
517

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 23
Architectural Elements of

Resource Sharing Networks
Marcos Dias de Assunção

The University of Melbourne, Australia

Rajkumar Buyya
The University of Melbourne, Australia

INTRODUCTION

Since the formulation of the early ideas on meta-computing (Smarr & Catlett, 1992), several research
activities have focused on mechanisms to connect worldwide distributed resources. Advances in dis-
tributed computing have enabled the creation of Grid-based resource sharing networks such as TeraGrid
(Catlett, Beckman, Skow, & Foster, 2006) and Open Science Grid (2005). These networks, composed
of multiple resource providers, enable collaborative work and sharing of resources such as computers,

ABSTRACT

This chapter first presents taxonomies on approaches for resource allocation across resource sharing
networks such as Grids. It then examines existing systems and classifies them under their architectures,
operational models, support for the life-cycle of virtual organisations, and resource control techniques.
Resource sharing networks have been established and used for various scientific applications over the
last decade. The early ideas of Grid computing have foreseen a global and scalable network that would
provide users with resources on demand. In spite of the extensive literature on resource allocation and
scheduling across organisational boundaries, these resource sharing networks mostly work in isola-
tion, thus contrasting with the original idea of Grid computing. Several efforts have been made towards
providing architectures, mechanisms, policies and standards that may enable resource allocation across
Grids. A survey and classification of these systems are relevant for the understanding of different ap-
proaches utilised for connecting resources across organisations and virtualisation techniques. In addi-
tion, a classification also sets the ground for future work on inter-operation of Grids.

DOI: 10.4018/978-1-60566-661-7.ch023

518

Architectural Elements of Resource Sharing Networks

storage devices and network links among groups of individuals and organisations. These collaborations,
widely known as Virtual Organisations (VOs) (Foster, Kesselman, & Tuecke, 2001), require resources
from multiple computing sites. In this chapter we focus on networks established by organisations to
share computing resources.

Despite the extensive literature on resource allocation and scheduling across organisational bound-
aries (Butt, Zhang, & Hu, 2003: Grimme, Lepping, & Papaspyrou, 2008; Iosup, Epema, Tannenbaum,
Farrellee, & Livny, 2007; Ranjan, Rahman, & Buyya, 2008; Fu, Chase, Chun, Schwab, & Vahdat, 2003;
Irwin et al., 2006; Peterson, Muir, Roscoe, & Klingaman, 2006; Ramakrishnan et al., 2006; Huang, Ca-
sanova, & Chien, 2006), existing resource sharing networks mostly work in isolation and with different
utilisation levels (Assunção, Buyya, & Venugopal, 2008; Iosup et al., 2007), thus contrasting with the
original idea of Grid computing (Foster et al., 2001). The early ideas of Grid computing have foreseen
a global and scalable network that would provide users with resources on demand.

We have previously demonstrated that there can exist benefits for Grids to share resources with one
another such as reducing the costs incurred by over-provisioning (Assunção & Buyya, in press). Hence, it
is relevant to survey and classify existing work on mechanisms that can be used to interconnect resources
from multiple Grids. A survey and classification of these systems are important in order to understand
the different approaches utilised for connecting resources across organisations and to set the ground for
future work on inter-operation of resource sharing networks, such as Grids. Taxonomies on resource
management systems for resource sharing networks have been proposed (Iosup et al., 2007; Grit, 2005).
Buyya et al. (2000) and Iosup et al. (2007) have described the architectures used by meta-scheduler sys-
tems and how jobs are directed to the resources where they execute. Grit (2005) has classified the roles
of intermediate parties, such as brokers, in resource allocation for virtual computing environments.

This chapter extends existing taxonomies, thus making the following contributions:

It examines additional systems and classifies them under a larger property spectrum namely re-•
source control techniques, scheduling considering virtual organisations and arrangements for re-
source sharing.
It provides classifications and a survey of work on resource allocation and scheduling across •
organisations, such as centralised scheduling, meta-scheduling and resource brokering in Grid
computing. This survey aims to show different approaches to federate organisations in a resource
sharing network and to allocate resources to its users. We also present a mapping of the surveyed
systems against the proposed classifications.

BACKGROUND

Several of the organisational models followed by existing Grids are based on the idea of VOs. The VO
scenario is characterised by resource providers offering different shares of resources to different VOs
via some kind of agreement or contract; these shares are further aggregated and allocated to users and
groups within each VO. The life-cycle of a VO can be divided into four distinct phases namely creation,
operation, maintenance, and dissolution. During the creation phase, an organisation looks for collabora-
tors and then selects a list of potential partners to start the VO. The operation phase is concerned with
resource management, task distribution, and usage policy enforcement (Wasson & Humphrey, 2003;
Dumitrescu & Foster, 2004). The maintenance phase deals with the adaptation of the VO, such as al-

519

Architectural Elements of Resource Sharing Networks

location of additional resources according to its users’ demands. The VO dissolution involves legal and
economic issues such as determining the success or failure of the VO, intellectual property and revoca-
tion of access and usage privileges.

The problem of managing resources within VOs in Grid computing is further complicated by the fact
that resource control is generally performed at the job level. Grid-based resource sharing networks have
users with units of work to execute, also called jobs; some entities decide when and where these jobs
will execute. The task of deciding where and when to run the users’ work units is termed as scheduling.
The resources contributed by providers are generally clusters of computers and the scheduling in these
resources is commonly performed by Local Resource Management Systems (LRMSs) such as PBS (2005)
and SGE (Bulhões, Byun, Castrapel, & Hassaine, 2004). Scheduling of Grid users’ applications and
allocation of resources contributed by providers is carried out by Grid Resource Management Systems
(GRMSs). A GRMS may comprise components such as:

Meta-schedulers, which communicate with LRMSs to place jobs at the provider sites;•
Schedulers that allocate resources considering how providers and users are organised in virtual •
organisations (Dumitrescu & Foster, 2005); and
Resource brokers, which represent users or organisations by scheduling and managing job execu-•
tion on their behalf.

These components interact with providers’ LRMSs either directly or via interfaces provided by the
Grid middleware. The Grid schedulers can communicate with one another in various ways, which include
via sharing agreements, hierarchical scheduling, Peer-to-Peer (P2P) networks, among others.

Recently, utility data centres have deployed resource managers that allow the partitioning of physi-
cal resources and the allocation of raw resources that can be customised with the operating system and
software of the user’s preference. This partitioning is made possible by virtualisation technologies such
as Xen (Barham et al., 2003; Padala et al., 2007) and VMWare1. The use of virtualisation technologies
for resource allocation enables the creation of customised virtual clusters (Foster et al., 2006; Chase,
Irwin, Grit, Moore, & Sprenkle, 2003; Keahey, Foster, Freeman, & Zhang, 2006). The use of virtualisa-
tion technology allows for another form of resource control termed containment (Ramakrishnan et al.,
2006), in which remote resources are bound to the users’ local computing site on demand. The resource
shares can be exchanged across sites by intermediate parties. Thereby, a VO can allocate resources on
demand from multiple resource providers and bind them to a customised environment, while maintain-
ing it isolated from other VOs (Ramakrishnan et al., 2006).

In the following sections, we classify existing systems according to their support to the life-cycle of
VOs, their resource control techniques and the mechanisms for inter-operation with other systems. We
also survey representative work and map them according to the proposed taxonomies.

CLASSIFICATIONS FOR GRID RESOURCE MANAGEMENT SYSTEMS

Buyya et al. (2000) and Iosup et al. (2007) have classified systems according to their architectures and
operational models. We present their taxonomy in this section because it classifies the way that schedul-
ers can be organised in a resource sharing network. We have included a new operational model to the
taxonomy (i.e. hybrid of job routing and job pulling). Moreover, systems with similar architecture may

520

Architectural Elements of Resource Sharing Networks

still differ in terms of the mechanisms employed for resource sharing, the self-interest of the system’s
participants, and the communication model. A Grid system can use decentralised scheduling wherein
schedulers communicate their decisions with one another in a co-operative manner, thus guaranteeing the
maximisation of the global utility of the system. On the other hand, a broker may represent a particular
user community within the Grid, can have contracts with other brokers in order to use the resources they
control and allocate resources that maximise its own utility (generally given by the achieved profit). We
classify the arrangements between brokers in this section. Furthermore, systems can also differ accord-
ing to their resource control techniques and support to different stages of the VO life-cycle. This section
classifies resource control techniques and the systems’ support for virtual organisations. The attributes
of GRMSs and the taxonomy are summarised in Figure 1.

Architecture and Operational Models of GRMSs

This section describes several manners in which schedulers and brokers can be organised in Grid systems.
Iosup et al. (2007) considered a multiple cluster scenario and classified the architectures possibly used

Figure 1. Taxonomy on Grid resource management systems

521

Architectural Elements of Resource Sharing Networks

as Grid resource management systems. They classified the architectures in the following categories:

• Independent clusters - each cluster has its LRMS and there is no meta-scheduler component.
Users submit their jobs to the clusters of the organisations to which they belong or on which they
have accounts. We extend this category by including single-user Grid resource brokers. In this
case, the user sends her jobs to a broker, which on behalf of the user submits jobs to clusters the
user can access.

• Centralised meta-scheduler - there is a centralised entity to which jobs are forwarded. Jobs are
then sent by the centralised entity to the clusters where they are executed. The centralised com-
ponent is responsible for determining which resources are allocated to the job and, in some cases,
for migrating jobs if the load conditions change.

• Hierarchical meta-scheduler - schedulers are organised in a hierarchy. Jobs arrive either at the
root of the hierarchy or at the LRMSs.

• Distributed meta-scheduler - cluster schedulers can share jobs that arrive at their LRMSs with
one another. Links can be defined either in a static manner (i.e. by the system administrator at the
system’s startup phase) or in a dynamic fashion (i.e. peers are selected dynamically at runtime).
Grit (2007) discusses the types of contracts that schedulers (or brokers) can establish with one
another.

• Hybrid distributed/hierarchical meta-scheduler - each Grid site is managed by a hierarchical
meta-scheduler. Additionally, the root meta-schedulers can share the load with one another.

This classification is comprehensive since it captures the main forms through which schedulers and
brokers can be organised in resource sharing networks. However, some categories can be further ex-
tended. For example, the site schedulers can be organised in several decentralised ways and use varying
mechanisms for resource sharing, such as a mesh network in which contracts are established between
brokers (Irwin et al., 2006; Fu et al., 2003) or via a P2P network with a bartering-inspired economic
mechanism for resource sharing (Andrade, Brasileiro, Cirne, & Mowbray, 2007).

Iosup et al. also classified a group of systems according to their operational model; the operational
model corresponds to the mechanism that ensures jobs entering the system arrive at the resource in which
they run. They have identified three operational models:

• Job routing, whereby jobs are routed by the schedulers from the arrival point to the resources
where they run through a push operation (scheduler-initiated routing);

• Job pulling, through which jobs are pulled from a higher-level scheduler by resources (resource-
initiated routing); and

• Matchmaking, wherein jobs and resources are connected to one another by the resource manager,
which acts as a broker matching requests from both sides.

We add a fourth category to the classification above in which the operational model can be a hybrid
of job routing and job pulling. Examples of such cases include those that use a job pool to (from) which
jobs are pushed (pulled) by busy (unoccupied) site schedulers (Grimme et al., 2008). (See Figure 2).

522

Architectural Elements of Resource Sharing Networks

Arrangements Between Brokers in Resource Sharing Networks

This section describes the types of arrangements that can be established between clusters in resource
sharing networks when decentralised or semi-decentralised architectures are in place. It is important to
distinguish between the way links between sites are established and their communication pattern; from
the mechanism used for negotiating the resource shares. We classify the work according to the com-
munication model in the following categories:

• P2P network - the sites of the resource sharing network are peers in a P2P network. They use the
network to locate sites where the jobs can run (Butt et al., 2003; Andrade, Cirne, Brasileiro, &
Roisenberg, 2003).

• Bilateral sharing agreements - sites establish bilateral agreements through which a site can
locate another suitable site to run a given job. The redirection or acceptance of jobs occurs only

Figure 2. Architecture models of GRMSs

523

Architectural Elements of Resource Sharing Networks

between sites that have a sharing agreement (Epema, Livny, Dantzig, Evers, & Pruyne, 1996).
• Shared spaces - sites co-ordinate resource sharing via shared spaces such as federation directories

and tuple spaces (Grimme et al., 2008; Ranjan et al., 2008).
• Transitive agreements - this is similar to bilateral agreements. However, a site can utilise re-

sources from another site with which it has no direct agreement (Fu et al., 2003; Irwin et al.,
2006).

Although existing work can present similar communication models or similar organisational forms
for brokers or schedulers, the resource sharing mechanisms can differ. The schedulers or brokers can
use mechanisms for resource sharing from the following categories:

• System centric - the mechanism is designed with the goal of maximising the overall utility of the
participants. Such mechanisms aim to, for example, balance the load between sites (Iosup et al.,
2007) and prevent free-riding (Andrade et al., 2007).

• Site centric - brokers and schedulers are driven by the interest of maximising the utility of the
participants within the site they represent without the explicit goal of maximising the overall util-
ity across the system (Butt et al., 2003; Ranjan, Harwood, & Buyya, 2006).

• Self-interested - brokers act with the goal of maximising their own utility, generally given by
profit, yet satisfying the requirements of their users. They do not take into account the utility of
the whole system (Irwin et al., 2006).

Resource Control Techniques

The emergence of virtualisation technologies has resulted in the creation of testbeds wherein multiple-
site slices (i.e. multiple-site containers) are allocated to different communities (Peterson et al., 2006). In
this way, slices run concurrently and are isolated from each other. This approach, wherein resources are
bound to a virtual execution environment or workspace where a service or application can run, is termed
here as a container model. Most of the existing Grid middleware employ a job model in which jobs are
routed until they reach the sites’ local batch schedulers for execution. It is clear that both models can
co-exist, thus an existing Grid technology can be deployed in a workspace enabled by container-based
resource management (Ramakrishnan et al., 2006; Montero, Huedo, & Llorente, 2008). We classify
systems in the following categories:

• Job model - this is the model currently utilised by most of the Grid systems. The jobs are directed
or pulled across the network until they arrive at the nodes where they are finally executed.

• Container-based - resource managers in this category can manage a cluster of computers within
a site by means of virtualisation technologies (Keahey et al., 2006; Chase et al., 2003). They bind
resources to virtual clusters or workspaces according to a customer’s demand. They commonly
provide an interface through which one can allocate a set of nodes (generally virtual machines)
and configure them with the operating system and software of choice.
 ◦ Single-site - these container-based resource managers allow the user to create a customised

virtual cluster using shares of the physical machines available at the site. These resource
managers are termed here as single-site because they usually manage the resources of one
administrative site (Fontán, Vázquez, Gonzalez, Montero, & Llorente, 2008; Chase et al.,

524

Architectural Elements of Resource Sharing Networks

2003), although they can be extended to enable container-based resource control at multiple
sites (Montero et al., 2008).

 ◦ Multiple-site - existing systems utilise the features of single-site container-based resource
managers to create networks of virtual machines on which an application or existing Grid
middleware can be deployed (Ramakrishnan et al., 2006). These networks of virtual ma-
chines are termed here as multiple-site containers because they can comprise resources
bound to workspaces at multiple administrative sites. These systems allow a user to allocate
resources from multiple computing sites thus forming a network of virtual machines or a
multiple-site container (Irwin et al., 2006; Shoykhet, Lange, & Dinda, 2004; Ruth, Jiang,
Xu, & Goasguen, 2005; Ramakrishnan et al., 2006). This network of virtual machines is also
referred to as virtual Grid (Huang et al., 2006) or slice (Peterson et al., 2006).

Some systems such as Shirako (Irwin et al., 2006) and VioCluster (Ruth, McGachey, & Xu, 2005)
provide container-based resource control. Shirako also offers resource control at the job level (Ramakrish-
nan et al., 2006) by providing a component that is aware of the resources leased. This component gives
recommendations on which site can execute a given job.

Taxonomy on Virtual Organisations

The idea of user communities or virtual organisations underlies several of the organisational models
adopted by Grid systems and guides many of the efforts on providing fair resource allocation for Grids.
Consequently, the systems can be classified according to the VO awareness of their scheduling and
resource allocation mechanisms. One may easily advocate that several systems, that were not explicitly
designed to support VOs, can be used for resource management within a VO. We restrict ourselves to
provide a taxonomy that classifies systems according to (i) the VO awareness of their resource allocation
and scheduling mechanisms; and (ii) the provision of tools for handling different issues related to the
VO life-cycle. For the VO awareness of scheduling mechanisms we can classify the systems in:

• Multiple VOs - those scheduling mechanisms that perform scheduling and allocation taking into
consideration the various VOs existing within a Grid; and

• Single VO - those mechanisms that can be used for scheduling within a VO.

Furthermore, the idea of VO has been used in slightly different ways in the Grid computing context.
For example, in the Open Science Grid (OSG), VOs are recursive and may overlap. We use several
criteria to classify VOs as presented in Figure 3.

With regard to dynamism, we classify VOs as static and dynamic (Figure 3). Although Grid comput-
ing is mentioned as the enabler for dynamic VOs, it has been used to create more static and long-term
collaborations such as APAC (2005), EGEE (2005), the UK National e-Science Centre (2005), and
TeraGrid (Catlett et al., 2006). A static VO has a pre-defined number of participants and its structure
does not change over time. A dynamic VO presents a number of participants that changes constantly
as the VO evolves (Wesner, Dimitrakos, & Jeffrey, 2004). New participants can join, whereas existing
participants may leave.

A dynamic VO can be stationary or mobile. A stationary VO is generally composed of highly specialised
resources including supercomputers, clusters of computers, personal computers and data resources. The

525

Architectural Elements of Resource Sharing Networks

components of the VO are not mobile. In contrast, a mobile VO is composed of mobile resources such as
Personal Digital Assistants (PDAs), mobile phones. The VO is highly responsive and adapts to different
contexts (Wesner et al., 2004). Mobile VOs can be found in disaster handling and crisis management
situations. Moreover, a VO can be hybrid, having both stationary and mobile components.

Considering goal-orientation, we divide VOs into two categories: targeted and non-targeted (Figure
3). A targeted VO can be an alliance or collaboration created to explore a market opportunity or achieve
a common research goal. A VO for e-Science collaboration is an example of a targeted VO as the
participants have a common goal (Hey & Trefethen, 2002). A non-targeted VO is characterised by the
absence of a common goal; it generally comprises participants who pursue different goals, yet benefit
from the VO by pooling resources. This VO is highly dynamic because participants can leave when
they achieve their goals.

VOs can be short-, medium- or long-lived (Figure 3). A short-lived VO lasts for minutes or hours. A
medium-lived VO lasts for weeks and is formed, for example, when a scientist needs to carry out experi-
ments that take several days to finish. Data may be required to carry out such experiments. This scenario
may be simplified if the VO model is used; the VO may not be needed as soon as the experiments have
been carried out. A long-lived VO is formed to explore a market opportunity (goal-oriented) or to pool
resources to achieve disparate objectives (non-targeted). Such endeavours normally last from months
to years; hence, we consider a long-lived VO to last for several months or years.

As discussed in the previous section, the formation and maintenance of a VO present several challenges.
These challenges have been tackled in different ways, which in turn have created different formation and

Figure 3. Taxonomy on Grid facilitated VOs

526

Architectural Elements of Resource Sharing Networks

maintenance approaches. We thus classify the formation and membership, or maintenance, as centralised
and decentralised (Figure 3). The formation and membership of a centralised VO is controlled by a
trusted third party, such as Open Science Grid (2005) or the Enabling Grids for E-SciencE (2005). OSG
provides an open market where providers and users can advertise their needs and intentions; a provider
or user may form a VO for a given purpose. EGEE provides a hierarchical infrastructure to enable the
formation of VOs. On the other hand, in a decentralised controlled VO, no third party is responsible for
enabling or controlling the formation and maintenance. This kind of VO can be complex as it can require
multiple Service Level Agreements (SLAs) to be negotiated among multiple participants. In addition,
the monitoring of SLAs and commitment of the members are difficult to control. The VO also needs to
self-adapt when participants leave or new participants join.

Regarding the enforcement of policies, VOs can follow different approaches, such as hub or democratic.
This is also referred to as topology. Katzy et al. (2005) classify VOs in terms of topology, identifying the
following types: chain, star or hub, and peer-to-peer. Sairamesh et al. (2005) identify business models
for VOs; the business models are analogous to topologies. However, by discussing the business models
for VOs, the authors are concerned with a larger set of problems, including enforcement of policies,
management, trust and security, and financial aspects. In our taxonomy, we classify the enforcement and
monitoring of policies as star or hub, democratic or peer-to-peer, hierarchical, and chain (Figure 3).

Some projects such as Open Science Grid (2005) and EGEE (2005) aim to establish consortiums or
clusters of organisations, which in turn allow the creation of dynamic VOs. Although not very related
to the core issues of VOs, they aim to address an important problem: the establishment of trust between
organisations and the means for them to look for and find potential partners. These consortiums can be
classified as hierarchical and market-like (Figure 3). A market-like structure is any infrastructure that
offers a market place, which organisations can join and present interests in starting a new collaboration
or accepting to participate in an ongoing collaboration. These infrastructures may make use of economic
models such as auctions, bartering, and bilateral negotiation.

A SURVEY OF EXISTING WORK

This section describes relevant work of the proposed taxonomy in more detail. First, it describes work
on a range of systems that have a decentralised architecture. Some systems present a hierarchy of sched-
uling whereby jobs are submitted to the root of the hierarchy or to their leaves; in either case, the jobs
execute at the leaves of the hierarchical structure. Second, this section presents systems of hierarchical
structure, resource brokers and meta-scheduling frameworks. During the past few years, several Grid-
based resource sharing networks and other testbeds have been created. Third, we discuss the work on
inter-operation between resource sharing networks. Finally, this section discusses relevant work focus-
ing on VO issues.

Distributed Architecture Based Systems

Condor Flocking: The flocking mechanism used by Condor (Epema et al., 1996) provides a software
approach to interconnect pools of Condor resources. The mechanism requires manual configuration of
sharing agreements between Condor pools. Each pool owner and each workstation owner maintains full
control of when their resources can be used by external jobs.

527

Architectural Elements of Resource Sharing Networks

The developers of Condor flocking opted for a layered design for the flocking mechanism, which
enables the Condor’s Central Manager (CM) (Litzkow, Livny, & Mutka, 1988) and other Condor ma-
chines to remain unmodified and operate transparently from the flock.

The basis of the flocking mechanism is formed by Gateway Machines (GW). There is at least one
GW in each Condor pool. GWs act as resource brokers between pools. Each GW has a configuration file
describing the subset of connections it maintains with other GWs. Periodically, a GW queries the status
of its pool from the CM. From the list of resources obtained, the GW makes a list of those resources that
are idle. The GW then sends this list to the other GWs to which it is connected. Periodically, the GW that
received this list chooses a machine from the list, and advertises itself to the CM with the characteristics
of this machine. The flocking protocol (which is a modified version of the normal Condor protocol)
allows the GWs to create shadow processes that so that a submission machine is under the impression
of contacting the execution machine directly.

Self-Organizing Flock of Condors: The original flocking scheme of Condor has the drawback
that knowledge about all pools with which resources can be shared need to be known a priori before
starting Condor (Epema et al., 1996). This static information poses limitations regarding the number
of resources available and resource discovery. Butt et al. (2003) introduced a self-organising resource
discovery mechanism for Condor, which allows pools to discover one another and resources available
dynamically. The P2P network used by the flocking mechanism is based on Pastry and takes into account
the network proximity. This may result in saved bandwidth in data transfer and faster communications.
Experiments with this implementation considering four pools with four machines each were provided.
Additionally, simulation results demonstrated the performance of the flocking mechanism when inter-
connecting 1,000 pools.

Shirako: Shirako (Irwin et al., 2006) is a system for on-demand leasing of shared networked resources
across clusters. Shirako’s design goals include: autonomous providers, who may offer resources to the
system on a temporary basis and retain the ultimate control over them; adaptive guest applications that
lease resources from the providers according to changing demand; pluggable resource types, allowing
participants to include various types of resources, such as network links, storage and computing; bro-
kers that provide guest applications with an interface to acquire resources from resource providers; and
allocation policies at guest applications, brokers and providers, which define the manner resources are
allocated in the system.

Shirako utilises a leasing abstraction in which authorities representing provider sites offer their
resources to be provisioned by brokers to guest applications. Shirako brokers are responsible for co-
ordinating resource allocation across provider sites. The provisioning of resources determines how much
of each resource each guest application receives, when and where. The site authorities define how much
resource is given to which brokers. The authorities also define which resources are assigned to serve
requests approved by a broker. When a broker approves a request, it issues a ticket that can be redeemed
for a lease at a site authority. The ticket specifies the type of resource, the number of resource units
granted and the interval over which the ticket is valid. Sites issue tickets for their resources to brokers;
the brokers’ polices may decide to subdivide or aggregate tickets.

A service manager is a component that represents the guest application and uses the lease API pro-
vided by Shirako to request resources from the broker. The service manager determines when and how
to redeem existing tickets, extend existing leases, or acquire new leases to meet changing demand. The
system allows guest applications to renew or extend their leases. The broker and site authorities match
accumulated pending requests with resources under the authorities’ control. The broker prioritises requests

528

Architectural Elements of Resource Sharing Networks

and selects resource types and quantities to serve them. The site authority assigns specific resource units
from its inventory to fulfill lease requests that are backed by a valid ticket. Site authorities use Cluster
on Demand (Chase et al., 2003) to configure the resources allocated at the remote sites.

The leasing abstraction provided by Shirako is a useful basis to co-ordinate resource sharing for
systems that create distributed virtual execution environments of networked virtual machines (Keahey et
al., 2006; Ruth, Rhee, Xu, Kennell, & Goasguen, 2006; Adabala et al., 2005; Shoykhet et al., 2004).

Ramakrishnan et al. (2006) used Shirako to provide a hosting model wherein Grid deployments run
in multiple-site containers isolated from one another. An Application Manager (AM), which is the entry
point of jobs from a VO or Grid, interacts with a Grid Resource Oversight Coordinator (GROC) to obtain
a recommendation of a site to which jobs can be submitted. The hosting model uses Shirako’s leasing
core. A GROC performs the functions of leasing resources from computing sites and recommending
sites for task submission. At the computing site, Cluster on Demand is utilised to provide a virtual cluster
used to run Globus 4 along with Torque/MAUI.

VioCluster: VioCluster is a system that enables dynamic machine trading across clusters of comput-
ers (Ruth, McGachey, & Xu, 2005). VioCluster introduces the idea of virtual domain. A virtual domain,
originally comprising its physical domain of origin (i.e. a cluster of computers), can grow in the number
of computing resources, thus dynamically allocating resources from other physical domains according
to the demands of its user applications.

VioCluster presents two important system components: the creation of dynamic virtual domains and
the mechanism through which resource sharing is negotiated. VioCluster uses machine and network
virtualisation technology to move machines between domains. Each virtual domain has a broker that
interacts with other domains. A broker has a borrowing policy and a lending policy. The borrowing
policy determines under which circumstances the broker will attempt to obtain more machines. The
lending policy governs when it is willing to let another virtual domain make use of machines within its
physical domain.

The broker represents a virtual domain when negotiating trade agreements with other virtual domains.
It is the broker’s responsibility to determine whether trades should occur. The policies for negotiating
the resources specify: the reclamation, that is, when the resources will be returned to their home do-
main; machine properties, which represent the machines to be borrowed; and the machines’ location as
some applications require communication. The borrowing policy must be aware of the communication
requirements of user applications.

Machine virtualisation simplifies the transfer of machines between domains. When a machine belong-
ing to a physical domain B is borrowed by a virtual domain A, it is utilised to run a virtual machine. This
virtual machine matches the configuration of the machines in physical domain A. Network virtualisation
enables the establishment of virtual network links connecting the new virtual machine to the nodes of
domain A. For the presented prototype, PBS is used to manage the nodes of the virtual domain. PBS
is aware of the computers’ heterogeneity and never schedules jobs on a mixture of virtual and physical
machines. The size of the work queue in PBS was used as a measure of the demand within a domain.

OurGrid: OurGrid (Andrade et al., 2003) is a resource sharing system organised as a P2P network
of sites that share resources equitably in order to form a Grid to which they all have access. OurGrid
was designed with the goal of easing the assembly of Grids, thus it provides connected sites with access
to the Grid resources with a minimum of guarantees needed. OurGrid is used to execute Bag-of-Tasks
(BoT) applications. BoT are parallel applications composed of a set of independent tasks that do not
communicate with one another during their execution. In contrast to other Grid infrastructures, the system

529

Architectural Elements of Resource Sharing Networks

does not require offline negotiations if a resource owner wants to offer her resources to the Grid.
OurGrid uses a resource exchange mechanism termed network of favours. A participant A is doing

a favour to participant B when A allows B to use her resources. According to the network of favours,
every participant does favours to other participants expecting the favours to be reciprocated. In conflict-
ing situations, a participant prioritises those who have done favours to it in the past. The more favours
a participant does, the more it expects to be rewarded. The participants locally account their favours
and cannot profit from them in another way than expecting other participants to do them some favours.
Detailed experiments have demonstrated the scalability of the network of favours (Andrade et al., 2007),
showing that the larger the network becomes, the more fair the mechanism performs.

The three participants in the OurGrid’s resource sharing protocol are clients, consumers, and provid-
ers. A client requires access to the Grid resources to run her applications. The consumer receives requests
from the client to find resources. When the client sends a request to the consumer, the consumer first
finds the resources able to serve the request and then executes the tasks on the resources. The provider
manages the resources shared in the community and provides them to consumers.

Delegated Matchmaking:Iosup et al. (2007) introduced a matchmaking protocol in which a computing
site binds resources from remote sites to its local environment. A network of sites, created on top of the
local cluster schedulers, manages the resources of the interconnected Grids. Sites are organised according
to administrative and political agreements so that parent-child links can be established. Then, a hierarchy
of sites is formed with the Grid clusters at the leaves of the hierarchy. After that, supplementary to the
hierarchical links, sibling links are established between sites that are at the same hierarchical level and
operate under the same parent site. The proposed delegated matchmaking mechanism enables requests
for resources to be delegated up and down the hierarchy thus achieving a decentralised network.

The architecture is different from work wherein a scheduler forwards jobs to be executed on a remote
site. The main idea of the matchmaking mechanism is to delegate ownership of resources to the user
who requested them through this network of sites, and add the resources transparently to the user’s local
site. When a request cannot be satisfied locally, the matchmaking mechanism adds remote resources
to the user’s site. This simplifies security issues since the mechanism adds the resources to the trusted
local resource pool. Simulation results show that the mechanism leads to an increase in the number of
requests served by the interconnected sites.

Grid Federation:Ranjan et al. (2005) proposed a system that federates clusters of computers via a
shared directory. Grid Federation Agents (GFAs), representing the federated clusters, post quotes about
idle resources (i.e. a claim stating that a given resource is available) and, upon the arrival of a job, query
the directory to find a resource suitable to execute the job. The directory is a shared-space implemented
as a Distributed Hash Table (DHT) P2P network that can match quotes and user requests (Ranjan et al.,
2008).

An SLA driven co-ordination mechanism for Grid superscheduling has also been proposed (Ranjan
et al., 2006). GFAs negotiate SLAs and redirect requests through a Contract-Net protocol. GFAs use a
greedy policy to evaluate resource requests. A GFA is a cluster resource manager and has control over
the cluster’s resources. GFAs engage into bilateral negotiations for each request they receive, without
considering network locality.

Askalon:Siddiqui et al. (2006) introduced a capacity planning architecture with a three-layer negotia-
tion protocol for advance reservation on Grid resources. The architecture is composed of allocators that
make reservations of individual nodes and co-allocators that reserve multiple nodes for a single Grid
application. A co-allocator receives requests from users and generates alternative offers that the user

530

Architectural Elements of Resource Sharing Networks

can utilise to run her application. A co-allocation request can comprise a set of allocation requests, each
allocation request corresponding to an activity of the Grid application. A workflow with a list of activi-
ties is an example of Grid application requiring co-allocation of resources. Co-allocators aim to agree
on Grid resource sharing. The proposed co-ordination mechanism produces contention-free schedules
either by eliminating conflicting offers or by lowering the objective level of some of the allocators.

GRUBER/DI-GRUBER:Dumitrescu et al. (2005) highlighted that challenging usage policies can
arise in VOs that comprise participants and resources from different physical organisations. Participants
want to delegate access to their resources to a VO, while maintaining such resources under the control
of local usage policies. They seek to address the following issues:

How usage policies are enforced at the resource and • VO levels.
What mechanisms are used by a • VO to ensure policy enforcement.
How the distribution of policies to the enforcement points is carried out.•
How policies are made available to • VO job and data planners.

They have proposed a policy management model in which participants can specify the maximum
percentage of resources delegated to a VO. A VO in turn can specify the maximum percentage of resource
usage it wishes to delegate to a given VO’s group. Based on this model above, they have proposed a Grid
resource broker termed GRUBER (Dumitrescu & Foster, 2005). GRUBER architecture is composed of
four components, namely:

Engine: which implements several algorithms to detect available resources.•
Site monitoring: is one of the data providers for the GRUBER engine. It is responsible for collect-•
ing data on the status of Grid elements.
Site selectors: consist of tools that communicate with the engine and provide information about •
which sites can execute the jobs.
Queue manager: resides on the submitting host and decides how many jobs should be executed •
and when.

Users who want to execute jobs, do so by sending them to submitting hosts. The integration of exist-
ing external schedulers with GRUBER is made in the submitting hosts. The external scheduler utilises
GRUBER either as the queue manager that controls the start time of jobs and enforces VO policies, or
as a site recommender. The second case is applicable if the queue manager is not available.

DI-GRUBER, a distributed version of GRUBER, has also been presented (Dumitrescu, Raicu, &
Foster, 2005). DI-GRUBER works with multiple decision points, which gather information to steer
resource allocations defined by Usage Service Level Agreements (USLAs). These points make deci-
sions on a per-job basis to comply with resource allocations to VO groups. Authors advocated that 4 to
5 decision points are enough to handle the job scheduling of a Grid 10 times larger than Grid3 at the
time the work was carried out (Dumitrescu, Raicu, & Foster, 2005).

Other important work:Balazinska et al. (2004) have proposed a load balancing mechanism for
Medusa. Medusa is a stream processing system that allows the migration of stream processing operators
from overloaded to under-utilised resources. The request offloading is performed based on the marginal
cost of the request. The marginal cost for one participant is given by the increase (decrease) in the cost
curve given by the acceptance (removal) of the request from the requests served by the participant.

531

Architectural Elements of Resource Sharing Networks

NWIRE (Schwiegelshohn & Yahyapour, 1999) links various resources to a metacomputing system,
also termed meta-system. It also enables the scheduling in these environments. A meta-system comprises
interconnected MetaDomains. Each MetaDomain is managed by a MetaManager that manages a set of
ResourceManagers. A ResourceManager interfaces the scheduler at the cluster level. The MetaManager
permanently collects information about all of its resources. It handles all requests inside its MetaDomain
and works as a resource broker to other MetaDomains. In this way, requests received by a MetaManager
can be submitted either by users within its MetaDomain or by other MetaManagers. Each MetaManager
contains a scheduler that maps requests for resources to a specific resource in its MetaDomain.

Grimme et al. (2008) have presented a mechanism for collaboration between resource providers by
means of job interchange though a central job pool. According to this mechanism, a cluster scheduler
adds to the central pool jobs that cannot be started immediately. After scheduling local jobs, a local
scheduler can schedule jobs from the central pool if resources are available.

Dixon et al. (2006) have provided a tit-for-tat or bartering mechanism based on local, non-transferable
currency for resource allocation in large-scale distributed infrastructures such as PlanetLab. The currency
is maintained locally within each domain in the form of credit given to other domains for providing
resources in the past. This creates pair-wise relationships between administrative domains. The mecha-
nism resembles OurGrid’s network of favours (Andrade et al., 2003). The information about exchanged
resources decays with time, so that recent behaviour is more important. Simulation results showed that,
for an infrastructure like PlanetLab, the proposed mechanism is more fair than the free-for-all approach
currently adopted by PlanetLab.

Graupner et al. (2002) have introduced a resource control architecture for federated utility data
centres. In this architecture, physical resources are grouped in virtual servers and services are mapped
to virtual servers. The meta-system is the upper layer implemented as an overlay network whose nodes
contain descriptive data about the two layers below. Allocations change according to service demand,
which requires to the control algorithms to be reactive and deliver quality solutions. The control layer
performs allocation of services to virtual server environments and its use has been demonstrated by a
capacity control example for a homogeneous Grid cluster.

Hierarchical Systems, Brokers and Meta-Scheduling

This section describes some systems that are organised in a hierarchical manner. We also describe work
on Grid resource brokering and frameworks that can be used to build meta-schedulers.

Computing Center Software (CCS): CCS (Brune, Gehring, Keller, & Reinefeld, 1999) is a system
for managing geographically distributed high-performance computers. It consists of three components,
namely: the CCS, which is a vendor-independent resource management software for local HPC sys-
tems; the Resource and Service Description (RSD), used by the CCS to specify and map hardware and
software components of computing environments; and the Service Coordination Layer (SCL), which
co-ordinates the use of resources across computing sites.

The CCS controls the mapping and scheduling of interactive and parallel jobs on massively parallel
systems. It uses the concept of island, wherein each island has components for user interface, authorisation
and accounting, scheduling of user requests, access to the physical parallel system, system control, and
management of the island. At the meta-computing level, the Center Resource Manager (CRM) exposes
scheduling and brokering features of the islands. The CRM is a management tool atop the CCS islands.
When a user submits an application, the CRM maps the user request to the static and dynamic informa-

532

Architectural Elements of Resource Sharing Networks

tion on resources available. Once the resources are found, CRM requests the allocation of all required
resources at all the islands involved. If not all resources are available, the CRM either re-schedules the
request or rejects it. Center Information Server (CIS) is a passive component that contains information
about resources and their statuses, and is analogous to Globus Metacomputing Directory Service (MDS)
(Foster & Kesselman, 1997). It is used by the CRM to obtain information about resources available.

The Service Co-ordination Layer (SCL) is located one level above the local resource management
systems. The SCL co-ordinates the use of resources across the network of islands. It is organised as
a network of co-operating servers, wherein each server represents one computing centre. The centres
determine which resources are made available to others and retain full autonomy over them.

EGEE Workload Management System (WMS): EGEE WMS (Vázquez-Poletti, Huedo, Montero,
& Llorente, 2007) has a semi-centralised architecture. One or more schedulerscan be installed in the
Grid infrastructure, each providing scheduling functionality for a group of VOs. The EGEE WMS
components are: The User Interface (UI) from where the user dispatches the jobs; the Resource Broker
(RB), which uses Condor-G (Frey, Tannenbaum, Livny, Foster, & Tuecke, 2001); the Computing Ele-
ment (CE), which is the cluster front-end; the Worker Nodes (WNs), which are the cluster nodes; the
Storage Element (SE), used for job files storage; and the Logging and Bookkeeping service (LB) that
registers job events.

Condor-G: Condor-G (Frey et al., 2001) leverages software from Globus and Condor (Frey et al.,
2001) and allows users to utilise resources spanning multiple domains as if they all belong to one personal
domain. Although Condor-G can be viewed as a resource broker itself (Venugopal, Nadiminti, Gibbins,
& Buyya, 2008), it can also provide a framework to build meta-schedulers.

The GlideIn mechanism of Condor-G is used to start a daemon process on a remote resource. The
process uses standard Condor mechanisms to advertise the resource availability to a Condor collector
process, which is then queried by the Scheduler to learn about available resources. Condor-G uses Condor
mechanisms to match locally queued jobs to the resources advertised by these daemons and to execute
them on those resources. Condor-G submits an initial GlideIn executable (a portable shell script), which
in turn uses GSI-authenticated GridFTP to retrieve the Condor executables from a central repository. By
submitting GlideIns to all remote resources capable of serving a job, Condor-G can guarantee optimal
queuing times to user applications.

Gridbus Broker: Gridbus Grid resource broker (Venugopal et al., 2008) is user-centric broker that
provides scheduling algorithms for both computing- and data-intensive applications. In Gridbus, each
user has her own broker, which represents the user by (i) selecting resources that minimise the user’s
quality of service constraints such as execution deadline and budget spent; (ii) submitting jobs to remote
resources; and (iii) copying input and output files. Gridbus interacts with various Grid middleware’s
(Venugopal et al., 2008).

Gridway: GridWay (Huedo, Montero, & Llorente, 2004) is a Globus based resource broker that
provides a framework for execution of jobs in a ‘submit and forget’ fashion. The framework performs
job submission and execution monitoring. Job execution adapts itself to dynamic resource conditions
and application demands in order to improve performance. The adaptation is performed through ap-
plication migration following performance degradation, sophisticated resource discovery, requirements
change, or remote resource failure.

The framework is modular wherein the following modules can be set on a per-job basis: resource
selector, performance degradation evaluator, prolog, wrapper and epilog. The name of the first two
modules or steps are intuitive, so we describe here only the last three. During prolog, the component

533

Architectural Elements of Resource Sharing Networks

responsible for job submission (i.e. submission manager) submits the prolog executable, which config-
ures the remote system and transfers executable and input files. In the case of restart of an execution,
the prolog also transfers restart files. The wrapper executable is submitted after prolog and wraps the
actual job in order to obtain its exit code. The epilog is a script that transfers the output files and cleans
the remote resource.

GridWay also enables the deployment of virtual machines in a Globus Grid (Rubio-Montero, Huedo,
Montero, & Llorente, 2007). The scheduling and selection of suitable resources is performed by Grid-
Way whereas a virtual workspace is provided for each Grid job. A pre-wrapper phase is responsible for
performing advanced job configuration routines, whereas the wrapper script starts a virtual machine
and triggers the application job on it.

KOALA:Mohamed and Epema (in press) have presented the design and implementation of KOALA,
a Grid scheduler that supports resource co-allocation. KOALA Grid scheduler interacts with cluster
batch schedulers for the execution of jobs. The work proposes an alternative to advance reservation at
local resource managers, when reservation features are not available. This alternative allows processors
to be allocated from multiple sites at the same time.

SNAP-Based Community Resource Broker: The Service Negotiation and Acquisition Protocol
(SNAP)-based community resource broker uses an interesting three-phase commit protocol. SNAP is
proposed because traditional advance reservation facilities cannot cope with the fact that information
availability may change between the moment at which resource availability is queried and the time
when the reservation of resources is actually performed (Haji, Gourlay, Djemame, & Dew, 2005). The
three phases of SNAP protocol consist of (i) a step in which resource availability is queried and probers
are deployed, which inform the broker in case the resource status changes; (ii) then, the resources are
selected and reserved; and (iii) after that, the job is deployed on the reserved resources.

Platform Community Scheduler Framework (CSF): CSF (2003) provides a set of tools that can
be utilised to create a Grid meta-scheduler or a community scheduler. The meta-scheduler enables users
to define the protocols to interact with resource managers in a system independent manner. The interface
with a resource manager is performed via a component termed Resource Manager (RM) Adapter. A RM
Adapter interfaces a cluster resource manager. CSF supports the GRAM protocol to access the services
of the resource managers that do not support the RM Adapter interface.

Platform’s LSF and MultiCluster products leverage the CSF to provide a framework for implement-
ing meta-scheduling. Grid Gateway is an interface that integrates Platform LSF and CSF. A scheduling
plug-in for Platform LSF scheduler decides which LSF jobs are forwarded to the meta-scheduler. This
decision is based on information obtained from an information service provided by the Grid Gateway.
When a job is forwarded to the meta-scheduler, the job submission and monitoring tools dispatch the job
and query its status information through the Grid Gateway. The Grid Gateway uses the job submission,
monitoring and reservation services from the CSF. Platform MultiCluster also allows multiple clusters
using LSF to forward jobs to one another transparently to the end-user.

Other important work: Kertész et al. (2008) introduced a meta-brokering system in which the meta-
broker, invoked through a Web portal, submits jobs, monitors job status and copies output files using
brokers from different Grid middleware, such as NorduGrid Broker and EGEE WMS.

Kim and Buyya (2007) tackle the problem of fair-share resource allocation in hierarchical VOs. They
provide a model for hierarchical VO environments based on a resource sharing policy; and provide a
heuristic solution for fair-share resource allocation in hierarchical VOs.

534

Architectural Elements of Resource Sharing Networks

Inter-Operation of Resource Sharing Networks

Relevant work on the attempts to enable inter-operation between resource sharing networks is discussed
in this section.

PlanetLab: PlanetLab (Peterson et al., 2006) is a large-scale testbed that enables the creation of
slices, that is, distributed environments based on virtualisation technology. A slice is a set of virtual
machines, each running on a unique node. The individual virtual machines that make up a slice contain
no information about the other virtual machines in the set and are managed by the service running in
the slice. Each service deployed on PlanetLab runs on a slice of PlanetLab’s global pool of resources.
Multiple slices can run concurrently and each slice is like a network container that isolates services
from other containers.

The principals in PlanetLab are:

• Owner: organisation that hosts (owns) one or more PlanetLab nodes.
• User: researcher who deploys a service on a set of PlanetLab nodes.
• PlanetLab Consortium (PLC): centralised trusted intermediary that manages nodes on behalf of

a group of owners and creates slices on those nodes on behalf of a group of users.

When PLC acts as a Slice Authority (SA), it maintains the state of the set of system-wide slices for
which the PLC is responsible. The SA provides an interface through which users register themselves,
create slices, bind users to slices, and request the slice to be instantiated on a set of nodes. PLC, acting
as a Management Authority (MA), maintains a server that installs and updates the software running on
the nodes it manages and monitors these nodes for correct behavior, taking appropriate action when
anomalies and failures are detected. The MA maintains a database of registered nodes. Each node is
affiliated with an organization (owner) and is located at a site belonging to the organization. MA pro-
vides an interface used by node owners to register their nodes with the PLC and allows users and slices
authorities to obtain information about the set of nodes managed by the MA.

PlanetLab’s architecture has evolved to enable decentralised control or federations of PlanetLabs
(Peterson et al., 2006). The PLC has been split into two components namely the MA and SA, which allow
PLC-like entities to evolve these two components independently. Therefore, autonomous organisations
can federate and define peering relationships with each other. For example, peering relationships with
other infrastructure is one of the goals of PlanetLab Europe (2008). A resource owner may choose a MA
to which it wants to provide resources. MAs, in turn, may blacklist particular SAs. A SA may trust only
certain MAs to provide it with the virtual machines it needs for its users. This enables various types of
agreements between SAs and MAs.

It is also important to mention that Ricci et al. (2006) have discussed issues related to the design of a
general resource allocation interface that is sufficiently wide for allocators in a large variety of current
and future testbeds. An allocator is a component that receives as input the users’ abstract description
for the required resources and the resource status from a resource discoverer and produces allocations
performed by a deployment service. The goal of an allocator is to allow users to specify characteristics
of their slice in high-level terms and find resources to match these requirements. Authors have described
their experience in designing PlanetLab and Emulab and among several important issues, they have
advocated that:

535

Architectural Elements of Resource Sharing Networks

In future infrastructures, several allocators may co-exist and it might be difficult for them to co-•
exist without interfering into one another;
With the current proportional-share philosophy of PlanetLab, where multiple management ser-•
vices can co-exist, allocators do not have guarantees over any resources;
Thus, co-ordination between the allocators may be required.•

Grid Interoperability Now - Community Group (GIN-CG): GIN-CG (2006) has been working
on providing interoperability between Grids by developing components and adapters that enable secure
and standard job submissions, data transfers, and information queries. These efforts provide the basis
for load management across Grids by facilitating standard job submission and request redirection. They
also enable secure access to resources and data across Grids. Although GIN-CG’s efforts are relevant,
its members also highlight the need for common allocation and brokering of resources across Grids.2

InterGrid: Assunção et al. (2008) have proposed an architecture and policies to enable the inter-
operation of Grids. This set of architecture and policies is termed as the InterGrid. InterGrid is inspired
by the peering agreements between Internet Service Providers (ISPs). The Internet is composed of
competing ISPs that agree to allow traffic into one another’s networks. These agreements between ISPs
are commonly termed as peering and transit arrangements (Metz, 2001).

In the InterGrid, a Resource Provider (RP) contributes a share of computational resources, storage
resources, networks, application services or other type of resource to a Grid in return for regular pay-
ments. An RP has local users whose resource demands need to be satisfied, yet it delegates provisioning
rights over spare resources to an InterGrid Gateway (IGG) by providing information about the resources
available in the form of free time slots (Assunção & Buyya, 2008). A free time slot includes information
about the number of resources available, their configuration and time frame over which they will be
available. The control over resource shares offered by providers is performed via a container model, in
which the resources are used to run virtual machines. Internally, each Grid may have a resource manage-
ment system organised in a hierarchical manner. However, for the sake of simplicity, experimental results
consider that RPs delegate provisioning rights directly to an IGG (Assunção & Buyya, in press).

A Grid has pre-defined peering arrangements with other Grids, managed by IGGs and, through which
they co-ordinate the use of resources of the InterGrid. An IGG is aware of the terms of the peering with
other Grids; provides Grid selection capabilities by selecting a suitable Grid able to provide the required
resources; and replies to requests from other IGGs. The peering arrangement between two Grids is rep-
resented as a contract. Request redirection policies determine which peering Grid is selected to process
a request and at what price the processing is performed (Assunção & Buyya, in press).

Other important work: Boghosian et al. (2006) have performed experiments using resources from
more than one Grid for three projects, namely Nektar, SPICE and Vortonics. The applications in these
three projects require massive numbers of computing resources only achievable through Grids of Grids.
Although resources from multiple Grids were used during the experiments, they emphasised that sev-
eral human interactions and negotiations are required in order to use federated resources. The authors
highlighted that even if interoperability at the middleware level existed, it would not guarantee that
the federated Grids can be utilised for large-scale distributed applications because there are important
additional requirements such as compatible and consistent usage policies, automated advanced reserva-
tions and co-scheduling.

Caromel et al. (2007) have proposed the use of a P2P network to acquire resources dynamically from
a Grid infrastructure (i.e. Grid’5000) and desktop machines in order to run compute intensive applica-

536

Architectural Elements of Resource Sharing Networks

tions. The communication between the P2P network and Grid’5000 is performed through SSH tunnels.
Moreover, the allocation of nodes for the P2P network uses the deployment framework of ProActive by
deploying Java Virtual Machines on the allocated nodes.

In addition to GIN-CG’s efforts, other Grid middleware interoperability approaches have been
presented. Wang et al. (2007) have described a gateway approach to achieve interoperability between
gLite (2005) (the middleware used in EGEE) and CNGrid GOS (2007) (the middleware of the Chinese
National Grid (2007)). The work focuses on job management interoperability, but also describes interoper-
ability between the different protocols used for data management as well as resource information. In the
proposed interoperability approach, gLite is viewed as a type of site job manager by GOS, whereas the
submission to GOS resources by gLite is implemented in a different manner; an extended job manager
is instantiated for each job submitted to a GOS resource. The extended job manager sends the whole
batch job to be executed in the CNGrid.

Virtual Organisations

We have also carried out a survey on how projects address different challenges in the VO life-cycle.
Two main categories of projects have been identified: the facilitators for VOs, which provide means
for building clusters of organisations hence enabling collaboration and formation of VOs; and enablers
for VOs, which provide middleware and tools to help in the formation, management, maintenance and
dissolution of VOs. The classification is not strict because a project can fall into two categories, pro-
viding software for enabling VOs and working as a consortium, which organisations can join and start
collaborations that are more dynamic. We divide our survey into three parts: middleware and software
infrastructure for enabling VOs; consortiums and charters that facilitate the formation of VOs; and other
relevant work that addresses issues related to a VO’s life-cycle.

Enabling Technology

Enabling a VO means to provide the required software tools to help in the different phases of the life-cycle
of a VO. As we present in this section, due to the complex challenges in the life-cycle, many projects
do not address all the phases. We discuss relevant work in this section.

The CONOISE Project: CONOISE (Patel et al., 2005) uses a marketplace (auctions) for the forma-
tion of VOs (Norman et al., 2004). The auctions are combinatorial; combinatorial auctions allow a good
degree of flexibility so that VO initiators can specify a broad range of requirements. A combinatorial
auction allows multiple units of a single item or multiple items to be sold simultaneously. However,
combinatorial auctions lack on means for bid representation and efficient clearing algorithms to determine
prices, quantities and winners. As demonstrated by Dang (2004), clearing combinatorial auctions is an
NP-Complete problem. Thus, polynomial and sub-optimal auction clearing algorithms for combinato-
rial auctions have been proposed.

Stakeholders in VOs enabled by CONOISE are called agents. As example of VO formation, a user
may request a service to an agent, who in turn verifies if it is able to provide the service requested at the
time specified. If the agent cannot provide the service, it looks for the Service Providers (SPs) offering
the service required. The Requesting Agent (RA) then starts a combinatorial auction and sends call for
bids to SPs. Once RA receives the bids, it determines the best set of partners and then, starts the forma-
tion of the VO. Once the VO is formed, RA becomes the VO manager.

537

Architectural Elements of Resource Sharing Networks

An agent that receives a call for bids has the following options: (a) she can decide not to bid for
the auction; (b) she can bid considering its resources; (c) she may bid using resources from an existing
collaboration; (d) she may identify the need to start a new VO to provide the extra resources required.
Note that call for bids are recursive. CONOISE uses a cumulative scheduling based on a Constraint
Satisfaction Program (CSP) to model the decision process of an agent.

CONOISE also focuses on the operation and maintenance phases of VOs. Once a VO is formed, it
uses principles of coalition formation for distributing tasks amongst the member agents (Patel et al.,
2005). An algorithm for coalition structure generation, which is bound from the optimal, is presented and
evaluated (Dang, 2004). Although not very focused on authorisation issues, the CONOISE project also
deals with issues regarding trust and reputation in VOs by providing reputation and policing mechanisms
to ensure minimum quality of service.

The TrustCoM Project: TrustCoM (2005) addresses issues related to the establishment of trust
throughout the life-cycle of VOs. Its members envision that the establishment of Service Oriented Ar-
chitectures (SOAs) and the dynamic open electronic marketplaces will allow dynamic alliances and VOs
among enterprises to respond quickly to market opportunities. The establishment of trust, not only at a
resource level but also at a business process level, is hence of importance. In this light, TrustCoM aims to
provide a framework for trust, security and contract management to enable on-demand and self-managed
dynamic VOs (Dimitrakos, Golby, & Kearley, 2004; Svirskas, Arevas, Wilson, & Matthews, 2005).

The framework extends current VO membership services (Svirskas et al., 2005) by providing means
to: (i) identify potential VO partners through reputation management; (ii) manage users according to
the roles defined in the business process models that VO partners perform; (iii) define and manage the
SLA obligations on security and privacy; (iv) enable the enforcement of policies based on the SLAs and
contracts. From a corporate perspective, Sairamesh et al (2005) provide examples of business models
on the enforcement of security policies and the VO management.

While the goal is to enable dynamic VOs, TrustCoM focuses on the security requirements for the
establishment of VOs composed of enterprises. Studies and market analysis to identify the main issues
and requirements to build a secure environment in which VOs form and operate have been performed.

Facilitators or Breeding Environments

In order to address the problem of trust between organisations, projects have created federations and
consortiums which physical organisations or Grids can join to start VOs based on common interests. We
describe the main projects in this field and explain some of the technologies they use.

Open Science Grid (OSG): OSG (2005) can be considered as a facilitator for VOs. The reason is
that the project aims at forming a cluster or consortium of organisations and suggests them to follow a
policy that states how collaboration takes place and how a VO is formed. To join the consortium and
consequently form a VO, it is necessary to have a minimum infrastructure and preferably use the middle-
ware suggested by OSG. In addition, OSG provides tools to check the status and monitor existing VOs.
OSG facilitates the formation of VOs by providing an open-market-like infrastructure that allows the
consortium members to advertise their resources and goals and establish VOs to explore their objectives.
The VO concept is used in a recursive manner; VOs may be composed of sub-VOs. For more informa-
tion we refer to the Blueprint for the OSG (2004).

A basic infrastructure must be provided to form a VO, including a VO Membership Service (VOMS)
and operation support. The operation support’s main goal is to provide technical support services at

538

Architectural Elements of Resource Sharing Networks

the request of a member site. As OSG intends to federate across heterogeneous Grid environments,
the resources of the member sites and users are organised in VOs under the contracts that result from
negotiations among the sites, which in turn have to follow the consortium’s policies. Such contracts are
defined at the middleware layer and can be negotiated in an automated fashion; however, thus far there
is no easily responsive means to form a VO and the formation requires complex multilateral agreements
among the involved sites.

OSG middleware uses VOMS to support authorisation services for VO members hence helping in
the maintenance and operation phases. Additionally, for the sake of scalability and easiness of admin-
istration, Grid User Management System (GUMS) facilitates the mapping of Grid credentials to site-
specific credentials. GUMS and VOMS provide means to facilitate the authorisation in the operation and
maintenance phases. GridCat provides maps and statistics on jobs running and storage capacity of the
member sites. This information can guide schedulers and brokers on job submission and in turn facilitate
the operation phase. Additionally, MonALISA (MONitoring Agents using a Large Integrated Services
Architecture) (Legrand et al., 2004) has been utilised to monitor computational nodes, applications and
network performance of the VOs within the consortium.

Enabling Grids for E-sciencE (EGEE): Similarly to OSG, EGEE (2005) federates resource centres
to enable a global infrastructure for researchers. EGEE’s resource centres are hierarchically organised:
an Operations Manager Centre (OMC) located at CERN, Regional Operations Centres (ROC) located
in different countries, Core Infrastructures Centres (CIC) and Resource Centres (RC) responsible for
providing resources to the Grid. A ROC carries out activities as supporting deployment and operations;
negotiating SLAs within its region and organising certification authorities. CICs are in charge of providing
VO-services, such as maintaining VO-Servers and registration; VO-specific services such as databases,
resource brokers and user interfaces; and other activities such as accounting and resource usage. The
OMC interfaces with international Grid efforts. It is also responsible for activities such as approving
connection with new RCs, promoting cross-trust among CAs, and enabling cooperation and agreements
with user communities, VOs and existing national and regional infrastructures.

To join EGEE, in addition to the installation of the Grid middleware, there is a need for a formal
request and further assessment from special committees. Once the application is considered suitable to
EGEE, a VO will be formed. Accounting is based on the use of resources by members of the VO. EGEE
currently utilises LCG-2/gLite (2005).

Other Important Work

Resource allocation in a VO depends on, and is driven by, many conditions and rules: the VO can be formed
by physical organisations under different, sometimes conflicting, resource usage policies. Participating
organisations provide their resources to the VO, which can be defined in terms of SLAs, and agree to
enforce VO level policies defining who has access to the resources in the VO. Different models can be
adopted for negotiation and enforcement of SLAs. One model is by relying on a trusted VO manager.
Resource providers supply resources to the VO according to SLAs established with the VO manager.
The VO manager in turn assigns resource quotas to VO groups and users based on a commonly agreed
VO-level policy. In contrast, a VO can follow a democratic or P2P sharing approach, in which “you give
what you can and get what others can offer” or “you get what give” (Wasson & Humphrey, 2003).

Elmroth and Gardfj¨all (2005) presented an approach for enabling Grid-wide fair-share scheduling.
The work introduces a scheduling framework that enforces fair-share policies in a Grid-wide scale. The

539

Architectural Elements of Resource Sharing Networks

policies are hierarchical in the sense that they can be subdivided recursively to form a tree of shares.
Although the policies are hierarchical, they are enforced in a flat and decentralised manner. In the pro-
posed framework, resources have local policies and split the available resources to given VOs. These
local policies have references to the VO-level policies. Although the proposed framework and algorithm
do not require a centralised scheduler, it may impose certain overhead in locally caching global usage
information.

MAPPING OF SURVEYED WORK AGAINST THE TAXONOMIES

This section presents the mapping of the surveyed projects against the proposed taxonomies. For
simplicity, the mapping only considers selected work from those surveyed to be included in the tables
presented in this section.

Table 1 classifies existing work according to their architectures and operational models. Gridbus
Broker, GridWay, and SNAP-based community resource broker are resource brokers that act on behalf
of users to submit jobs to Grid resources to which they have access. They follow the operational model
based on job routing. Although GridWay provides means for the deployment of virtual machines, this
deployment takes place on a job basis (Rubio-Montero et al., 2007). DI-GRUBER, VioCluster, Condor
flocking and CSF have a distributed-scheduler architecture in which brokers or meta-schedulers have
bilateral sharing agreements between them (Table 2). OurGrid and Self-organising flock of Condors
utilise P2P networks of brokers or schedulers, whereas Grid federation uses a P2P network to build a
shared space utilised by providers and users to post resource claims and requests respectively (Table
2). VioCluster and Shirako enable the creation of virtualised environments in which job routing or job
pulling based systems can be deployed. However, in these last two systems, resources are controlled at
the level of containment or virtual machines.

Table 2 summarises the communication models and sharing mechanisms utilised by distributed-
scheduler based systems. Shirako uses transitive agreements in which brokers can exchange claims of
resources issued by site authorities who represent the resource providers. It allows brokers to delegate
access to resources multiple times.

The resource control techniques employed by the surveyed systems are summarised in Table 3. As
described beforehand, VioCluster and Shirako use containment based resource control, whereas the re-
maining systems utilise the job model. EGEE WMS and DI-GRUBER take into account the scheduling
of jobs according to the VOs to which users belong and the shares contributed by resource providers.
The other systems can be utilised to form a single VO wherein jobs can be controlled on a user basis.

The support of various works to the VO life-cycle phases is depicted in Table 4. We select a subset
of the surveyed work, particularly the work that focuses on VO related issues such as their formation
and operation. DI-GRUBER and gLite schedule jobs by considering the resource shares of multiple
VOs. EGEE and OSG also work as facilitators of VOs by providing consortiums to which organisations
can join and start VOs (Table 5). However, the process is not automated and requires the establishment
of contracts between the consortium and the physical resource providers. Shirako enables the creation
of virtualised environments spanning multiple providers, which can be used for hosting multiple VOs
(Ramakrishnan et al., 2006).

The systems characteristics and the VOs they enable are summarised in Table 5. Conoise and Akog-
rimo allow the formation of dynamic VOs in which the VO can be started by a user utilising a mobile

540

Architectural Elements of Resource Sharing Networks

Table 1. GRMSs according to architectures and operational models

System Architecture Operational Model

SGE and PBS Independent clusters Job routing

Condor-G Independent clusters* Job routing

Gridbus Broker Resource Broker Job routing

GridWay Resource Broker Job routing**

SNAP-Based Community Resource Broker Resource Broker Job routing

EGEE WMS Centralised Job routing

KOALA Centralised Job routing

PlanetLab Centralised N/A***

Computing Center Software (CCS) Hierarchical Job routing

GRUBER/DI-GRUBER Distributed/static Job routing

VioCluster Distributed/static N/A***

Condor flocking Distributed/static Matchmaking

Community Scheduler Framework Distributed/static Job routing

OurGrid Distributed/dynamic Job routing

Self-organising flock of Condors Distributed/dynamic Matchmaking

Grid federation Distributed/dynamic Job routing

Askalon Distributed/dynamic Job routing

SHARP/Shirako Distributed/dynamic N/A***

Delegated Matchmaking Hybrid Matchmaking

* Condor-G provides software that can be used to build meta-schedulers.

** GridWay also manages the deployment of virtual machines.

*** PlanetLab, VioCluster and Shirako use resource control at the containment level, even though they enable the creation of virtual
execution environments on which systems based on job routing can be deployed.

Table 2. Classification of GRMSs according to their sharing arrangements

System Communication Pattern Sharing Mechanism

GRUBER/DI-GRUBER Bilateral agreements System centric

VioCluster Bilateral agreements Site centric

Condor flocking Bilateral agreements Site centric

OurGrid P2P network System centric

Self-organising flock of Condors P2P network Site centric

Grid federation Shared space Site centric

Askalon Bilateral agreements Site centric

SHARP/Shirako Transitive agreements Self-interest

Delegated MatchMaking Bilateral agreements Site centric

541

Architectural Elements of Resource Sharing Networks

Table 3. Classification of GRMSs according to their support for VOs and resource control

System Support for VOs Resource Control

EGEE WMS Multiple VO Job model

KOALA Single VO Job model

GRUBER/DI-GRUBER Multiple VO Job model

VioCluster Single VO Container model/multiple site*

Condor flocking Single VO Job model

OurGrid Single VO Job model

Self-organising flock of Condors Single VO Job model

Grid federation Single VO Job model

Askalon Single VO Job model

SHARP/Shirako Multiple VO** Container model/multiple site***

Delegated MatchMaking Single VO Job model

* VioCluster supports containment at both single site and multiple site levels.

** Shirako enables the creation of multiple containers that can in turn be used by multiple VOs, even though it does not handle issues
on job scheduling amongst multiple VOs.

*** Shirako supports containment at both (i) single site level through Cluster on Demand and (ii) multiple-site level. Shirako also
explores resource control at job level by providing recommendations on the site in which jobs should be executed.

Table 4. Support to the phases of the VO’s lifecycle by the projects analysed

Project
Name

Support to the phases of the VO life-cycle Support for short term
collaborationsCreation Operation Maintenance Dissolution

OSG* Partial Partial Not available Not available Not available

EGEE/gLite* Partial Available Not available Not available Not available

CONOISE Available Available Available Not available Available

TrustCoM
Mainly related
to security is-

sues

Mainly related to
security issues Not available Not available Not available

DI-GRUBER Not available Available Partial** Not available Not available

Akogrimo*** Partial Partial Partial Partial Partial

Shirako Not available Available Available Not available Not available

* OSG and EGEE work as consortiums enabling trust among organisations and facilitating the formation of VOs. They also
provide tools for monitoring status of resources and job submissions. EGEE’s WMS performs the scheduling taking into
account multiple VOs.

** DI-GRUPER’s policy decision points allow for the re-adjustment of the VOs according to the current resource shares offered
by providers and the status of the Grid.

*** Akogrimo aims at enabling collaboration between doctors upon the patient’s request or in case of a health emergency.

542

Architectural Elements of Resource Sharing Networks

device. The virtual environments enabled by Shirako can be adapted by leasing additional resources or
terminating leases according to the demands of the virtual organisation it is hosting (Ramakrishnan et
al., 2006). Resource providers in Shirako may offer their resources in return for economic compensa-
tion meaning that the resource providers may not have a common target in solving a particular resource
challenge. This makes the VOs non-targeted.

FUTURE TRENDS

Over the last decade, the distributed computing realm has been characterised by the deployment of
large-scale Grids such as EGEE and TeraGrid. Such Grids have provided the research community with
an unprecedented number of resources, which have been used for various scientific research. However,
the hardware and software heterogeneity of the resources provided by the organisations within a Grid
have increased the complexity of deploying applications in these environments. Recently, application
deployment has been facilitated by the intensifying use of virtualisation technologies.

The increasing ubiquity of virtual machine technologies has enabled the creation of customised en-
vironments atop a physical infrastructure and the emergence of new business models such as virtualised
data centres and cloud computing. The use of virtual machines brings several benefits such as: server
consolidation, the ability to create VMs to run legacy code without interfering in other applications’
APIs, improved security through the creation of application sandboxes, dynamic provisioning of virtual
machines to services, and performance isolation.

Table 5. Mapping of the systems against the propsed VO taxonomies

System Dynamism Goal
Orientation Duration Control Policy Enforcement Facilitators

Conoise* Dynamic/Hybrid Targeted Medium-
lived Decentralised Democratic N/A

TrustCoM** Static Targeted Long-lived N/A N/A N/A

GRUBER/DI-
GRUBER Static Targeted Long-lived Decentralised Decentralised*** N/A

gLite/EGEE Static Targeted Long-lived Centralised Centralised Centralised+

Open Science Grid Static Targeted Long-lived Hierarchical Centralised Market-like

Akogrimo Dynamic/Hybrid Targeted
Short or
Medium-

lived
Decentralised Democratic N/A

Shirako Dynamic Non-targeted Medium-
lived Decentralised Democratic N/A

* Conoise and Akogrimo allow a client using a mobile device to start a VO, thus the VO can comprise fixed and mobile re-
sources.

** TrustCoM deals with security issues and does not provide tools for the management and policy enforcement in VOs.

*** DI-GRUBER uses a network of decision points to guide submitting hosts and schedulers about which resources can execute
the jobs.

+ EGEE Workload Management System is aware of the VOs and schedules jobs accordingly to the VOs in the system.

543

Architectural Elements of Resource Sharing Networks

Existing virtual-machine based resource management systems can manage a cluster of computers
within a site allowing the creation of virtual workspaces (Keahey et al., 2006) or virtual clusters (Foster
et al., 2006; Montero et al., 2008; Chase et al., 2003). They can bind resources to virtual clusters or
workspaces according to a customer’s demand. These resource managers allow the user to create cus-
tomised virtual clusters using shares of the physical machines available at the site. In addition, current
data centres are using virtualisation technology to provide users with the look and feel of taping into a
dedicated computing and storage infrastructure for which they are charged a fee based on usage (e.g.
Amazon Elastic Computing Cloud3 and 3Tera4).

These factors are resulting in the creation of virtual execution environments or slices that span both
commercial and academic computing sites. Virtualisation technologies minimise many of the concerns
that previously prevented the peering of resource sharing networks, such as the execution of unknown
applications and the lack of guarantees over resource control. For the resource provider, substantial
work is being carried out on the provisioning of resources to services and user applications. Techniques
such as workload forecasts along with resource overbooking can reduce the need for over-provisioning
a computing infrastructure. Users can benefit from the improved reliability, the performance isolation,
and the environment isolation offered by virtualisation technologies.

We are likely to see an increase in the number of virtual organisations enabled by virtual machines,
thus allocating resources from both commercial data centres and research testbeds. We suggest that
emerging applications will require the prompt formation of VOs, which are also quickly responsive
and automated. VOs can have dynamic resource demands, which are quickly responded by data centres
relying on virtualisation technologies. There can also be an increase in business workflows relying on
globally available messaging based systems for process synchronisation5. Our current research focuses
on connecting computing sites managed by virtualisation technologies for creating distributed virtual
environments which are used by the user applications.

CONCLUSION

This chapter presents classifications and a survey of systems that can provide means for inter-operating
resource sharing networks. It also provides taxonomies on Virtual Organisations (VOs) with a focus on
Grid computing practices. Hence, we initially discussed the challenges in VOs and presented a background
on the life-cycle of VOs and on resource sharing networks. This chapter suggests that future applications
will require the prompt formation of VOs, which are also quickly responsive and automated. This may
be enabled by virtualisation technology and corroborates the current trends on multiple site containers
or virtual workspaces. Relevant work and technology in the area were presented and discussed.

ACKNOWLEDGMENT

We thank Marco Netto, Alexandre di Costanzo and Chee Shin Yeo for sharing their thoughts on the
topic and helping in improving the structure of this chapter. We are grateful to Mukaddim Pathan for
proof reading a preliminary version of this chapter. This work is supported by research grants from the
Australian Research Council (ARC) and Australian Department of Innovation, Industry, Science and
Research (DIISR). Marcos’ PhD research is partially supported by NICTA.

544

Architectural Elements of Resource Sharing Networks

REFERENCES

A Blueprint for the Open Science Grids. (2004, December). Snapshot v0.9.

Adabala, S., Chadha, V., Chawla, P., Figueiredo, R., Fortes, J., & Krsul, I. (2005, June). From virtual-
ized resources to virtual computing Grids: the In-VIGO system. Future Generation Computer Systems,
21(6), 896–909. doi:10.1016/j.future.2003.12.021

Andrade, N., Brasileiro, F., Cirne, W., & Mowbray, M. (2007). Automatic Grid assembly by promoting
collaboration in peer-to-peer Grids. Journal of Parallel and Distributed Computing, 67(8), 957–966.
doi:10.1016/j.jpdc.2007.04.011

Andrade, N., Cirne, W., Brasileiro, F., & Roisenberg, P. (2003). OurGrid: An approach to easily assemble
Grids with equitable resource sharing. In 9th Workshop on Job Scheduling Strategies for Parallel Pro-
cessing (Vol. 2862, pp. 61–86). Berlin/Heidelberg: Springer.

Australian Partnership for Advanced Computing (APAC) Grid. (2005). Retrieved from http://www.apac.
edu.au/programs/GRID/index.html.

Balazinska, M., Balakrishnan, H., & Stonebraker, M. (2004, March). Contract-based load management
in federated distributed systems. In 1st Symposium on Networked Systems Design and Implementation
(NSDI) (pp. 197-210). San Francisco: USENIX Association.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., et al. (2003). Xen and the art of vir-
tualization. In 19th ACM Symposium on Operating Systems Principles (SOSP ’03) (pp. 164–177). New
York: ACM Press.

Boghosian, B., Coveney, P., Dong, S., Finn, L., Jha, S., Karniadakis, G. E., et al. (2006, June). Nektar,
SPICE and vortonics: Using federated Grids for large scale scientific applications. In IEEE Workshop
on Challenges of Large Applications in Distributed Environments (CLADE). Paris: IEEE Computing
Society.

Brune, M., Gehring, J., Keller, A., & Reinefeld, A. (1999). Managing clusters of geographically distrib-
uted high-performance computers. Concurrency (Chichester, England), 11(15), 887–911. doi:10.1002/
(SICI)1096-9128(19991225)11:15<887::AID-CPE459>3.0.CO;2-J

Bulhões, P. T., Byun, C., Castrapel, R., & Hassaine, O. (2004, May). N1 Grid Engine 6 Features and
Capabilities [White Paper]. Phoenix, AZ: Sun Microsystems.

Butt, A. R., Zhang, R., & Hu, Y. C. (2003). A self-organizing flock of condors. In 2003 ACM/IEEE
Conference on Supercomputing (SC 2003) (p. 42). Washington, DC: IEEE Computer Society.

Buyya, R., Abramson, D., & Giddy, J. (2000, June). An economy driven resource management architec-
ture for global computational power grids. In 7th International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA 2000). Las Vegas, AZ: CSREA Press.

Caromel, D., di Costanzo, A., & Mathieu, C. (2007). Peer-to-peer for computational Grids: Mixing clusters
and desktop machines. Parallel Computing, 33(4–5), 275–288. doi:10.1016/j.parco.2007.02.011

545

Architectural Elements of Resource Sharing Networks

Catlett, C., Beckman, P., Skow, D., & Foster, I. (2006, May). Creating and operating national-scale
cyberinfrastructure services. Cyberinfrastructure Technology Watch Quarterly, 2(2), 2–10.

Chase, J. S., Irwin, D. E., Grit, L. E., Moore, J. D., & Sprenkle, S. E. (2003). Dynamic virtual clusters in
a Grid site manager. In 12th IEEE International Symposium on High Performance Distributed Comput-
ing (HPDC 2003) (p. 90). Washington, DC: IEEE Computer Society.

Chinese National Grid (CNGrid) Project Web Site. (2007). Retrieved from http://www.cngrid.org/

CNGrid GOS Project Web site. (2007). Retrieved from http://vega.ict.ac.cn

Dang, V. D. (2004). Coalition Formation and Operation in Virtual Organisations. PhD thesis, Faculty
of Engineering, Science and Mathematics, School of Electronics and Computer Science, University of
Southampton, Southampton, UK.

de Assunção, M. D., & Buyya, R. (2008, December). Performance analysis of multiple site resource
provisioning: Effects of the precision of availability information [Technical Report]. In International
Conference on High Performance Computing (HiPC 2008) (Vol. 5374, pp. 157–168). Berlin/Heidelberg:
Springer.

de Assunção, M. D., & Buyya, R. (in press). Performance analysis of allocation policies for interGrid
resource provisioning. Information and Software Technology.

de Assunção, M. D., Buyya, R., & Venugopal, S. (2008, June). InterGrid: A case for internetworking
islands of Grids. [CCPE]. Concurrency and Computation, 20(8), 997–1024. doi:10.1002/cpe.1249

Dimitrakos, T., Golby, D., & Kearley, P. (2004, October). Towards a trust and contract management
framework for dynamic virtual organisations. In eChallenges. Vienna, Austria.

Dixon, C., Bragin, T., Krishnamurthy, A., & Anderson, T. (2006, September). Tit-for-Tat Distributed
Resource Allocation [Poster]. The ACM SIGCOMM 2006 Conference.

Dumitrescu, C., & Foster, I. (2004). Usage policy-based CPU sharing in virtual organizations. In 5th
IEEE/ACM International Workshop on Grid Computing (Grid 2004) (pp. 53–60). Washington, DC:
IEEE Computer Society.

Dumitrescu, C., & Foster, I. (2005, August). GRUBER: A Grid resource usage SLA broker. In J. C. Cunha
& P. D. Medeiros (Eds.), Euro-Par 2005 (Vol. 3648, pp. 465–474). Berlin/Heidelberg: Springer.

Dumitrescu, C., Raicu, I., & Foster, I. (2005). DI-GRUBER: A distributed approach to Grid resource
brokering. In 2005 ACM/IEEE Conference on Supercomputing (SC 2005) (p. 38). Washington, DC:
IEEE Computer Society.

Dumitrescu, C., Wilde, M., & Foster, I. (2005, June). A model for usage policy-based resource allocation
in Grids. In 6th IEEE International Workshop on Policies for Distributed Systems and Networks (pp.
191–200). Washington, DC: IEEE Computer Society.

Elmroth, E., & Gardfjäll, P. (2005, December). Design and evaluation of a decentralized system for
Grid-wide fairshare scheduling. In 1st IEEE International Conference on e-Science and Grid Computing
(pp. 221–229). Melbourne, Australia: IEEE Computer Society Press.

546

Architectural Elements of Resource Sharing Networks

Enabling Grids for E-sciencE (EGEE) project. (2005). Retrieved from http://public.eu-egee.org.

Epema, D. H. J., Livny, M., van Dantzig, R., Evers, X., & Pruyne, J. (1996). A worldwide flock of con-
dors: Load sharing among workstation clusters. Future Generation Computer Systems, 12(1), 53–65.
doi:10.1016/0167-739X(95)00035-Q

Fontán, J., Vázquez, T., Gonzalez, L., Montero, R. S., & Llorente, I. M. (2008, May). OpenNEbula: The
open source virtual machine manager for cluster computing. In Open Source Grid and Cluster Software
Conference – Book of Abstracts. San Francisco.

Foster, I., Freeman, T., Keahey, K., Scheftner, D., Sotomayor, B., & Zhang, X. (2006, May). Virtual
clusters for Grid communities. In 6th IEEE International Symposium on Cluster Computing and the
Grid (CCGRID 2006) (pp. 513–520). Washington, DC: IEEE Computer Society.

Foster, I., & Kesselman, C. (1997, Summer). Globus: A metacomputing infrastructure toolkit. The In-
ternational Journal of Supercomputer Applications, 11(2), 115–128.

Foster, I., Kesselman, C., & Tuecke, S. (2001). The anatomy of the Grid: Enabling scalable virtual or-
ganizations. The International Journal of Supercomputer Applications, 15(3), 200–222.

Frey, J., Tannenbaum, T., Livny, M., Foster, I. T., & Tuecke, S. (2001, August). Condor-G: A computation
management agent for multi-institutional Grids. In 10th IEEE International Symposium on High Perfor-
mance Distributed Computing (HPDC 2001) (pp. 55–63). San Francisco: IEEE Computer Society.

Fu, Y., Chase, J., Chun, B., Schwab, S., & Vahdat, A. (2003). SHARP: An architecture for secure resource
peering. In 19th ACM Symposium on Operating Systems Principles (SOSP 2003) (pp. 133–148). New
York: ACM Press.

gLite - Lightweight Middleware for Grid Computing. (2005). Retrieved from http://glite.web.cern.ch/
glite.

Graupner, S., Kotov, V., Andrzejak, A., & Trinks, H. (2002, August). Control Architecture for Service
Grids in a Federation of Utility Data Centers (Technical Report No. HPL-2002-235). Palo Alto, CA:
HP Laboratories Palo Alto.

Grid Interoperability Now Community Group (GIN-CG). (2006). Retrieved from http://forge.ogf.org/
sf/projects/gin.

Grimme, C., Lepping, J., & Papaspyrou, A. (2008, April). Prospects of collaboration between compute
providers by means of job interchange. In Job Scheduling Strategies for Parallel Processing (Vol. 4942,
p. 132-151). Berlin / Heidelberg: Springer.

Grit, L. E. (2005, October). Broker Architectures for Service-Oriented Systems [Technical Report].
Durham, NC: Department of Computer Science, Duke University.

Grit, L. E. (2007). Extensible Resource Management for Networked Virtual Computing. PhD thesis,
Department of Computer Science, Duke University, Durham, NC. (Adviser: Jeffrey S. Chase)

547

Architectural Elements of Resource Sharing Networks

Haji, M. H., Gourlay, I., Djemame, K., & Dew, P. M. (2005). A SNAP-based community resource broker
using a three-phase commit protocol: A performance study. The Computer Journal, 48(3), 333–346.
doi:10.1093/comjnl/bxh088

Hey, T., & Trefethen, A. E. (2002). The UK e-science core programme and the Grid. Future Generation
Computer Systems, 18(8), 1017–1031. doi:10.1016/S0167-739X(02)00082-1

Huang, R., Casanova, H., & Chien, A. A. (2006, April). Using virtual Grids to simplify application
scheduling. In 20th International Parallel and Distributed Processing Symposium (IPDPS 2006). Rho-
des Island, Greece: IEEE.

Huedo, E., Montero, R. S., & Llorente, I. M. (2004). A framework for adaptive execution in Grids.
Software, Practice & Experience, 34(7), 631–651. doi:10.1002/spe.584

Iosup, A., Epema, D. H. J., Tannenbaum, T., Farrellee, M., & Livny, M. (2007, November). Inter-operating
Grids through delegated matchmaking. In 2007 ACM/IEEE Conference on Supercomputing (SC 2007)
(pp. 1–12). New York: ACM Press.

Irwin, D., Chase, J., Grit, L., Yumerefendi, A., Becker, D., & Yocum, K. G. (2006, June). Sharing
networked resources with brokered leases. In USENIX Annual Technical Conference (pp. 199–212).
Berkeley, CA: USENIX Association.

Katzy, B., Zhang, C., & Löh, H. (2005). Virtual organizations: Systems and practices. In L. M. Cama-
rinha-Matos, H. Afsarmanesh, & M. Ollus (Eds.), (p. 45-58). New York: Springer Science+Business
Media, Inc.

Keahey, K., Foster, I., Freeman, T., & Zhang, X. (2006). Virtual workspaces: Achieving quality of service
and quality of life in the Grids. Science Progress, 13(4), 265–275.

Kertész, A., Farkas, Z., Kacsuk, P., & Kiss, T. (2008, April). Grid enabled remote instrumentation. In F.
Davoli, N. Meyer, R. Pugliese, & S. Zappatore (Eds.), 2nd International Workshop on Distributed Coop-
erative Laboratories: Instrumenting the Grid (INGRID 2007) (pp. 303–312). New York: Springer US.

Kim, K. H., & Buyya, R. (2007, September). Fair resource sharing in hierarchical virtual organizations
for global Grids. In 8th IEEE/ACM International Conference on Grid Computing (Grid 2007) (pp.
50–57). Austin, TX: IEEE.

Legrand, I., Newman, H., Voicu, R., Cirstoiu, C., Grigoras, C., Toarta, M., et al. (2004, September-
October). Monalisa: An agent based, dynamic service system to monitor, control and optimize Grid based
applications. In Computing in High Energy and Nuclear Physics (CHEP), Interlaken, Switzerland.

Litzkow, M. J., Livny, M., & Mutka, M. W. (1988, June). Condor – a hunter of idle workstations. In 8th
International Conference of Distributed Computing Systems (pp. 104–111). San Jose, CA: Computer
Society.

Metz, C. (2001). Interconnecting ISP networks. IEEE Internet Computing, 5(2), 74–80.
doi:10.1109/4236.914650

Mohamed, H., & Epema, D. (in press). KOALA: A co-allocating Grid scheduler. Concurrency and
Computation.

548

Architectural Elements of Resource Sharing Networks

Montero, R. S., Huedo, E., & Llorente, I. M. (2008, September/October). Dynamic deployment of custom
execution environments in Grids. In 2nd International Conference on Advanced Engineering Computing
and Applications in Sciences (ADVCOMP ’08) (pp. 33–38). Valencia, Spain: IEEE Computer Society.

National e-Science Centre. (2005). Retrieved from http://www.nesc.ac.uk.

Norman, T. J., Preece, A., Chalmers, S., Jennings, N. R., Luck, M., & Dang, V. D. (2004). Agent-
based formation of virtual organisations. Knowledge-Based Systems, 17, 103–111. doi:10.1016/j.
knosys.2004.03.005

Open Science Grid. (2005). Retrieved from http://www.opensciencegrid.org

Open Source Metascheduling for Virtual Organizations with the Community Scheduler Framework
(CSF) (Tech. Rep.) (2003, August). Ontario, Canada: Platform Computing.

OpenPBS. The portable batch system software. (2005). Veridian Systems, Inc., Mountain View, CA.
Retrieved from http://www.openpbs.org/scheduler.html

Padala, P., Shin, K. G., Zhu, X., Uysal, M., Wang, Z., Singhal, S., et al. (2007, March). Adaptive control
of virtualized resources in utility computing environments. In 2007 Conference on EuroSys (EuroSys
2007) (pp. 289-302). Lisbon, Portugal: ACM Press.

Patel, J., Teacy, L. W. T., Jennings, N. R., Luck, M., Chalmers, S., & Oren, N. (2005). Agent-based virtual
organisations for the Grids. International Journal of Multi-Agent and Grid Systems, 1(4), 237–249.

Peterson, L., Muir, S., Roscoe, T., & Klingaman, A. (2006, May). PlanetLab Architecture: An Overview
(Tech. Rep. No. PDN-06-031). Princeton, NJ: PlanetLab Consortium.

PlanetLab Europe. (2008). Retrieved from http://www.planet-lab.eu/.

Ramakrishnan, L., Irwin, D., Grit, L., Yumerefendi, A., Iamnitchi, A., & Chase, J. (2006). Toward a
doctrine of containment: Grid hosting with adaptive resource control. In 2006 ACM/IEEE Conference
on Supercomputing (SC 2006) (p. 101). New York: ACM Press.

Ranjan, R., Buyya, R., & Harwood, A. (2005, September). A case for cooperative and incentive-based
coupling of distributed clusters. In 7th IEEE International Conference on Cluster Computing. Boston,
MA: IEEE CS Press.

Ranjan, R., Harwood, A., & Buyya, R. (2006, September). SLA-based coordinated superscheduling
scheme for computational Grids. In IEEE International Conference on Cluster Computing (Cluster
2006) (pp. 1–8). Barcelona, Spain: IEEE.

Ranjan, R., Rahman, M., & Buyya, R. (2008, May). A decentralized and cooperative workflow sched-
uling algorithm. In 8th IEEE International Symposium on Cluster Computing and the Grid (CCGRID
2008). Lyon, France: IEEE Computer Society.

Ricci, R., Oppenheimer, D., Lepreau, J., & Vahdat, A. (2006, January). Lessons from resource al-
locators for large-scale multiuser testbeds. SIGOPS Operating Systems Review, 40(1), 25–32.
doi:10.1145/1113361.1113369

549

Architectural Elements of Resource Sharing Networks

Rubio-Montero, A., Huedo, E., Montero, R., & Llorente, I. (2007, March). Management of virtual
machines on globus Grids using GridWay. In IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2007) (pp. 1–7). Long Beach, USA: IEEE Computer Society.

Ruth, P., Jiang, X., Xu, D., & Goasguen, S. (2005, May). Virtual distributed environments in a shared
infrastructure. IEEE Computer, 38(5), 63–69.

Ruth, P., McGachey, P., & Xu, D. (2005, September). VioCluster: Virtualization for dynamic compu-
tational domain. In IEEE International on Cluster Computing (Cluster 2005) (pp. 1–10). Burlington,
MA: IEEE.

Ruth, P., Rhee, J., Xu, D., Kennell, R., & Goasguen, S. (2006, June). Autonomic live adaptation of virtual
computational environments in a multi-domain infrastructure. In 3rd IEEE International Conference on
Autonomic Computing (ICAC 2006) (pp. 5-14). Dublin, Ireland: IEEE.

Sairamesh, J., Stanbridge, P., Ausio, J., Keser, C., & Karabulut, Y. (2005, March). Business Models for
Virtual Organization Management and Interoperability (Deliverable A - WP8&15 WP - Business &
Economic Models No. V.1.5). Deliverable document 01945 prepared for TrustCom and the European
Commission.

Schwiegelshohn, U., & Yahyapour, R. (1999). Resource allocation and scheduling in metasystems. In
7th International Conference on High-Performance Computing and Networking (HPCN Europe ’99)
(pp. 851–860). London, UK: Springer-Verlag.

Shoykhet, A., Lange, J., & Dinda, P. (2004, July). Virtuoso: A System For Virtual Machine Marketplaces
[Technical Report No. NWU-CS-04-39]. Evanston/Chicago: Electrical Engineering and Computer Sci-
ence Department, Northwestern University.

Siddiqui, M., Villazón, A., & Fahringer, T. (2006). Grid capacity planning with negotiation-based ad-
vance reservation for optimized QoS. In 2006 ACM/IEEE Conference on Supercomputing (SC 2006)
(pp. 21–21). New York: ACM.

Smarr, L., & Catlett, C. E. (1992, June). Metacomputing. Communications of the ACM, 35(6), 44–52.
doi:10.1145/129888.129890

Svirskas, A., Arevas, A., Wilson, M., & Matthews, B. (2005, October). Secure and trusted virtual orga-
nization management. ERCIM News (63).

The TrustCoM Project. (2005). Retrieved from http://www.eu-trustcom.com.

Vázquez-Poletti, J. L., Huedo, E., Montero, R. S., & Llorente, I. M. (2007). A comparison between two grid
scheduling philosophies: EGEE WMS and Grid Way. Multiagent and Grid Systems, 3(4), 429–439.

Venugopal, S., Nadiminti, K., Gibbins, H., & Buyya, R. (2008). Designing a resource broker for hetero-
geneous Grids. Software, Practice & Experience, 38(8), 793–825. doi:10.1002/spe.849

Wang, Y., Scardaci, D., Yan, B., & Huang, Y. (2007). Interconnect EGEE and CNGRID e-infrastructures
through interoperability between gLite and GOS middlewares. In International Grid Interoperability
and Interoperation Workshop (IGIIW 2007) with e-Science 2007 (pp. 553–560). Bangalore, India: IEEE
Computer Society.

550

Architectural Elements of Resource Sharing Networks

Wasson, G., & Humphrey, M. (2003). Policy and enforcement in virtual organizations. In 4th Interna-
tional Workshop on Grid Computing (pp. 125–132). Washington, DC: IEEE Computer Society.

Wesner, S., Dimitrakos, T., & Jeffrey, K. (2004, October). Akogrimo - the Grid goes mobile. ERCIM
News, (59), 32-33.

ENDNOTES

1 http://www.vmware.com/
2 The personal communication amongst GIN-CG members is online at: http://www.ogf.org/pipermail/

gin-ops/2007-July/000142.html
3 http://aws.amazon.com/ec2/
4 http://www.3tera.com/
5 http://aws.amazon.com/sqs/

