed model. This work includes further investigation in computational economy based
resource allocation for different pricing and application models. The proposed work includes supporting
transparent load balancing and sharing across clusters in the grid-federation based on user-defined QoS
constraints and resource owners sharing policies. The QoS indicators are shown to be effective measure of
system utility as system scales with increasing numbers of resource provider and consumers including diversity
of the user/owner objective functions. We consider job acceptance rate as a fundamental (QoS) indicator
for grid systems and study various factors affecting it including resource owner policies, user constraints and
underlying network conditions.



33.1. Organization of the Report

The rest of the report is organized as follows. Section 4 models and illustrates the various components that
are part of our grid-federation. In Section 5 we provide experimental results and analysis of our proposed
economy model and QoS level indicator. In section 6 we mention some of the related works. In Section 7 we
provide concluding remarks and our future vision.

4. Definition

This section builds an abstract model of the entities that are part of our grid-federation. We define the grid-
federation model in section 4.1. We present the essential definitions before describing the proposed models,
starting with basic entities such as a machine, cluster and a RMS. Then in later part of section we focus on
analytical modeling of cluster RMS and grid federation agent (GFA) . This is followed by description of the
market based quoting process between GFAs. Later we model end user’s resource and job descriptions. We
end the section with grid-federation economy model. In section 4.4 we present new QoS level indicator for
grid system. In section 4.5 we provide a definition of the scheduling algorithms that we consider.

4.1. Grid-Federation

The realm of Grid computing is an extension of the existing scalable distributed computing idea: Internet-
based networks of topologically and administratively distributed computing resources. Different resource
type includes computers, computational clusters, on-line scientific instruments, storage space, data and var-
ious applications. These resource can be utilized by resource consumers in order to solve compute-intensive
applications. For managing such complex computing environment traditional methodologies to resource al-
location that attempt to enhance system-utilization by optimizing system-centric functions is less efficient.
They rely on centralized policies that usually need complete system wide state information to enable ap-
plication scheduling. They do not focus on the realization of objective functions of the resource providers
and the resource consumers simultaneously. Therefore, we propose an economy-based methodology for co-
operative management of distributed cluster resources in the Grid environment. This approach will enhance
both policy and accountability in resource sharing, that would further lead to optimized resource allocation.

Existing Grid systems including (Legion [15], Condor [30] etc.) offer unrestricted access to the Grid
resources. This can sometimes lead to ”the tragedy of the commons”–A socioeconomic phenomenon whereby
the individually ”rational” actions of members of a population have a negative impact on the entire population
[17]. These Grid infrastructure lacks both policy and accountability as regards to distributed resource sharing.
Currently, there is no standard mechanism that can limit system usage and protect it from free-riders who can
abuse the system like in P2P file sharing networks [29]. Other Grid systems such as brokering mechanism
access resources independent of other brokers in the system, which can lead to over-utilization of some
resources, while under-utilization of others. They do not have any kind of co-ordination [3] mechanism hence
are inefficient and non-scalable. The possible solution to this can be set of distributed brokers that co-
operate and seamlessly work together having a transparent co-ordination mechanism, which is the notion of
our proposed system.

We define our Grid-Federation (shown in Fig.1) as a architectural framework for P2P [25] logical cou-
pling of cluster resources that are under different organizations, administrative and time domains, and that
supports policy based [16] transparent sharing of resources and QoS [34][27] based application scheduling.
We draw the analogy of Grid-Federation to the electric power Grids [18], which includes a limited num-
ber of power suppliers with large investment size (cluster owners). It has large population of electric power
consumers purchasing power from these suppliers (federation users) and are connected through various trans-
mission lines (Internet). It provides seamless policy-based (pricing for power/resource consumption) service
to is users. This framework aims towards optimizing the user-centric performance of the underlying resources.
We also propose a new computational economy metaphor for co-operative federation of clusters. Computa-
tional economy [4][37][38] enables the regulation of supply and demand of resources, offers incentive to the
resource owners for leasing, and promotes QoS based resource allocation. This new and emerging framework
consists of cluster owners as the resource providers and the end-users as the resource consumers. The end-
users are also likely to be topologically distributed, having different performance goals, objectives, strategies
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Fig. 1. Grid-Federation over P2P Network

and demand patterns. We focus on optimizing resource provider’s objective and resource consumer’s utility
functions through quoting mechanism.

We model a underlying P2P Fig.(1) networking infrastructure for Grid-Federation. To model shared
database over P2P [13] network we apply the protocol as proposed in the work (which uses Chord protocol
to do resource information sharing). The peer-level logical coupling is facilitated by GFA (Grid Federation
Agent) component, which acts as cluster’s representative to the federation. It quotes for the jobs to other
GFAs with its resource description and pricing policy. A quote consists of a QoS guarantee in terms of
resources it has to offer, the price it would charge for those resources evaluated by usage over a fixed period
of time. We also model Grid Bank [6] that provides services for accounting in the Grid-Federation.

4.2. Models

4.2.1. Terms and Definitions

A Machine is a single or multiprocessor system with memory, I/O facilities and an operating system. In this
paper we define a cluster as a collection of homogeneous machines that are interconnected by a high-speed
network like megabyte or gigabyte Ethernet [26]. These machines work as integrated collection of resources.
They have a single system image spanning over all the machines. A resource management system is a entity
which manages a set of resources in the grid-federation. The RMS can optimize any of the system-centric or
user-centric performance of underlying resources.

4.2.2. Cluster RMS

In our proposed framework, we assume that every cluster has a generalized RMS, such as a sun grid engine
[24] (SGE) or portable batch system [9] (PBS) that manages cluster wide resource allocation and application
scheduling. Most of the available RMS packages have centralized organization similar to the master-worker
pool model. In the centralized organization, there is only one scheduling controller (master node) which
initiates system-wide decisions. We denote the mean arrival rate to a cluster RMS job queue by λCi as
shown in Fig.(2), where i = 1, 2, ..., n is a unique cluster identifier and n is the number of clusters in the
system. Each cluster RMS in the federation has a different mean service rate, µCi .

4.2.3. Grid Federation Agent

The grid-federation consists of cluster resources distributed across multiple organizations and administrative
domains. To enable policy based transparent resource sharing between these clusters, we define and model
a new RMS system, which we call Grid Federation Agent (GFA). It is a two layer resource management



5system, managing underlying cluster resources in conjunction with a cluster RMS and enabling policy based
resource sharing with its other counterparts in the federation, to enable inter-cluster cooperation across
different clusters. A cluster can become a member of the federation by instantiating a GFA component. GFA
acts as a resource co-ordinator in the federated space, spanning over all the clusters. These GFAs in the
federation inter-operate using an agreed communication mechanism.

The model defines two functional units: (1) peer manager and (2) resource manager. The peer manager
performs tasks like resource discovery and advertisement through well defined primitives. It interacts with
a distributed shared database over underlying P2P networking framework (shown in Fig.(1)) . The resource
discovery function includes searching for suitable cluster resources while resource advertisement is concerned
with advertising resource capability (with pricing policy) to other clusters in the federation. The main
primitives include subscribe, quote, query, configure and unsubscribe:

subscribe(cluster-id) : subscribe to the grid-federation with cluster-id.
configure(price) : configure the pricing model for cluster.
quote(res type,price) : quote for the job in the federation (resource and pricing policy advertisement).
query() : query the shared database for federation resource information (resource discovery).
unsubscribe(cluster-id) : unsubscribe from the grid-federation.

The resource manager’s main function includes resource allocation and application scheduling. It has
specific primitives for communicating with its cluster RMS, local users and remote GFAs. They include:

accept(user-id, job-id) : accepts job from local population of users.
send(user-id, job-id,done) : returns job to local population of users.
send(job-id) : sends job to local cluster RMS.
receive(job-id, done) : receives done job from local cluster RMS.
send(job-id, GFA) : sends job to remote GFA.
receive(job-id, GFA,done) : receives done job from remote GFA.
accept(job-id, GFA) : receives jobs from remote GFA.
negotiate(job-id, GFA, deadline) : negotiate with remote GFA specifying deadline constraint for the

job.

The resource manager deals with local jobs and remote jobs. Local jobs refer to the jobs submitted by
the local population of users. While remote jobs refer to the incoming jobs from remote GFAs.

Fig.(2) shows the job queue model of a cluster. We consider P2P network model in order to analyze the
proposed job queueing model of grid-federation. Cluster owners configure their scheduling policy at their
GFA, which is then propagated within the federation. GFA attempts to optimize user-centric performance
on behalf of its local user population in co-ordination with remote GFAs in the federation.

We denote the mean arrival rate of jobs at a GFA as λGi . From Fig.(2):

λGi =
n∑

j=1,j 6=i
λGoutj

+ λPi + µCi , (1)

where λGoutj
is arrival rate of incoming jobs from remote clusters, j 6= i, λPi is job arrival rate from local

user population and µCi is arrival rate of locally serviced jobs.
The local user population job arrival rate is denoted by λPi . Depending on the user’s specified constraints

for a given job, the resource manager component of can execute the job locally or transfer the job to another
cluster in the federation, if that cluster can satisfy the user’s constraints in a better way. µPi denotes rate at
which jobs are returned to the local user population. We represent this outgoing job transfer rate by λGouti

.
This also includes the jobs which were serviced at the cluster. Clearly,

λCi = λGi − λGouti
− µPi , (2)

where λGouti
is job transfer rate to other clusters.

In general, µCi and µGi depend on the cluster owner’s scheduling policy, hardware and software configu-
rations and network performance. µPi is the rate at which done or rejected jobs are returned to the local user
population.We use a Poisson arrival rate for λPi (local user population) which drives the model response.
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We model the job arrival rate at various clusters in federation as a Poisson process and has the distribution
of Poisson random variable . The rate λGi denotes the mean or average job arrival rate at cluster i of
federation. At cluster i for a time interval [0, t], the probability of n arrivals in t units of time is given by

Pn(t) =
(λGit)

n

n!
e−λGi t (3)

Federation consists of n clusters having mean job arrival rate λGi where i = 1, 2 , ..., n. That is n different

Poisson processes with distributions for the arrival rate
(λGi t)

n

n! e−λGi t where i = 1, 2, ..., n. Merging property
of Poisson process states that if we merge n Poisson processes into one single process, then the result is a
single Poisson process. Merging of above stated Poisson processes will result into a single Poisson process
having mean λGtotal

λGtotal = λG1
+ λG2

+ ...+ λGn (4)

The Inter arrival times of Poisson process has an exponential distribution with mean rate λGi . For instance
let us pick an arbitrary starting point t0 in time and T1 be the time until the next arrival at some cluster i.
This gives

P (T1 > t) = P0(t) = e−λGi t (5)

Thus the cumulative distribution function (cdf) of T1 is given by

FT1(t) = P (T1 ≤ t) = 1− e−λGi t (6)

And the probability distribution function (pdf) of T1 is

fT1(t) = λGie
−λGi t (7)

Therefore, T1 has an exponential distribution with mean rate λGi .
If we merge n Poisson processes with distributions for the inter arrival times 1 − e−λGi t where i=1, 2,

..., n into one single process, then the result is a Poisson process for which the inter arrival times have the
distribution 1− e−λGi t with mean

λGtotal = λG1
+ λG2

+ ...+ λGn (8)



74.2.4. User’s Job Specification

The user’s job specification consists of user’s resource requirement and preference for that particular job. A
job is described by a directed acyclic or cyclic task graph.
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A job is a set of tasks whereas task is any independent program or executable.

Ji = {T1, T2, T3, T4, ......., Tn} (9)

Where n is the number of tasks in the job set Ji.

if n=1 then the job is said to be independent, else the job consists of set of dependent tasks described by
the task graph.

The task may be composed of parallel application like MPI or PVM, which can lead to two-way commu-
nication during their execution as depicted in Fig.(3) between task T2 and T3. These tasks may execute on
the same cluster or on different clusters. They are represented by directed cyclic graphs.
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G = (V,E) (10)

Ji = V = {T1, T2, T3, T4, ......., Tn} (11)

bij ∈ E is a communication variable from task i to j.

bij is the total data passed between the task i to j during their execution.

4.2.5. Grid-Federation Resource Description

Grid-Federation Resource Description is a set RG which contains resource description of various clusters in
the federation.

RG = {RC1
, RC2

, ..., RCn} (12)



8 Where RCi is the cluster resource description set, i varies from 1 to n depending on the number of
clusters in the grid-federation. Each cluster in the federation has its own Resource set RCi which contains
the definition of all resource owned by the cluster and ready to be offered.

RCi ∈ Ci ×Oi ×Mi × Si × Li ×Ni (13)

RCi ∈ {〈c, o,m, s, l〉|(c ∈ Ci) ∧ (o ∈ Oi) ∧ (m ∈Mi) ∧ (s ∈ Si) ∧ (l ∈ Li) ∧ (n ∈ Ni)} (14)

Ci is the set describing the type of Central Processing Unit available on cluster.
c ∈ Ci is particular cpu type e.g. c= i386 or Alpha.

Oi is the set describing operating system type available on the cluster.
o ∈ Oi is particular os type e.g. o= Solaris or Linux.

Mi is the set describing the amount of physical memory available on the cluster.
m ∈Mi is RAM size e.g. m= 256 MB .

Si is the set describing secondary storage space available on the cluster.
s ∈ Si is available secondary storage size e.g. s= 1 GB.

Li is the set describing the additional library offered by cluster.
l ∈ Li is particular additional library e.g. l= MPI or PVM.

Ni is the set describing number of nodes in the cluster.
n ∈ Ni is nodes at particular cluster e.g. n=1 or 4.

4.2.6. User’s Resource Description

Users specify its Resource requirement as

RU = {CU , OU ,MU , SU , LU} (15)

4.2.7. Economy Models in Grid-Federation

Existing work in resource management and application scheduling in Grid computing is driven by conven-
tional metaphor where a scheduling component takes decision regarding the site where application will be
executed based on some system-centric parameters (Legion [15], Condor [30], Apples [8], NetSolve [14], Punch
[28]). They treat all resources with the same scale, as if they worth the same and the results of different
applications have the same value, while in reality the resource provider may value his resources differently
and has different objective function. Similarly the resource consumer may value various resources differently
depending on its QoS based utility functions, may want to negotiate a particular price for using a resource
based on demand, availability and its budget. To overcome these shortcomings, we propose an economics-
based resource allocation, in this case the scheduling mechanism is driven by resource provider’s sharing
policy, objective functions and resource consumer’s QoS based utility functions. Pricing is primarily based
on the demand by the resource consumers and resource availability pattern, in a economic market based
resource allocation model.

Some of the commonly used economic model [11] in resource allocation includes the commodity market
model, the posted price model, the bargaining model, the tendering/contract-net model, the auction model,
the bid-based proportional resource sharing model, the community/coalition model and the monopoly model.
We mainly focus on the commodity market model [39]. In this model every resource has a price, which is
based on the demand, supply and value in the Grid-Federation. The cost model for the particular cluster
depends on the resources it provides to the federation user and is valued accordingly. The initial price of
the resources are configured by their owners, it varies between the clusters depending on the hardware
configuration, software availability and user’s percieveness of QoS.

The relative worth of resources are determined by their comparative supply and demand pattern. If a
resource has less demand, then its owner quotes with lower price as compared to previous quote in order to
attract more users. Every federation user has to express how much he is willing to pay (budget) and expected
response time (deadline) for his job. User’s valuation of resources for his job is directly governed by the job
specification and QoS requirements.



9Quality is the totality of features of a service that influences its ability to satisfy the given needs. Quality
of service evaluations are considered to be driven by a comparison of consumer expectations with their
perceptions of the actual quality received. QoS is a guaranteed level of performance delivered to the customer,
which is part of service level agreement (SLA) between the service providers and the end-users. The QoS
can be characterized by several basic performances criteria including availability, performance, response time
and throughput. Service providers may guarantee a particular level of the QoS as defined in the SLA. In
our proposed framework the SLA is part of quoting process, in which the cluster owners are committed
towards providing the services they define in their subsequent quotes. The focus of user-centric resource
allocation is towards maximizing the end-users satisfaction in terms of QoS constraints. Our Grid-Federation
economy model defines the cluster owners, CGowner = {cowner1 , cowner2 , ..., cownern } that owns resources RG =
{Rc1 , Rc2 , ..., Rcn}. Every cluster in the federation has its own Resource set Rci which contains the definition
of all resource owned by the cluster and ready to be offered. Rci includes information about the CPU
architecture, number of processors, RAM size, Secondary storage size and Operating system type. Every

resource in federation has a price, which we represent by PGcost =
{
cprice1 , cprice2 , ..., cpricen

}
. The resource

owner cowneri charges cpricei per unit time or price per unit of Million Instructions (MI) executed e.g. per
1000 MI. There is mapping function from set of federation resources (RG) to cluster price model (PGcost).

Π : RG → PGcost (16)

Let UG = {cuser1 , cuser2 , ..., cusern } contains the federation users belonging to various clusters. cuseri repre-
sents the users belonging to cluster i. Every cluster owner cowneri requires jobs Ju to use its resource power. A
user owns a job Ji ∈ Ju. Every federation user ui is modeled as having a resource allocation utility function
QoS(Constraint) for each job which indicates QoS value delivered to the user as a function of specified QoS
constraints (deadline and budget). Each job Ji consumes some power of particular type of cluster resource
Rci .

For every job Ji, federation user ui determines a budget, which he is ready to spend in order to get
his job done. This is a mere user’s assumption which can be feasible or unfeasible. If this assumption is
unfeasible then it is quite likely that user’s job would get rejected from the federation, in that case the user
may have to increase the budget constraint. In addition to budget, user may also give his preference about
the response time it expects from the system (deadline). When users submit their jobs to the GFA, they
express maximum value of both budget and deadline constraints with one of the two optimization strategy
that should be adopted during scheduling.

Every federation user ui ∈ cuseri can express the optimization strategy he intends for his job Ji. We propose
two optimization strategies that a user can opt for. Starting with the Time Optimization [4] strategy, where
the focus is on getting the work done as fast as possible. In this case the users specify the maximum budget
(cbudget) and the deadline (tdeadline) for their job. In this optimization strategy the user might get his job
done within the deadline limit but he may have to invest maximum budget. This signifies as the user invests
more budget, it is likely that he will get better response time from the system.

Sometimes the federation user would like to make use of both of the above strategies but without really
maximizing or minimizing either of the time or cost constraints. This is called Cost-Time Optimization[4]
strategy. In this strategy the user spends a fair amount of the allocated budget for the job, while getting a
more acceptable response time from the system as compared to cost optimization.

Response− T ime ∝ 1/Budget (17)

The federation user can also specify Cost Optimization [4] strategy for his job, in this case focus is on
getting the work done in minimum possible cost, but within the time constraint. This strategy will get the
user’s job done in minimum possible cost while maximizing the response time within the deadline limit.

4.2.8. Quoting Mechanism between GFAs

This framework aims towards P2P coupling of various clusters thus overcoming the burden of central man-
agement and thereby giving autonomous control to individual clusters about their functioning. Each of these
clusters are driven by different pricing policies.

In Fig.(5), cluster A in the federation does quote broadcast to all other clusters in the federation through
P2P shared database. A user who is local to cluster A is making a request while the other clusters are
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broadcasting their quote. A typical quote consists of resource description Rci and cpricei (price to be paid for
using the specified cluster resource ), configured by cluster owner. After analyzing all the quotes, cluster A
decides whether the request should be serviced locally or forwarded to another cluster. In this way cluster
A has the information about all other cluster’s service policies.

If the user request can not be served locally then cluster A evaluates all quotes against the user’s required
QoS. After this cluster A sends negotiate message (Enquire about QoS guarantee in terms of response time)
to the matching (In terms of the resource type and the service price) clusters (cluster A sending negotiate
message to cluster E and D) one by one until it finds the cluster on which it can schedule the job (job finally
scheduled on cluster E) .

4.3. Supporting Technology : Peer-to-Peer

The concept of P2P systems is a new revolution to the domain of Internet computing. A P2P [7] system
is a self-organizing distributed system where self-interested peers communicate among themselves to share
resources such as storage, data or CPU time. Moore and Hebeler, in the book [32], have defined P2P as
paradigm that supports the exchange of information and services directly between producers and consumers
in order to achieve purposeful results. The primary motivation of using P2P technology for our grid-federation
is scalability and fault-tolerance. The Internet computing environment is composed of thousands of cluster
resources, traditional monolithic approach of coupling them is non-scalable and is liable to one-point failure.

Our model of grid federation over underlying P2P network is shown in Fig.(1). The federation consists of
n GFAs interconnected through the P2P [36] network. To model shared database over P2P network we apply
the protocol [13] as proposed in the work (which uses Chord protocol to do resource information sharing).
The network is logically fully connected and accessible through distributed shared federation directory, and
that every GFA can communicate with every other GFA. This shared database is distributed shared memory
(DSM) over P2P network and each GFA has its own local copy of database. The grid peer component of GFA
interacts with this shared database using defined primitives such as subscribe, query, post and unsubscribe, is
responsible for consistency, synchronization, fault tolerance, coherence, and persistence of the shared space.



114.4. Quality of Service Indicator for Grid Systems

To date, the factors that influence QoS, such as cluster owner policy and user constraints have not well
studied in the literature. We define acceptance rate as a QoS indicator for Grid Systems and show how the
cluster owner policies, resource availability, various economy models and user constraints affect the QoS. If
a submitted job can not be completed within its given constraints then it is rejected, otherwise accepted.
Acceptance rate is the percentage of all jobs that are accepted. We consider the acceptance rate of our
proposed grid-federation.

4.5. QoS Constraint Driven Resource Allocation Heuristic

We propose a deadline and budget constrained(DBC) grid federation scheduling heuristic, called the cost-
time optimization scheduling. A detailed algorithm for scheduling jobs to cluster resources in the federation,
that optimizes cost, time and cost-time follows next. The algorithm aims towards optimizing user-centric
performance of underlying cluster resources. The federation user can specify any one of the optimization
strategy for their job:
(Our algorithm is an extension of basic Nimrod-G [4] algorithm)

(1) Optimize for time: The focus of this strategy is to give minimum possible response time to the federation
user, but within the budget limit.

(2) Optimize for cost: This strategy produces results by deadline, but reduces cost within a budget limit.
(3) Optimize for cost-time: This strategy optimizes both cost and time parameter. In this case the federation

user spends a fair amount of the alloted budget for the job while getting a more acceptable response
time from the system.

All the scheduling related activities are performed by peer and resource manager component of the GFA.
We will explain the scheduling algorithm in the context of these components.

Algorithm

(1) Peer Manager.

(a) Subscribe: Register to the federation with unique cluster − id.
(b) Quote: Advertise the cluster owner’s quote(res type, price) (Resource Advertisement).
(c) Query: Query the distributed shared database, obtain quotes of other clusters in the federa-

tion(Resource Discovery).
(d) Unsubscribe: Cancel or suspend the membership of cluster from the federation.

(2) Resource Manager.

(a) Analyze Quotes: Identify the resource type, characteristics, configuration, capability and the usage
cost per unit time by analyzing the quotes advertised by various clusters in the federation. Store
these statistics for future job scheduling in Federation−Resource− List.

(b) Accept, Analyze and Schedule Local Jobs: Accept local jobs and store in Jobs−Wait−List. Repeat
the following steps for each waiting job Jobi.

i. Identify the list of clusters in the federation matching the job’s resource requirement from
Federation-Resource-List.

ii. For each such matching cluster calculate the budget required to execute job on that cluster. If the
user of the job supplies Deadline and Budget for the job, then determine the absolute deadline
and budget based on the matching cluster’s resource processing capability and pricing policy. Store
this in Job-Match-List. Repeat this step for all matching clusters in Federation−Resource−List.

iii. Now determine the optimization requested by the user of the job and dispatch the job.

A. For cost optimization, sort the Jobi−Match−List by increasing order of cost. Then select the first
cluster in the list and negotiate whether it can complete the job within the user specified deadline.
If yes dispatch the job, remove the job from Jobs−Wait−List and add to Jobs−Submit−List.
If no then repeat the same for next cluster in the Jobi −Match − List. If at last none of the
cluster can complete within specified deadline then add the job to Reject− Jobs−List, remove
from Jobs−Wait− List. Return the job to the user.



12 B. For time optimization, sort the Jobi −Match − List by increasing order of absolute deadline.
Then select the first cluster in the list and negotiate whether it can complete the job within the
user specified budget. If yes dispatch the job, remove the job from Jobs−Wait− List and add
to Jobs−Submit−List. If no then repeat the same for next cluster in the Jobi−Match−List.
If at last none of the cluster can complete within specified budget then add the job to Reject−
Jobs− List, remove from Jobs−Wait− List. Return the job to the user.

C. For cost-time optimization, determine the cost-time factor cti(by multiplying absolute deadline
and absolute budget) for each cluster in the user’s match list. Now sort the the Jobi−Match−List
by increasing order of of cti. Then select the first cluster in the list and negotiate whether it can
complete the job within the user specified deadline. If yes dispatch the job, remove the job from
Jobs−Wait−List and add to Jobs−Submit−List. If no then repeat the same for next cluster
in the Jobi −Match − List. If at last none of the cluster can complete within specified budget
and deadline then add the job to Reject−Jobs−List, remove from Jobs−Wait−List. Return
the done job to the user.

(c) Accept and Schedule Remote Jobs: For each incoming job

i. Accept the incoming job, add to Remote− Job−Wait− List.
ii. Transfer the job to local cluster RMS for execution, add to Remote − Job − Submit − List.

Remove from Remote− Job−Wait− List.
iii. On arrival of completed job from cluster RMS, add job to Remote−Job−Done−List, transfer

the job to its originating cluster. Remove the job from Remote− Job− Submit− List.
(d) Receive finished jobs: For each incoming completed job

i. Add the job to Jobs−Done− List. Remove the job from Jobs− Submit− List.
ii. Return the completed job to the user.

iii. If the job did not complete successfully, then add it to Jobs−Wait− List.

4.5.1. Heuristic Analysis

Assignment of job Ji to the resources in the federation can be formally described by the function

∆ : JU −→ RG (18)

from the set of jobs JU to the set of federation resource RG.
At any time t given m jobs J1,J2,..,Jm and p clusters resources Rc1 ,Rc2 ,...,Rcp that matches jobs resource

and QoS requirements, it is possible to assign them in pm ways. Each job Ji has cbudget and tdeadline associated
with it. The problem is to find an a resource, which minimizes both cbudget and tdeadline in accordance with
the optimization strategy sought by the owner of the job Ji. Further the assignment strategy should lead to
efficient utilization of federation resources and minimize the job starvation rate.

Resource allocation for job Ji can be optimized of any of the two user specified QoS constraints. We
define Rcost as a function which determines the processing cost of resource Rci (service price) , Rpower as a
function which determines the processing power of resources Rci and Rfactor as a function which determines
the product of processing cost and processing power of resources Rci .

Rcost : Rci −→ Q (19)

Rpower : Rci −→ Q (20)

Rfactor : Rci −→ Q (21)

If user seeks cost optimization for his job then, allocate resource Rck , k < p, such that,

Rcost(Rck) = min(Rcost(Rci)) i = 1...p (22)

If user seeks time optimization for his job then, allocate resource Rck , k < p, such that,

Rpower(Rck) = max(Rpower(Rci)) i = 1...p (23)

If user seeks cost-time optimization for his job then, allocate resource Rck , k < p, such that,

Rfactor(Rck) = min(Rcost(Rci) ∗Rpower(Rci)) i = 1...p (24)
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Table 1. Workload and Resource Configuration

Index Resource
/ Cluster
Name

Trace Date Nodes MIPS
(rat-
ing)

Jobs Quote(Price)

1 CTC SP2 June96-May97 512 850 79,302 5.0
2 KTH SP2 Sep96-Aug97 100 900 28,490 5.2
3 LANL

CM5
Oct94-Sep96 1024 700 201,387 3.6

4 LANL
Origin

Nov99-Apr2000 2048 630 121,989 3.5

5 NASA
iPSC

Oct93-Dec93 128 930 42,264 5.3

6 SDSC
Par96

Dec95-Dec96 416 710 38,719 3.6

7 SDSC
Blue

Apr2000-Jan2003 1152 730 250,440 3.7

8 SDSC
SP2

Apr98-Apr2000 128 920 73,496 4.5

The following holds true for all optimization strategy. Let the start time of Ji is si, (we assume that the
si’s are integer, and that min {si}=0)

Every job Ji has deadline tdeadline and budget cbudget so,

si + τi ≤ tdeadline (25)

τi = Total CPU Time required by the job (26)

and,

Jp−costi = Rcost(Rci) . τi ≤ cbudget (27)

Jp−costi = cpricei . τi ≤ cbudget (28)

Jp−costi denotes processing cost of job Ji on the resource Rci

5. Experiment and Analysis

We used trace based simulation to evaluate the effectiveness of the proposed system and the QoS provided
by the resource allocation algorithm. The simulator was implemented using GridSim [12] toolkit that allows
modeling and simulation of distributed system entities for evaluation of scheduling algorithms. Our simulation
environment models the following basic entities in addition to existing entities in GridSim:

(1) Local user population, which basically models the local user population.
(2) GFA, generalized RMS system that we model for Grid-Federation.
(3) GFA queue, placeholder for incoming jobs from local user population and the federation.
(4) GFA shared federation directory over Peer-to-Peer network, for distributed information management.

5.1. Workload and Resource Modeling

We based our experiments on real time workload trace data obtained from [1] various re-
sources/supercomputers (See Table-I). The trace data was composed of parallel applications. To enable
parallel workload simulation with GridSim, we extended existing GridResource, Alloc Policy and Space
Shared entities. For evaluating the QoS driven resource allocation algorithm, we assigned synthetic QoS
specification to each resource including the Quote value (Price that cluster owner charges for service) and
having varying MIPS rating. The simulation experiments were conducted by utilizing workload trace data
over the total period of two days (in simulation units) at all the resources. In experiment 1 and 2 we consider,



14if the user request can not be served when requested, then it is rejected otherwise it is accepted. During
experiment-1 and experiment-2 we measure the following

(1) Average resource utilization (Amount of real work that resource does over the simulation period excluding
the queue processing and idle time).

(2) Job acceptance rate (total percentage of job accepted).
(3) Job rejection rate (total percentage of job rejected).
(4) Number of jobs locally processed.
(5) Number of local jobs migrated to federation.
(6) Number of remote jobs processed.

5.2. Experiment-1 (Independent Resource)

In this experiment the resources were modeled as an independent entity (without federation). All the workload
submitted to the resources was processed locally. We evaluate the performance of a resource in terms of
average resource utilization, job acceptance rate and job rejection rate. The result of this experiment can be
found in (refer to Table-2). We observed that about half of the resources including CTC, KTH SP2, LANL
Origin, NASA iPSC, and SDSC Par96 were utilized less than 50%.

Fig. 6. Average Resource Utilization (%) Vs. Resource Name

5.3. Experiment-2 (With Federation)

In this experiment we analyzed the workload processing statistics of various resources when they are part
of the Grid-Federation, in this case the workload assigned to the resource can be processed locally or may
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Fig. 7. No. of Jobs Vs. Resource Name

be migrated to any other resource in the federation depending on the availability pattern. Table-3 describes
the result of this experiment.

During experiment-2, we observed that overall resource utilization of most of the resources increased as
compared to experiment-1 (when they were not part of the federation), for instance resource utilization of
CTC increased from mere 36.71% to 85.85%. Same trends can be observed in case of other resources too
(refer to Fig.(6)). There was an interesting observation regarding migration of the jobs between the resources
in the federation (load-sharing). This characteristic was evident at all the resources including CTC, KTH
SP2, NASA iPSC etc. At CTC, which had total 417 jobs to schedule, we observed that 383 (refer to Table-3)
of them were executed locally while the remaining 34 jobs migrated and executed at some remote resource in
the federation. Also, this resource executed 80 remote jobs, which came from other resources in the federation.

The federation based load-sharing also led to decrease in the total job rejection rate, this can be observed
in case of resource LANL CM5 whose job rejection rate decreased from 18.83% to 0.093%. Thus, we conclude
that the federation based resource allocation promotes transparent load-sharing between various participant
resources, which further helps in enhancing their overall resource utilization and the job acceptance rate.

5.4. Experiment-3 (With Federation and Economy)

In this experiment, we study the computational economy metaphor in the Grid-Federation. We assigned QoS
parameters (budget and deadline) to all the jobs across the resources. We performed the experiment under
three scenarios having different user population profile.

(1) All users seek cost-optimization.
(2) Even Distribution (50% seeking cost-optimization 50% seeking time-optimization).



16

Table 2. Workload Processing Statistics (without Federation - Independent Processing/Resource)

Index Resource
/ Cluster
Name

Average
Resource
Utiliza-
tion (%)

Total Job Total
Job Ac-
cepted(%)

Total
Job Re-
jected(%)

1 CTC 36.71 417 98.32 1.678
2 KTH SP2 32.132 163 98.15 1.875
3 LANL

CM5
56.22 215 81.86 18.83

4 LANL
Origin

40.64 817 91.67 8.32

5 NASA
iPSC

37.22 535 100 0

6 SDSC
Par96

39.30 189 99.4 0.59

7 SDSC
Blue

79.16 215 76.2 23.7

8 SDSC
SP2

65.18 111 66.66 33.33

Table 3. Workload Processing Statistics (With Federation)

Index Resource
/ Cluster
Name

Average
Resource
Utiliza-
tion (%)

Total
Job

Total
Job Ac-
cepted(%)

Total
Job
Re-
jected(%)

No. of
Jobs
Pro-
cessed
Lo-
cally

No. of
Jobs
Mi-
grated
to
Feder-
ation

No. of
Re-
mote
jobs
pro-
cessed

1 CTC 85.85 417 100 0 383 34 80
2 KTH SP2 96.50 163 100 0 118 45 44
3 LANL

CM5
64.19 215 99.06 0.093 164 49 35

4 LANL
Origin

59.61 817 98.89 1.10 769 39 38

5 NASA
iPSC

44.16 535 100 0 401 134 69

6 SDSC
Par96

69.50 189 100 0 175 14 30

7 SDSC
Blue

64.55 215 100 0 130 85 57

8 SDSC
SP2

78.80 111 100 0 62 49 96

(3) All users seek time-optimization.

The budget and deadline distribution for the user having the job Ji, seeking cost-optimization is given by
cbudget = processingcoston(Ji, Rcm) (cost of executing the job Ji on the resource Rcm), m < n such that

Rcost(Rcm) =

∑n
i=1(Rcost(Rci))

n
(29)



17where n is the total number of resources in the federation.
tdeadline = executiontimeon(Ji, Rcm) (Execution time of the job Ji on the resource Rcm) , m < n, such

that

Rpower(Rcm) = min(Rpower(Rci)) i = 1...n (30)

where n is the total number of resources in the federation.
The budget and deadline distribution for the user having the job Ji, seeking time-optimization is given

by cbudget = processingcoston(Ji, Rcm) (cost of executing the job Ji on the resource Rcm), m < n, such that

Rcost(Rcm) = max(Rcost(Rci)) i = 1...n (31)

where n is the total number of resources in the federation.
tdeadline = executiontimeon(Rcm) (Execution time of the job Ji on the resource Rcm), m < n, such that

Rpower(Rcm) =

∑n
i=1(Rpower(Rci))

n
(32)

where n is the total number of resources in the federation.
In experiment-3, we measured the computational economy related behavior of the system in terms of

supply-demand pattern, resource owner’s incentive (earnings) and end-user’s QoS constraint satisfaction
(average response time and average budget spent ) with varying user population distribution profiles. We
study the relationship between resource owner’s total incentive and end-user’s population profile. Total
incentive earned by different resource owners with varying user population profile can be seen in (refer
to Fig.(9)). Result shows that the owners (across all the resources) got more incentive when users sought
time-optimization (Total Incentive 1.79E+09 Grid Dollars) (scenario-3) as compared to cost-optimization
(Total Incentive 1.57E+09 Grid Dollars) (scenario-1). During time-optimization, we observed that there was
a uniform distribution of the jobs across all the resources (refer to Fig.(8)) and every resource owner got some
incentive. While during cost-optimization, we observed non-uniform distribution of the jobs in the federation
(refer to Fig.(8)). We observed that some resource owners do not get any incentive (e.g. CTC, KTH SP2,
NASA iPSC and SDSC SP2). This can also be observed in their resource utilization statistics (Fig.(8)) which
indicates 0% utilization. These resources offered faster (response time) services but at a higher price. This
is worst case scenario in terms of resource owner’s incentive across all the reosurces.

This also indicates imbalance between the resource supply and demand pattern. As the demand was for
the cost-effective resources as compared to the faster one, so these faster but expensive resources remained
underutilized. All the jobs in this case were scheduled on other resources (LANL CM5, LANL Origin, SDSC
Par96 and SDSC Blue), as they provided cost-effective solution to the users. With even user population
distribution (during scenario-2) all the resource owners across the federation got incentive (Total Incentive
1.77E+09 Grid Dollars) and had better resource utilization (Fig.(8)). This scenario shows balance in the
resource supply and demand pattern. Thus, we conclude that resource supply (No. of resource providers) and
demand (No. of resource consumers and QoS constraint preference) pattern determines the resource owners
overall incentive and the resource usage scenario.

We also measured the end-users QoS satisfaction in terms of average response time and average budget
spent under two different optimization scenario (cost and time). We observed that end-users got better av-
erage response time (Fig.(10)) when they sought time optimization (scenario-3) for their jobs as compared
to cost-optimization (scenario-1). At LANL Origin the average response time for the users was 6243.6 sim-
ulation seconds (scenario-1) which reduced to 4709.4 during time-optimization. The end-users spent more
budget in case of time-optimization as compared cost-optimization (refer Fig.(11)). This shows that users
get more utility for their QoS constraint parameter response time, if they are ready to spend more budget.
Thus, we conclude that in user-centric resource allocation mechanism users have more control over the job
scheduling activities and they can express their priorities in terms of QoS constraints.

We based rest of our experiments including experiment-4, experiment-5 and experiment-6 on the synthetic
workload.

5.5. Experiment-4 (The affect of economic models on the cluster owner’s overall profit)

In this experiment we evaluate how the profit of the cluster owners and the overall resource utilization varies
with the pricing policy i.e. as they quote with different price. We performed this experiment with three
clusters having configuration as shown in table-IV.
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Fig. 8. Average Resource Utilization (%) Vs. Resource Name

Table 4. Experiment-4 Resource setup

Id Cpu-type Os-type Secondary Primary Libs MIPS Nodes Price
Cluster-1 Intel Linux 20 GB 512MB Gnu 600 5 Random (3..8)
Cluster-2 Intel Linux 20 GB 512MB Gnu 200 5 1
Cluster-3 Intel Linux 20 GB 512MB Gnu 300 5 2

At all three clusters we created heterogeneous set of user population having different optimization goals
for their job.

At all three clusters heterogeneous set of user population having different constraint optimization pref-
erences. initial User Population (60 Average Job Size 12000 MI) :

15 ≤ budget ≤ 110 (Grid Dollars) , 25 ≤ deadline ≤ 75 (simulation units)

25% : Cost-Optimization

65% : Time-Optimization

10% : Cost-Time Optimization



19

Fig. 9. Total Incentive (Grid Dollars) Vs. Resource Name

We used the same user population in all our experiments but varied the price of the most powerful cluster
which has MIPS rating of 600. We vary the price through 3,4,5,6,7, and 8 while keeping the resource price
of other clusters fixed at 2 for cluster with MIPS rating 300 while 1 for the cluster having MIPS rating 200.
The results of this simulation run in terms of total earnings and total jobs executed is shown in Fig.(12) and
Fig.(13).

Initially when cluster-1 quotes with cost-factor 4, it executes 65% of total jobs while earning around 1400
grid-dollars. As this value is increased to 4 and 5, although less percentage of total jobs are executed at this
cluster, but its earning increases due to high cost-factor and there is still appropriate demand for this resource
type in the user population who have sufficient budget and they have opted for Time-Optimization strategy
i.e. faster response time. But as this cost-factor is increased beyond 6 to value 7 and, the earnings of this
cluster decreases considerably. This due to fact that those user seeking faster response time run out of their
budget, so they cant get their job executed on the most powerful resource instead it gets executed on second
most powerful cluster i.e. having MIPS rating 300 and which is offering the resources at affordable price.
In this simulation the user’s seeking cost-optimization for their job always get their job done on cluster-2
so, this cluster gets same number of jobs to execute while there is subsequent shift of jobs from cluster-1
to cluster-3. This signifies that the cluster owners get more earning for their resources if they offer them
within reasonable price limit, as with subsequent increase in the price the demand for that resource may
decrease considerably which leads to loss rather than profit. This may further lead to large number of user
jobs getting rejected due to unsatisfied constraints, thus degrading QoS indicator for the system.
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Fig. 10. Average Response Time (Simulation Units) Vs. Resource Name

Table 5. Experiment-5 Resource setup

Id (c1, c2, c3) Cpu Os S* (GB) RAM (MB) Libs MIPS Nodes Price
(1,11,21) Intel Linux 20,10,10 512,512,256 Gnu 600,200,360 5,4,4 4,1,2
(2,12,22) i586 Linux 10,20,20 256,256,512 Gnu 500,220,370 4,3,2 5,1.5,2.4
(3,13,23) i686 Linux 10,10,10 256,256,256 Gnu 700,235,380 3,3,2 6,1.3,2.5
(4,14,24) Intel solaris 10,20,20 512,512,512 Gnu 500,230,340 2,2,5 7,1.4,2.3
(5,15,25) macintosh macos 20,10,10 256,256,256 Gnu 700,200,370 4,4,4 6,1.4,2.6
(6,16,26) Intel-P WinXp 10,20,20 512,512,256 Vs6 800,230,330 2,3 ,2 5,1.4,2.4
(7,17,27) macintosh macos 10,10,10 512,256,256 mpi 700,200,300 4,5,2 5,1,2
(8,18,28) alpha Linux 20,20,20 256,512,512 Gnu 500,255,320 4,3,3 5,1.3,2.2
(9,19,29) alpha Linux 20,20,20 256,512,512 mpi 800,240,330 2,4,3 7,1.7,2.2
(10,20,30) Intel WinXp 10,10,10 512,256,256 .Net 700,260,350 3,4,2 6,1.3,2.4

5.6. Experiment-5 (The affect of QoS parameters on the service utility of the system)

In this experiment, we measured how different economic scheduling strategy affects the end-users QoS in
terms of response time and budget spent. We simulated with 10 clusters in the federation, with user popu-
lation spanning over all the clusters having different optimization constraints for their job. These users have
varying job length starting with 12k to 24k. The table-5 and 6 depicts the experiment setup.
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Fig. 11. Average Budget Spent (Grid Dollars) Vs. Resource Name

Table 6. Experiment-4 Job setup

Job-Size(MI) Cluster Cpu Os S* (GB) RAM (MB) Libs
12000 3 intel linux .2 64 gnu
24000 8 i586 linux .1 32 gnu
16000 6 i686 linux .2 64 gnu
18000 7 intel solaris .1 32 gnu
19000 9 intel-P winxp .1 64 vs6
20000 10 macintosh mac-os .2 32 gnu
22000 1 alpha linux .1 32 gnu
14000 4 macintosh mac-os .2 64 mpi
15000 5 alpha linux .1 56 mpi
18000 2 intel winxp .2 64 .Net

a

User Population ( 200, different optimization for 1 user/cluster monitored, average job size 12000 MI )

15 ≤ budget ≤ 150 (Grid Dollars) , 25 ≤ deadline ≤ 120 (simulation units)

aS* Secondary
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Fig. 12. Total Earnings (Grid Dollars) Vs. Quote (Cost Factor)

We performed the experiments for same set of users but varying their optimization strategy while modi-
fying the deadline and time constraints accordingly. Fig.(14) and Fig.(16) shows this experiment results.

We have also indicated the user specified value of deadline and budget constraints on the plots with the
experiment results. For example, In cost-optimization user-4 spends 14 (specified budget constraint:16) Grid-
Dollar getting 71 time units as response time (specified time constraint: 75 time units) whereas the same user
spends 70 Grid Dollars while getting 21 time units as response time in case of time-optimization. It can be ob-
served from the graph that a federation users get better response time in case of Time-Optimization strategy
but they end up spending more budget as compared to Cost-Time and Cost Optimization strategies. Fig.(15)
shows the plot of average response time along with standard deviation in all three optimization strategies.
Fig.(17) shows the plot of average budget spent along with standard deviation in all three optimization
strategies for different users.

5.7. Experiment-6 (System’s acceptance rate with varying resource consumer size)

In this experiment, we measure the how QoS indicator varies with user population size (cluster wide), while
maintaining a constant system size of 10 cluster resources. The table-7 shows the experiment setup.

At all three clusters heterogeneous set of user population having different constraint optimization pref-
erences. initial User Population ( Average Job Size 12000 MI) :

15 ≤ budget ≤ 110 (Grid Dollars) , 25 ≤ deadline ≤ 75 (simulation units)

37.5% : Cost-Optimization
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Fig. 13. Total Jobs Executed Vs. Quote (Cost Factor)

Table 7. Experiment-6 resource setup

Id Cpu Os Secondary (GB) RAM (MB) Libs MIPS Nodes Price
Cluster1 Intel Linux 20 512 Gnu 600 3 4
Cluster2 Intel Linux 20 512 Gnu 500 4 5
Cluster3 Intel Linux 20 256 Gnu 500 3 5
Cluster4 Intel Linux 20 512 Gnu 400 5 4
Cluster5 Intel Linux 20 256 Gnu 250 3 1
Cluster6 Intel Linux 10 256 Gnu 200 3 1
Cluster7 Intel Linux 10 256 Gnu 250 5 1.5
Clsuter8 Intel Linux 10 256 Gnu 150 3 1
Cluster9 intel Linux 10 512 Gnu 300 4 2
Clsuter10 Intel Linux 20 256 gnu 400 3 3

37.5% : Time-Optimization

25% : Cost-Time Optimization

Fig.(18) shows this result for this experiment. For user population size of 200, we observed that about
81% of users had their constraints satisfied. This shows that system is provding good QoS to the end users,
therefore QoS indicator for this system state is 81%. But as we increased the user population size to 1000,
there was a sharp decrease in the total number of jobs that were accepted, approximately 51%. This indicates
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Fig. 14. Response Time (Time Units) Vs. User ID (Federation Wide)

the degradation in the QoS indicator of the system. Further for user population size of 5000 we found that
about 21% of the jobs were accepted. This experiment shows that with the increase in total number of
end-users the performance of the system degrades considerably. We conclude that performance of a resource
allocation system is determined by its QoS indicator and for a efficient system this parameter should have
small degradation even with the increase in the resource consumer population.

6. Related Work

Grid resource management and scheduling has been investigated extensively in the recent past (Apples [8],
NetSolve [14], Condor [30], LSF [2], SGE [24], Punch [28], Legion [15]). In this paper, we mainly focus
on multi-clustering systems that allow coupling of wide area distributed clusters. We also briefly describe
computational economy based cluster and Grid systems as we draw inspiration from them.

Load Sharing Facility (LSF) [2], is a very popular commercial batch queuing system which mainly sup-
ports campus grids. It focuses towards coupling of various local clusters for example departmental clusters
under same administrative domain. It has the ability to run parallel jobs through the use of parallel virtual
machine (PVM). Recently it has been extended to support multi-cluster environment by enabling transparent
migration of jobs from one cluster to another. Although resource allocation strategy of LSF includes various
priorities and deadlines mechanism, still it does not provide any mechanism for end users to express their
valuation of resources and QoS constraints. Our Grid-Federation addresses this issue through user-centric
resource allocation mechanism, which enable users to have better utility and control for their application
scheduling.

Sun Grid Engine (SGE) [24] is a cluster resource management system developed by Sun Micro systems.
The SGE enterprise edition allows the users to create campus Grid of clusters by combining two or more
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Fig. 15. Time( Simulation Units) Vs. User ID (Federation Wide)

clusters in the local enterprise network. Each of these clusters is managed by SGE master manager. It has
got a policy module which defines proportional based sharing of resources to the users of campus Grid,
which in turn determined by the respective share of the user’s cluster in the global share space. The users
are assigned Tickets, which are like user’s pass to use the campus Grid resources. They also get incentive
for preserving their tickets during low computation period by getting more access tickets when they need
more computational power. This policy is quite flexible depending on resource usage scenario and suited
only to campus Grid environment under same administrative domain. It is not very useful for environment
that consists of various resource owners with different resource sharing policies and resource consumers with
different objective functions and QoS constraints. Our system supports policy based resource sharing where
a resource owner can define how, what or when to share a resource and end user’s can express their own
resource usage scenario.

Condor [30] is a distributed batch system developed to execute long-running jobs on workstations that are
otherwise idle. The emphasis of Condor is on high-throughput computing. Condor presents a single system
view of pool of multiple distributed resources including cluster of computers, irrespective of their ownership
domain. It provides a job queuing mechanism, scheduling policy, priority scheme, job check-pointing and
migration, remote system calls, resource monitoring and resource management facilities. Scheduling and
resource management in Condor is done through matchmaking mechanism [33]. Recently Condor has been
extended to work with globus, the new version is called Condor-G, which enables creation of global Grids
and designed to run jobs across different administrative domains. In contrast, we propose a more general
scheduling system that views multiple clusters as cooperative resources that can be shared and utilized based
on computational economy model of resources.

Nimrod-G [4] is a RMS system for wide-area parallel and distributed computing platform called the
Grid. The Grid enables the sharing and aggregation of geographically distributed heterogeneous resources
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such as computers (PCs, workstations, clusters etc.) software and scientific instruments across the Grid and
presents them as a unified integrated single resource that can be widely used. Nimrod-G serves as a resource
broker and supports deadline and budget constrained algorithms for scheduling task-farming applications
on the Grid. It allows the users to lease and aggregate resources depending on their availability, capability,
performance, cost, and users QoS constraints. The resource allocation mechanism and application scheduling
inside Nimrod-G does not take into account other brokering system currently present in the system. This can
lead to over-utilization of some resources while underutilization of others. To overcome this, we propose a set
of distributed brokers having a transparent co-ordination mechanism, hence enabling cooperative resource
sharing and allocation environment.

Libra [35] is a computational economy based cluster-level application scheduler. This system demonstrates
that the heuristic economic and QoS driven cluster resource allocation is feasible since it delivers better utility
than traditional system-centric one for independent job model. Existing version of Libra lacks the support for
scheduling jobs composed of parametric and parallel models, and does not support inter-cluster federation.

Alchemi [31] is .Net based desktop grid computing platform. The main features of alchemi includes
Internet-based clustering of window-class desktop machines, dedicated/non-dedicated resource sharing mode
and file object based grid job model to enable legacy based applications. This allows trivial hierarchical
coupling of various cluster resources in the Internet environment where master manager co-ordinates the ap-
plication scheduling related activities with other managers that basically work as a dedicated/non-dedicated
executors. It provides a application programming interface for the end-users to create grid applications. Like
condor it presents a single system view of various resources including desktops, window-based clusters. In
contrast we propose a scheduling system in which each resource manager co-ordinates with other resource
manager, at the same level of ownership hierarchy not as a dedicated/non-dedicated executors, and perform
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utility based resource allocation and hence enabling true policy based resource sharing.
REXEC [19] is remote execution environment for a campus-wide network of workstations, which is part

of Berkeley Millennium Project. At command line, the user can specify the maximum credits per minute
that he is willing to pay CPU time. The REXEC client selects a node that fits the user requirements.
REXEC allocates resources to user jobs proportional to the user demands. It offers a generic user interface
for computational economy on clusters, not a large scale scheduling system. It allocates resources to user
jobs proportionality of the user valuation irrespective of their job needs,so it is more towards user centric
type.

PBS [9] is flexible, POSIX compliant batch queuing and workload management system originally devel-
oped bu Verdian Systems for NASA. The purpose of PBS is to provide additional controls over initiating
scheduling execution of batch jobs, and to allow routing of these jobs between different hosts. The default
scheduler in PBS is FIFO whose behavior is to maximize the CPU utilization.That is, it loops through the
queued job list and starts any job that fits in the available resources. However, this effectively prevents larges
jobs from ever starting. To allow large jobs to start, this scheduler implements a ”starving jobs” mechanism.
This method may work for some situations, but there are certain circumstances where this course of action
does not yield the desired results. New alternative schedulers that can be used with PBS have also been
developed. Maui is one such advanced batch scheduler with a large feature set, well suited for high per-
formance computing(HPC) platforms. It uses aggressive scheduling policies to optimize resource utilization
and minimize job response time. It simultaneously provides extensive administrative control over resources
and workload allowing a high degree of configuration in areas of job prioritization, scheduling, allocation
and reservation policies. Maui also have a advance reservation infrastructure allowing sites to control exactly
when, how and by whom resources are user.



28

Fig. 18. Total Job Accepted (Percentage) Vs. User Population Density (Federation Wide)

7. Conclusion And Future Work

In this report we proposed a new computational economy driven large scale scheduling system called grid-
federation. The results of resource allocation algorithm indicates that our proposed framework leads to
better overall utilization of cluster resources and it enhances the realization of objective function of resource
owners and utility QoS constraints of resource consumers. We described how the variation in the objective
functions of resource owners affect their profit and it may lead to degradation of the overall QoS indicator
of the underlying system. We also presented a new QoS level indicator for grid systems. The results of the
resource allocation algorithm indicates that resource supply and demand distribution and end-user quality
of service constraints determines the actual QoS indicator of a resource allocation system. Our future work
aims towards investigating co-ordinated QoS of service mechanism in the proposed framework and measuring
the network complexity of such a system with large population density of resource providers and consumers.
We also intend to look into new QoS constraint based algorithms for scheduling jobs containing parallel
applications like MPI or PVM.
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