
SLA-based advance reservations with

flexible and adaptive time QoS parameters

Marco A. S. Netto1, Kris Bubendorfer2, Rajkumar Buyya1

1 Grid Computing and Distributed Systems (GRIDS) Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
ICT Building, 111 Barry Street, Carlton, VIC 3053

{netto, raj}@csse.unimelb.edu.au
2 School of Mathematics Statistics and Computer Science

Victoria University of Wellington
Wellington 6140, New Zealand

kris@mcs.vuw.ac.nz

Abstract. Utility computing enables the use of computational resources
and services by consumers with service obligations and expectations
defined in Service Level Agreements (SLAs). Parallel applications and
workflows can be executed across multiple sites to benefit from access to
a wide range of resources and to respond to dynamic runtime require-
ments. A utility computing provider has the difficult role of ensuring that
all current SLAs are provisioned, while concurrently forming new SLAs
and providing multiple services to numerous consumers. Scheduling to
satisfy SLAs can result in a low return from a provider’s resources due
to trading off Quality of Service (QoS) guarantees against utilisation.
One technique is to employ advance reservations so that an SLA aware
scheduler can properly manage and schedule its resources. To improve
system utilisation we exploit the principle that some consumers will be
more flexible than others in relation to the starting or completion time,
and that we can juggle the execution schedule right up until each execu-
tion starts. In this paper we present a QoS scheduler that uses SLAs to
efficiently schedule advance reservations for computation services based
on their flexibility. In our SLA model users can reduce or increase the
flexibility of their QoS requirements over time according to their needs
and resource provider policies. We introduce our scheduling algorithms,
and show experimentally that it is possible to use flexible advance reser-
vations to meet specified QoS while improving resource utilisation.

1 Introduction

Service Level Agreements (SLAs) are an important element of the service ori-
ented computing paradigm and define a mutually agreed upon set of consumer
expectations and provider obligations. Typically SLAs encode Quality of Service
(QoS) parameters such as resource availability, response time and completion

deadlines. The role of the consumer is usually limited to specifying their QoS
parameters and perhaps revising those parameters if an SLA cannot be agreed.

We assume a scenario where access to a utility computing provider’s com-
putational resources is acquired through agreed SLAs [1]. The SLAs define the
time and quantity of computation along with other QoS parameters, in return
for a certain price. Access to computational resources may require consideration
of external constraints, such as the need for access to simultaneous multiple re-
sources (co-allocation for parallel computation) or to reflect timing dependencies
when computing a workflow. In order to meet such external constraints, a QoS
scheduler must allow consumers to reserve resources in advance.

When a provider accepts an advance reservation, the consumer expects to
be able to access the agreed resources at the specified time. However, changes
may occur in the scheduling queue between the time the consumer submits the
reservation to the time the consumer receives the resources. There are a number
of reasons for such changes including: consumers cancelling requests, consumers
modifying requests, resource failures, and errors in estimating usage time in
the consumer requests. Therefore, from the resource provider’s perspective, a
good time-slot for the consumer at the time the SLA was agreed may be a
bad time-slot in the future due to increased fragmentation. This fragmentation
reduces the potential scheduling opportunities and results in lower utilisation.
Indeed, even finding a free time-slot can be a challenging task since fixed advance
reservations fragment the resource’s availability, and limit the positions in which
other jobs can be scheduled. In order to minimise low system utilisation due to
advance reservations, researchers on this area have introduced and investigated
the impact of flexible time intervals for advance reservations [2–6].

We extend the existing solutions and contribute to the research field in the
following ways: (i) we introduce the concept of adaptive time QoS parameters,
in which the flexibility of these parameters are not static but adaptive accord-
ing to the user needs and resource provider policies (Sect. 2); (ii) we present
heuristics for scheduling the advance reservations (Sect. 3); and (iii) we perform
experiments through extensive simulations to evaluate the advance reservations
with flexible and adaptive time QoS parameters (Sect. 4). We show the results
on the impact of system utilisation using different scheduling heuristics, work-
loads, time intervals, inaccurate estimation of execution times, and other input
parameters. Moreover we investigate cases when users accept an alternative offer
from the resource provider on failure to schedule the initial request.

2 SLA Specification from Execution Time QoS Scenarios

This section defines the set of parameters that we need in addition to any normal
SLA parameters such as incentives and penalties, security or trust requirements,
etc. Following are the three different time requirement scenarios:

1. Strict start and completion time: Consumers require the resource at
exactly this time, and for the duration specified. There is no flexibility per-
mitted to the scheduler. This scenario maps well to the availability of a
physical resource that may need to be booked for a specific period.

2. Relaxed start time, strict completion time: Consumers require that
the execution completes prior to a deadline. This scenario typically applies
when there are subsequent dependencies on the results of this computation.

3. Flexible interval: There is a strict start time and a defined finish time, but
the time between these two points exceeds the length of the computation.
This scenario fits well with forward and backward timing dependencies, such
those encountered in a workflow computation.

2.1 Scheduling issues and incentives

These cases as given above are simplistic; however scheduling them is compli-
cated. Consider both cases 2 and 3, as the actual deadline approaches, the ap-
parent priority of scheduling must increase to ensure that the execution com-
pletes prior to the deadline. Also early acceptance of SLA requests of rigid ad-
vance reservations fragments the availability of the resource, which may result
in wasted computation time, increased rejections, reduced utilisation and conse-
quently reduced revenue.

The idea of having flexible intervals for advance reservations is to make it
possible to modify or reallocate existing advance reservations when new jobs are
submitted to the scheduler. Once an SLA has been agreed upon, the scheduler
may schedule the workload within those flexible constraints. We would expect
that any pricing model would reward more flexible consumers with a lower price
and in turn penalise consumers with less flexibility by charging a higher price. In
addition, the SLA itself could be renegotiated (adaptive) if the resource provider
needs to solve a scheduling impasse or consumer needs to react to a change in
circumstance. In this case a consumer who accepts a resource providers SLA
adaptation request for more flexibility would expect some form of incentive pay-
ment, whereas a consumer who requests a less flexible SLA adaptation should
expect some penalty.

2.2 SLA parameters

The advance reservations are defined in the SLA by a set of timing constraints,
budget and computational resources. Following is the notation and parameter
definitions for a job j, which can be either rigid or moldable (parallelism versus
execution time trade off):

– Rmin
j and Rmax

j , where 1 ≤ Rj ≤ m: minimum and maximum number of
resources (e.g. cluster nodes or bandwidth) required to execute the job;

– fmol
j : Rj → T e

j : moldability function which specifies the relation between
number of resources and execution time T e

j ;
– T s

j : job starting time—time determined by the scheduler;
– T r

j : job ready time—minimum starting time determined by the user;
– T c

j : job completion time—defined as T s
j + T e

j ;
– Dj : job deadline;
– Bj : job budget—maximum amount of money that the user is willing to spend

to execute the job with the required QoS;
– Cj : job cost—the cost determined by the resource provider in order to exe-

cute the job j with the above specifications.

3 Job Scheduling

The scheduling of a job consists on finding a free time-slot that meets the job re-
quirements. Rather than providing the user with the resource provider’s schedul-
ing queue, we assume that the user asks for a time-slot and the resource provider
verifies its availability. This is sensible in competitive environments where re-
source providers do not want to show their workloads, as consumers and other
resource providers may exploit this commercially sensitive information. We also
consider the scheduling to be on-line, where users submit jobs to the resource
provider’s scheduler over time and the scheduler makes its decisions based only
on the currently accepted jobs.

Scheduling takes place in two stages. Firstly all jobs that are currently await-
ing execution on the machine (and therefore have accepted SLAs) are sorted
based on some criteria. Then this list is scheduled in order, and if the new job
can be scheduled, the SLA is accepted. If the job cannot be scheduled, then the
scheduler can return a set of scheduleable alternative times.

3.1 Sorting

Firstly we separate the jobs currently allocated into two queues: running queue
Qr = {o1, ..., ou} | u ∈ N and waiting queue Qw = {j1, ..., jn} | n ∈ N. The
first queue contains jobs already in execution and cannot be rescheduled. The
second queue contains jobs that can be rescheduled. The approach we adopt
here is to try to reschedule the jobs in the waiting queue by sorting them first
and then attempting to create a new schedule. We use five different sorting
techniques in this paper: Shuffle, First In First Out (FIFO), Biggest Job First
(BJF), Least Flexible First (LFF), and Earliest Deadline First (EDF). The only
sorting criteria that needs explanation is LFF, which sorts the jobs according to
the flexibility terms of starting time and deadline. This approach is based on the
work of Wu et al [7], but considers only the time intervals. We define the time
flexibility of a job j as follows:

∆j =

{

Dj −max(T r
j , CT)− T e

j : for advance reservation jobs

Dj − CT − T e
j : for jobs with deadline

Obviously other potential criteria can be used to perform this sort, one that
we will be exploring in the future is sorting based on expected revenue. In the
evaluation Sect. 4 we present results comparing these sorting techniques.

3.2 Scheduling

Algorithm 1 gives the pseudo-code for scheduling a new job jk at the current time
CT , returning true if it is possible to scheduled it, or false and a list of optional
possible schedulings. Before the scheduling of a new job, the state of the system
is consistent, which means that the current scheduling of all jobs meets the
users QoS requirements. Therefore, during the scheduling process, if a job ji is
rejected there are two options: (i) ji = jk, the new job could not be scheduled;
or (ii) ji 6= jk, the new job was scheduled but generated a scheduling problem
for another job ji ∈ Qw. In the second case we change the positions of jk with

ji and all jobs between jk and ji go back to the original scheduling—function
that we call fixqueue. In our current implementation, each job is scheduled
by using first fit approach—the first available time-slot is assigned to the job.
For jobs with deadline the scheduler looks for a time-slot between the interval
[CT,Dj − T e

j] and for advance reservations the scheduler looks for a time-slot
within the interval [T r

j ,Dj − T e
j].

Algorithm 1 Pseudo-code for scheduling a new job jk.

Qw ← Qw
S

{jk}
sort Qw according to some criteria (e.g. EDF or LFF)
k ← new index of jk

jobscheduled← true

for ∀ji ∈ Qw | i ≥ k and jobscheduled = true do

if schedulejob (j, Qw, Qr) = false then

jobscheduled← false

end if

end for

if jobscheduled = false then

if i 6= k then

fixqueue(Qw, i, k) { update index of jk (k ← i)}
end if

return reschedule ∀ji ∈ Qw | i ≥ k

end if

return true

When job jk is rejected, all the jobs in Qw after jk, including jk itself, must be
rescheduled (Algorithm 2). However, in this rescheduling phase, other options are
used to reschedule jk. The list of options Ψ is generated based on the intersection
of the new job jk, the jobs in the running queue and the jobs in the waiting
queue that are before jk. For each job ji that intersects jk, job jk is tested
before T r

i and after Di. Once the list of options Ψ is generated, it is possible
to sort it according to the percentage difference φ between the original T r

j and
Dj values and the alternative scheduler suggested options OPTT r

j and OPTDj :

φopt =

OPTDj−Dj

T e
j

: option generated by placing jk after ji

OPTT r
j −T r

j

T e
j

: option generated by placing jk before ji

Once defined the possible positions of the new job jk, all jobs in Qw after jk

(including it) are rescheduled. If a job ji is rejected, we have again two options:
(i) ji = jk, the new job could not be scheduled; or (ii) ji 6= jk, the new job
was scheduled but generated a scheduling problem for a another job ji ∈ Qw.
In constrast to Algorithm 1, in Algorithm 2, when ji = jk, it means that the
scheduler has already tried all the possibilities to fit jk in the queue, and hence,
jk will not be rescheduled again. However, if jk 6= ji, then the queue Qw is fixed,
the index of jk is updated, T r

k and Dk are set to the original values, and the
rest of Qw is again rescheduled. This process finishes when there are no more
scheduling options to test. For a consumer who does not require an advance
reservation, the first successful option should be enough.

Algorithm 2 Pseudo-code for rescheduling rejected part of Qw using the list of
options Ψ for the rejected new job jk.

OT r

k ← T r

k , ODk ← Dk {keep original values}
while ∀OPT ∈ Ψ do

jobscheduled← true

for ∀ji ∈ Qw | i ≥ k and jobscheduled = true do

if ji = jk then

set T r

k and Dk with option OPT

end if

jobscheduled←schedule(ji)
end for

if jobscheduled = false then

if i 6= k then

fixqueue(Qw, i, k)
T r

k ← OT r

k , Dk ← ODk {restore original values}
return reschedule ∀ji ∈ Qw | i ≥ k

else

return false {already tested new options for jk}
end if

else

{valid option OPT in Ψ—inform user about this possibility}
end if

end while

if ∃ OPT ∈ Ψ | OPT generates a possible scheduling then

return true

end if

return false

4 Evaluation

The basis for the design of the scheduling algorithms and the improvement in
utilisation, is predicated on the idea that scheduling advance reservations with
some specified flexibility will allow better scheduling decisions to be made. The
experimental results in this section demonstrate that the principle is sound.

4.1 Experimental configuration

We evaluated the use of flexible QoS parameters for advance reservation on an
extended version of the PaJFit (Parallel Job Fit) simulator [8]. We used the
workload trace from the IBM SP2 system, composed of 128 homogeneous pro-
cessors, located at the San Diego Supercomputer Center (SDSC)‡ as a realistic
workload to drive the simulator. This workload contains requests performed over
a period of two years. However, for reasons of tractability we conducted our ex-
periments using 15 day intervals. We also removed any requests with a duration
of less than one minute.
‡ We used the version 3.1 of the IBM SP2 - SDSC workload, available at the Parallel

Workloads Archive: http://www.cs.huji.ac.il/labs/parallel/workload/logs.html.

As the workload has no deadline specifications, and there are no traces with
this information available, we modelled them as a function of the execution
time. We observe that many workload distributions exhibit Poisson lifetimes
and assume that this would also be true for deadlines. Therefore, for each job j,
Dj = T sub

j +T e
j ∗p, where p is a random number defined by a Poisson distribution

with λ=5, and T sub
j is the request submission time defined in the workload traces.

As we are working with advance reservations, we defined the release time of jobs
as T r

j = Dj −T e
j . To model higher loads and the subsequent performance of the

scheduler, we increased the frequency of request submissions from the trace by
25% and 50%.

We also analysed four different flexible interval sizes, which we again define
as a Poisson distribution: fixed interval, short interval (λ← φ = 25%), medium
interval (λ ← φ = 50%), long intervals (λ ← φ = 100%). For all experiments
using flexible intervals, we modified only half of each workload, the other half
continues to have fixed intervals. We believe a portion of users would continue to
specify strict deadlines even though the resource provider would probably reduce
the price for more flexible and therefore easier consumers.

4.2 Results and analysis

For the first experiment we evaluated the importance of sorting the jobs in the
waiting queue according to specific criteria. Figure 1 shows the results, comparing
LFF, BJF (sorted by the job’s size = T e ∗R), EDF, and FIFO, against a random
shuffle; all of them with backfilling strategy. The results are presented as the
difference in utilisation from the random baseline. In all cases, EDF with flexible
intervals produced a schedule with the highest utilisation. It is worth noting that
the results are not load sensitive, shown as the load increases — from normal
(top graph) to high (bottom graph) in Fig. 1. As in our experiments we show
comparative results, it is important to mention the system utilisation values
to have an idea of the magnitude of these results. The values for the original
workload and the two modifications on the frequency of request submissions,
using FIFO approach, are: 46.8 ± 3.3 %, 50.9 ± 3.5 %, and 54.7 ± 3.7 %.

Using the EDF heuristic, we next evaluated the impact of the flexible time
interval duration on resource utilisation. We observe in Fig. 2 that the longer the
interval size, the higher the utilisation. This is because longer interval sizes pro-
vide the scheduler with more options for fitting (juggling) advance reservations
and thereby minimising the resource fragmentation.

In a real scenario, users may not estimate their execution time accurately. To
understand the impact of incorrect execution time estimates we performed the
following experiment. We modified the actual execution time in the workload
trace by a factor determined from a Poisson distribution with λ=80—we assume
the users in general overestimate the execution time [9, 10].

Compared to the results in Fig. 2, we can observe in Fig. 3 that the flexible
intervals have more impact when users overestimate their execution time, since
otherwise the requests create small fragments that cannot be used by rigid time
QoS requirements.

-6

-4

-2

 0

 2

 4

 6

 8

 10

S
y
s
te

m
 u

ti
lis

a
ti
o

n
 g

a
in

 (
%

) LFF
BJF
EDF
FIFO

-6

-4

-2

 0

 2

 4

 6

 8

 10

S
y
s
te

m
 u

ti
lis

a
ti
o

n
 g

a
in

 (
%

) LFF
BJF
EDF
FIFO

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

fix interval short interval medium interval long interval

S
y
s
te

m
 u

ti
lis

a
ti
o

n
 g

a
in

 (
%

) LFF
BJF
EDF
FIFO

Fig. 1. Impact of sorting criteria on system utilisation

 0

 5

 10

 15

 20

 25

 30

Original arrival time Arrival time with red. of 25% Arrival time with red. of 50%S
y
s
te

m
 u

ti
lis

a
ti
o

n
 g

a
in

 (
%

)

Short interval
Medium interval

Long interval

Fig. 2. Impact of time interval size on resource utilisation

 0

 5

 10

 15

 20

 25

 30

 35

Original arrival time Arrival time with reduction of 25% Arrival time with reduction of 50%

S
y
s
te

m
 u

ti
lis

a
ti
o

n
 g

a
in

 (
%

) Short interval
Medium interval

Long interval

Fig. 3. Impact of time interval size on resource utilisation with inaccurate estimation
time

Consumers may want to know with some assurance when their jobs will
execute. They can ask the resource provider to fix their jobs when the time
to receive the resources gets closer, i.e. remove the time interval flexibility by
renegotiating the SLA. We evaluated the system utilisation by fixing the T r

j and
Dj of each job j when 25%, 50%, and 75% of the waiting time has passed. We
compared these results with an approach that fixes the schedule immediately
the job is accepted.

As in the first set of experiments (Fig. 1) we performed runs for different
workloads. However in this case the results for all workloads were similar, there-

fore we only present the graph for the medium workload in Fig. 4. We observe
that the longer a user waits to fix their job, the better is the system utilisation.
This is a pleasing result as this is indeed what we would expect because the
scheduler has more opportunities to reschedule the workload.

 0

 2

 4

 6

 8

 10

short interval medium interval long interval

S
y
s
te

m
 u

ti
lis

a
ti
o

n
 g

a
in

 (
%

)

Flexibility on the time interval

25% of waiting time
50% of waiting time
75% of waiting time

Fig. 4. The longer a job remains flexible, the better the utilisation—premature fixing
of a job’s place in the schedule consistently has an adverse effect on resource utilisation

 0

 5

 10

 15

 20

 25

Original arrival time Arrival time with red. of 25% Arrival time with red. of 50%S
y
s
te

m
 u

ti
lis

a
ti
o

n
 g

a
in

 (
%

)

 φ = 25%
φ = 50%

φ = 100%

Fig. 5. System utilisation using suggested option from resource provider

 10

 20

 30

 40

 50

 60

 70

 80

Original arrival time Arrival time with red. 25% Arrival time with red. 50%A
v
e

ra
g

e
 φ

 f
o

r
a

c
c
e

p
t.

 j
o

b
s

Max φ = 25%
Max φ = 50%

Max φ = 100%

Fig. 6. Average actual φ of jobs accepted through suggestion by resource provider

Instead of using flexible intervals to meet time QoS requirements of users,
we wanted to see what would happen when the resource provider offered an
alternative slot to the consumer. When the resource provider cannot schedule a
job j with the required starting time, it provides the user with other options (if
possible) before and after the interval [T r

j ,Dj]. We selected the lowest difference
φ of the options for each job j, given a threshold of 25%, 50% and 100%. Figure
5 shows that while this approach does increase the system utilisation, it does
not perform as well as the flexible interval technique. Nevertheless, the approach
of returning to the consumer with an alternative option is a useful technique for
users who cannot accept flexible intervals.

We also measured the difference between the actual and the thresholds φ for
the jobs accepted through the option suggested by the resource provider. From
Fig. 6 we observe that in average case, the value of φ is not significantly less
than the maximum φ defined by the resource provider.

5 Related Work

Advance reservation is an important technique for aggregating resources from
multiple places in such a way as to provide Quality-of-Service for users in a
distributed computing environment. The interest in this technique has increased
alongside with increasing popularity of Grid Computing.

Snell et al [11] discuss the importance of using advance reservations for ex-
ecuting meta jobs in multi-site environments and the problem of fragmentation
generated in the computing environment due to these reservations. In their study
they assume that advance reservations are strictly rigid in terms of time QoS
requirements.

More recently researchers have become interested on how to improve system
utilisation by including flexibility factors in advance reservations. Naikasatam
and Figueira defined elastic reservations in a context of network bandwidth
management in LambdaGrids [2]. These elastic reservations are malleable re-
quests (time X bandwidth) and they can be rescheduled over time. The goal
of their approach is to minimise the problem of rejecting requests due to many
users requiring data transfer channel at the same time-slot, and the problem of
bandwidth fragmentation. In contrast to their work, we focus on the flexibility
on the requests time intervals and not on the request malleability.

Chen and Lee [3] propose a flexible reservation model based on flexible inter-
vals for starting time of advance requests. They handle the problem of optimising
the scheduling by representing the advance reservations as a multistage digraph,
and then finding the shortest path on the digraph. They explore the fact that
there is a period between resource reservation and the real allocation, i.e. when
the user starts accessing the resources, in which the scheduler rearranges the
requests before they start. In contrast to their work, we consider that users may
decide to fix their time schedule. That is, the flexibility is allowed until a cer-
tain period of time, since users may need to know the exact starting time to be
reported some time in advance. Furthermore they do not consider requests for
multiple resources.

Kaushik et al [4] study the use of flexible time intervals, which they call
flexible time-windows, for advance reservations. They investigate the relation
between the time-window size and the request waiting time, assuming that the
request inter-arrival time follows the Pareto distribution. In our experiments we
relied on inter-arrival requests from real workload from a supercomputing centre,
and the Poisson distribution for defining the minimum starting time. We also
consider that requests can come out of order. Furthermore they do not consider
requests for multiple resources.

Castillo et al [12] use concepts of computational geometry to handle resource
fragmentation caused by advance reservations. In their study they consider only
jobs with strict time intervals, and as in the other related work, only jobs re-
quiring a single resource.

Röblitz et al [5] present an algorithm for reserving computing resources that
allows users to define an optimisation criteria (e.g. cost and completion time)

when multiple candidates match the minimum users’ requirements. They use
a flexible advance reservation model where start and end time, duration and
number of requested CPUs are flexible. Unlike our work they do not explore the
rescheduling of existing flexible advance reservations.

Farooq et al [6] evaluate a set of algorithms for mapping advance reserva-
tions. They allow advance reservations to be flexible in terms of starting time
and deadline. They also introduce an algorithm called Minimum Laxity Impact,
in which rescheduling can be performed each time a new job arrives, but the
scheduler minimises the extent to which existing jobs are pushed closer to their
deadlines. The principle is to create more space for incoming jobs with more
difficult scheduling options.

None of the related projects evaluate returning other scheduling options on
failure to schedule the initial request. Moreover, the existing studies on flexible
advance reservations assume that the parameters for flexibility are static, and in
our case are adaptive according to the user needs and resource provider policies.

6 Conclusions and Further Work

In this paper we outlined consumer scenarios for advance reservations with flex-
ible and adaptive time QoS parameters and presented the benefits for resource
providers in terms of system utilisation. We evaluated these flexible advance
reservations by using different scheduling algorithms, and different flexibility
and adaptability QoS parameters. We investigated cases where users do not or
can not specify the execution time of their jobs accurately. We also examined
resource providers that do not utilise flexible time QoS parameters, but rather
return alternative scheduling options to the consumer when it is not possible to
meet the original QoS requirements.

In our experiments we observed that system utilisation increases with the
flexibility of request time intervals and with the time the users allow this flex-
ibility while they wait in the scheduling queue. This benefit is mainly due the
ability of the scheduler to rearrange the jobs in the scheduling queue, which re-
duces the fragmentation generated by advance reservations. This is particularly
true when users overestimate the execution time of their jobs.

For future work we can draw useful conclusions from these results. In partic-
ular the results can be used as a solid foundation for a utility computing pricing
model as we have quantified the effects of varying degrees of flexibility on the
utilisation of the provider’s resources. Our work will include a pricing system
for charging consumers for resources and give incentives or discounts for those
users who are willing to provide flexibility within their QoS requirements and
therefore include time flexible SLA parameters. We believe that this approach
will allow resource providers to satisfy the full range of QoS timing requirements
and in particular add a new option for some difficult scheduling domains such
as workflow applications and resource co-allocation.

Acknowledgments

We would like to thank Marcos Dias de Assunção and the anonymous reviewers
for their valuable comments. This work is partially supported by research grants
from the Australian Research Council (ARC) and Australian Department of
Education, Science and Training (DEST).

References

1. Auyoung, A., Grit, L., Wiener, J., Wilkes, J.: Service contracts and aggregate
utility functions. In: Proceedings of the 15th IEEE International Symposium on
High Performance Distributed Computing (HPDC), Paris, France (June 19–23
2006) 119–131

2. Naiksatam, S., Figueira, S.: Elastic reservations for efficient bandwidth utilization
in lambdagrids. Future Generation Computer Systems 23(1) (2007) 1–22

3. Chen, Y.T., Lee, K.H.: A flexible service model for advance reservation. Computer
Networks 37(3/4) (2001) 251–262

4. Kaushik, N.R., Figueira, S.M., Chiappari, S.A.: Flexible time-windows for advance
reservation scheduling. In: Proceedings of the 14th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), Monterey, USA (September 11–14 2006) 218–225

5. Röblitz, T., Schintke, F., Reinefeld, A.: Resource reservations with fuzzy requests.
Concurrency and Computation: Practice and Experience 18(13) (2006) 1681–1703

6. Farooq, U., Majumdar, S., Parsons, E.W.: A framework to achieve guaranteed QoS
for applications and high system performance in multi-institutional grid comput-
ing. In: Proceedings of the 35th International Conference on Parallel Processing
(ICPP), Columbus, USA, IEEE Computer Society (August 14–18 2006) 373–380

7. Wu, Y.L., Huang, W., Lau, S.C., Wong, C.K., Young, G.H.: An effective quasi-
human based heuristic for solving the rectangle packing problem. European Journal
of Operational Research 141(2) (2002) 341–358

8. Netto, M.A.S., Buyya, R.: Impact of adaptive resource allocation requests in utility
cluster computing environments. In: Proceedings of the 7th IEEE International
Symposium on Cluster Computing and the Grid (CCGRID), Rio de Janeiro, Brazil,
IEEE Computer Society (14-17 May 2007)

9. Chiang, S.H., Arpaci-Dusseau, A.C., Vernon, M.K.: The impact of more accurate
requested runtimes on production job scheduling performance. In: Proceedings
of the 8th International Workshop on Job Scheduling Strategies for Parallel Pro-
cessing (JSSPP). Volume 2537 of Lecture Notes in Computer Science., Edinburgh,
Scotland, UK, Springer (July 24 2002) 103–127

10. Lee, C.B., Snavely, A.: On the user-scheduler dialogue: Studies of user-provided
runtime estimates and utility functions. International Journal of High Performance
Computing Applications 20(4) (2006) 495–506

11. Snell, Q., Clement, M.J., Jackson, D.B., Gregory, C.: The performance impact
of advance reservation meta-scheduling. In: Proceedings of the Workshop on Job
Scheduling Strategies for Parallel Processing. Volume 1911 of Lecture Notes in
Computer Science., Cancun, Mexico, Springer (May 1 2000) 137–153

12. Castillo, C., Rouskas, G., Harfoush, K.: On the design of online scheduling al-
gorithms for advance reservations and QoS in grids. In: Proceedings of the 21st
IEEE International Parallel & Distributed Processing Symposium (IPDPS), Long
Beach, USA (March 26–30 2007)

