
Reputation-based Dependable Scheduling of Workflow Applications in Peer-to-Peer Grids

Mustafizur Rahmana,∗, Rajiv Ranjanb, Rajkumar Buyyaa

aCloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computer Science and Software Engineering
The University of Melbourne, Victoria 3010, Australia

bService Oriented Computing (SOC) Research Group, School of Computer Science and Engineering
The University of New South Wales, Sydney, Australia

Abstract

Grids facilitate creation of wide-area collaborative environment for sharing computing or storage resources and various applications.
Inter-connecting distributed Grid sites through peer-to-peer routing and information dissemination structure (also known as Peer-
to-Peer Grids) is essential to avoid the problems of scheduling efficiency bottleneck and single point of failure in the centralized or
hierarchical scheduling approaches. On the other hand, uncertainty and unreliability are facts in distributed infrastructures such as
Peer-to-Peer Grids, which are triggered by multiple factors including scale, dynamism, failures, and incomplete global knowledge.

In this paper, a reputation-based Grid workflow scheduling technique is proposed to counter the effect of inherent unreliability
and temporal characteristics of computing resources in large scale, decentralized Peer-to-Peer Grid environments. The proposed
approach builds upon structured peer-to-peer indexing and networking techniques to create a scalable wide-area overlay of Grid
sites for supporting dependable scheduling of applications. The scheduling algorithm considers reliability of a Grid resource as
a statistical property, which is globally computed in the decentralized Grid overlay based on dynamic feedbacks or reputation
scores assigned by individual service consumers mediated via Grid resource brokers. The proposed algorithm dynamically adapts
to changing resource conditions and offers significant performance gains as compared to traditional approaches in the event of
unsuccessful job execution or resource failure. The results evaluated through an extensive trace driven simulation show that our
scheduling technique can reduce the makespan up to 50% and successfully isolate the failure-prone resources from the system.

Keywords: Grid Computing, Workflow, Decentralized Management, Dependable scheduling, Peer-to-Peer Computing

1. Introduction

Grid computing enables the sharing, selection, and aggre-
gation of geographically distributed heterogeneous resources,
such as computational clusters, supercomputers, storage de-
vices, and scientific instruments. These resources are under
control of different Grid sites and being utilized to solve many
important scientific, engineering, and business problems.

Inter-connecting distributed Grid sites through peer-to-peer
routing and information dissemination structure (also known
as Peer-to-Peer Grids) is essential to avoid the problems of
scheduling efficiency bottleneck and single point of failure in
the centralized or hierarchical scheduling approaches. Peer-to-
Peer Grid (P2PG) model offers an opportunity for every site to
pool its local resources as part of a single, massive scale re-
source sharing abstraction. P2PG infrastructures are large, het-
erogeneous, complex, uncertain and distributed.

In a P2PG, both control and decision making are decentral-
ized by nature and different system components (users, ser-
vices, application components) interact together to adaptively
maintain and achieve a desired system wide behaviour. Further-

∗Corresponding author. Tel.: +61 3 8344 1355; fax: +61 3 9348 1184.
Email addresses: mmrahman@csse.unimelb.edu.au (Mustafizur

Rahman), rajiv@unsw.edu.au (Rajiv Ranjan),
raj@csse.unimelb.edu.au (Rajkumar Buyya)

more, the availability, performance, and state of resources, ap-
plications and services undergo continuous changes during the
life cycle of an application. Thus uncertainty and unreliability
are facts in P2PG infrastructures, which are triggered by multi-
ple factors, including: (i) software and hardware failures as the
system and application scale that lead to severe performance
degradation and critical information loss; (ii) dynamism (unex-
pected failure) that occurs due to temporal behaviours, which
should be detected and resolved at runtime to cope with chang-
ing conditions; and (iii) lack of complete global knowledge that
hampers efficient decision making as regards to composition
and deployment of the application elements.

The aforementioned challenges are addressed in this paper
by developing a novel self-managing [1] scheduling algorithm
for workflow applications that takes into account the Grid site’s
prior performance and behaviour for facilitating opportunistic
and context-aware placement of application components. The
proposed scheduling algorithm is fully dependable, as it is ca-
pable of dynamically adapting to the changes in system be-
haviour by taking into consideration the performance metrics
of Grid sites (software and hardware capability, availability,
failure). The dependability of a Grid site is quantified using
a decentralized reputation model, which computes local and
global reputation scores for a Grid site based on the feedbacks
provided by the scheduling services that have previously sub-

Preprint submitted to Elsevier May 30, 2010

mitted their applications to that site. In particular, this paper
contributes the following to the state-of-the-art in the Grid
scheduling paradigm :

A novel Grid scheduling algorithm that aids the Grid sched-
ulers such as resource brokers in achieving improved perfor-
mance and automation through intelligent and opportunistic
placement of application elements based on context awareness
and dependability.

Further, the effectiveness of this contribution is appraised
through:

(i) A comprehensive simulation-driven analysis of the pro-
posed approach based on realistic and well-known application
failure models to capture the transient behaviours that prevails
in existing Grid-based e-Science application execution environ-
ments;

(ii) A comparative evaluation that demonstrates the self-
adaptability of the proposed approach in comparison to Grid en-
vironments where: (1) resource/application behaviours do not
change (i.e. no failure occurs), therefore no self-management is
required and, (2) transient conditions exist but runtime systems
and application elements have no capability to self-adapt.

The remainder of this paper is organized as follows. The re-
lated work that are focused on dependable application schedul-
ing, distributed reputation models and Grid workflow manage-
ment is presented in next section. Section 3 provides a brief
discussion related to key system models in regard to overlay
creation, application composition, task failure and application
scheduling. In Section 4, we provide the distributed reputa-
tion management technique and the algorithms related to pro-
posed dependable scheduling approach with example. Simula-
tion setup, performance metrics and key findings of the exper-
iments performed are analyzed and discussed in Section 5. Fi-
nally, we conclude the paper with the direction for future work.

2. Related Work

The main focus of this section is to compare the novelty of
the proposed work with respect to existing approaches. We
classify the related research into three main areas:

2.1. Dependable Scheduling
A recent work by Jik-Soo et al. [19] that advocates Content

Addressable Network [28], DHT based dynamic propagation
and load-balancing in desktop Grids, suffer from performance
uncertainty and unreliability due to lack of context awareness
in scheduling. A most recent proposal or reputation-driven
scheduling in context of voluntary computing environments
(desktop grids) has been put forward by Jason et al. [31]. They
consider a centralized system model, where a central server is
assigned responsibility for maintaining reliability ratings that
form the basis for assigning tasks to group of voluntary nodes.
Such centralized models for scheduling and reputation manage-
ment [2] present serious bottleneck as regards to scalability of
the system and autonomy of Grid sites. Moreover, these ap-
proaches are targeted on bag of tasks type of application model,
whereas our approach considers scheduling of workflow ap-
plications. Currently, Grid information services [9], on which

Grid schedulers [13] depend for resource selection, do not pro-
vide information regarding how the resources have performed
in the recent past (performance history) or at what level they
are rated by other schedulers in the system as regards to QoS
satisfaction.

2.2. Distributed Reputation Models

There has been considerable amount of research work done
in Peer-to-Peer (P2P) reputation systems to evaluate the trust-
worthiness of participating peers. These reputation systems are
targeted towards P2P file sharing networks that focus on sharing
and distribution of information in Internet-based environments.
The PoweTrust model proposed by Zhou et al. [39], utilizes
single dimensional Overlay Hashing Functions (OHFs) for: (i)
aassigning score managers for peers in the system and (ii) ag-
gregating/computing the global reputation score. These kinds
of OHFs are adequate if the search for peers/resources is based
on single keyword (such as file name) or where there is single
ordering in search values. However, OHFs are unable to support
(or support with massive overhead) searches containing multi-
ple keywords, range queries (such as search for a Grid site that
has: Linux operating system, 100 processors, Intel architecture,
and reputation ≥ 0.5). The EigentTrust model [17] suggested
by Kamvar et al. also suffers from the shortcomings mentioned
above. To overcome these limitations, in the proposed approach
a d-dimensional data distribution technique [26] is applied on
the overlay of peers for managing the information related to
complex searches and reputation values.

2.3. Grid Workflow Management

With the increasing interest in Grid workflows, many Grid
workflow systems such as Pegasus [10], Triana [34], Taverna
[22], Condor DAGMan [20], Kepler [21], SwinDeW-G [37],
Gridbus [38] and Askalon [12] have been developed in recent
years. Among these systems, in terms of workflow schedul-
ing infrastructure, SwinDeW-G and Triana utilize decentral-
ized P2P based technique. However, the P2P communication
in SwinDeW-G and Triana is implemented by JXTA protocol,
which uses a broadcast technique. In this work, we use a DHT
(such as Chord) based P2P system for handling resource dis-
covery and scheduling coordination. The employment of DHT
gives the system the ability to perform deterministic discovery
of resources and produce controllable number of messages in
comparison to using JXTA.

3. System Models

3.1. Grid Model

The proposed scheduling algorithm utilizes the P2PG [27]
model in regards to distributed resource organization and Grid
networking.

Definition 1 (Peer-to-Peer Grid): The P2PG Gp =

{S 1, S 2, ..., S n} consists of a number of sites n; with each site
contributing its local resource to the Grid. Every site in the
P2PG has its own resource descriptor Di which contains the
definition of the resource that it is willing to contribute. Di

2

can include information about the CPU architecture, number
of processors, memory size, secondary storage size, operating
system type, etc.

In this work, Di = (pi, ai, si, oi), which includes the number
of processors pi, processor architecture ai, their speed si, and
installed operating system type oi. In Table 1, the definitions
for symbols that are utilized in this paper are presented.

The application scheduling and resource discovery in the
P2PG is facilitated by a specialized Grid Resource Management
System (GRMS) known as Grid Autonomic Scheduler (GAS).
Every contributing Grid site maintains its own GAS service. A
GAS service is composed of the software components: Grid
Autonomic Manager (GAM), Local Resource Management
System (LRMS) and Grid Peer.

Infrastructure
layer

(Grid Peer)

Resource
layer

Programming
layer

Grid resources

Virtual Machine (VM), Local Resource Manager

Scheduling, Fault-Management, Monitoring, Allocation,
Access Control, Publish/Subscribe

Grid programming: runtime environments and tools
Brokers, Workflow Engine, Grid Autonomic Manager

Apps Composition PlatformsApps Composition Platforms

Self-Organizing Routing Structure (DHT)

Data organization techniques, Replication, Load balancing

Discovery, Coordination, Messaging

UserApplication PortalResearcher

Figure 1: Layerd Design of Peer-to-Peer Grid architecture

The GAM component of GAS exports a Grid site to the out-
side world and is responsible for scheduling locally submitted
jobs (workflows, parallel applications) in the P2PG. Further,
it also manages the execution of remote jobs (workflows) in
conjunction with the local resource management system. The
LRMS software module can be realized using systems such as
SGE (Sun Grid Engine) [15] and PBS [5]. Additionally, LRMS
performs other activities for facilitating Grid wide job submis-
sion and migration process such as answering the GAM queries
related to local job queue length, expected response time, and
current resource utilization status.

P2PG requires supporting technologies to enable scalable
collaboration and communication between resources and ser-
vices across multiple Grid sites. For supporting the required
functions, it is mandatory to build some kind of overlay net-
work on top of the physical routing network. To this end, the
Grid peer (see Fig. 1) implements an overlay (infrastructure
level core services) for enabling decentralized and distributed
resource discovery supporting resources status lookups and up-
dates across the P2PG. It also enables decentralized inter-GAM

collaboration for optimizing load-balancing and distributed re-
source provisioning. These core services are divided into a
number of sub-layers (refer to Fig. 1): (i) higher level ser-
vices for discovery, coordination, and messaging; (ii) low level
distributed indexing and data organization techniques; and (iii)
self-organizing overlay that builds over Distributed Hash Table
(DHT) [32, 28] routing structure.

Table 1: Notations: Grid, Reputation, Failure models and Metrics
Symbol Meaning

Grid
n number of sites or GASs in the Grid system
S i i-th Grid site in the system

GAS i i-th GAS in the system
ai processor architecture for resource at site S i.
pi number of processors for resource at site S i.
oi type of operating system for resource at site S i.
si processor speed for resource at site S i.

Reputation
succ(i, j, k) output of result verification function for task Tk of S j

executed by S i.
f eed(i, j, k)t feedback score of task Tk from S j for S i after t trans-

actions.
NFi total number of negetive feedbacks given by other sites

for S i.
T Ft

i transaction feedback value for S i after t transactions
by S i.

T Ft
i, j transaction feedback value from S j for S i after t trans-

actions.
GRt

i global reputation of S i after t transactions.
LRt

i, j local reputation of S i according to S j after t transac-
tions.

MLR local reputation matrix.
MGR global reputation matrix.

LRinitial initial local reputation value of each site.
GRinitial initial global reputation value of each site.

Rth reputation threshold of a site for a task to be mapped
by scheduler.

τre f resh time interval after which initial value is assigned to
reputation score of a site.

Failure
f pi task failing probability of Grid site S i.

X Y failure distribution, where X% sites fail task with prob-
ability between Y and Y + 0.1.

Metrics
Mi, j,k makespan of k-th workflow submitted by j-th user of

i-th Grid site.
Maverage average makespan per workflow in the system.

Fi number of tasks failed by site S i.
Ftotal total number of tasks failed in the system.
S CHi number of tasks scheduled by GAS i.

S CHtotal total number of tasks scheduled in the system.
ρMaverage ,Ftotal Pearson’s correlation coefficient between Maverage and

Ftotal.

A Grid Peer service accepts three basic types of objects
from the GAM service as regards to dependable and dynamic
scheduling: (i) a claim, is an object sent by a GAM to the DHT
overlay for locating the resources that match the user’s appli-
cation requirements, (ii) a ticket, is an update object sent by a
Grid site, mentioning about the underlying resource conditions,
and (iii) a feedback, is an object sent by a GAM regarding the
reputation of a Grid site in the system upon the output arrival
of a previously submitted task. Examples of claim, ticket and
feedback objects are shown in Table 2, 3 and 4. In general, a

3

Table 2: Claims stored with the coordination service at time t

Time Claim ID sxi, j,k pxi, j,k axi, j,k oxi, j,k Rank
200 Claim 1 > 800 1 Intel Linux 0.2
350 Claim 2 > 1200 1 Intel Linux 0.3
500 Claim 3 > 700 1 Sparc Solaris 0.1
700 Claim 4 > 1500 1 Intel Windows XP 0.4

Table 3: Ticket published to the coordiation service at time t

Time GFA ID si pi pi avail ai oi
900 GFA-8 1400 3 2 Intel Linux

Grid resource is identified by more than one attribute (such as
number of processors, type of operating system, CPU speed); so
a claim, ticket or feedback object is always multi-dimensional.
Further, each of these objects can specify different kinds of con-
straints on the attribute values. More details on how these ob-
jects are routed and mapped is given in Section 4.3.3.

3.2. Application Model

In this work, we consider the Scientific workflow applica-
tions as the case study for the proposed scheduling approach.
A Scientific workflow application can modeled as a Directed
Acyclic Graph (DAG), where the tasks in the workflow are rep-
resented as nodes in the graph and the dependencies among the
tasks are represented as the directed arcs among the nodes. In
general, a task in a workflow is a set of instructions that can
be executed on a single processing element of a computing re-
source [7]. Examples of such workflow applications are [4],
[35], [30], [11], and [24].

Definition 2 (Scientific Workflows): Scientific workflows de-
scribe a series of large number of structured activities and com-
putations that arise in scientific problem solving. Usually, sci-
entific workflows are data or computation intensive and the
activities in the workflow have data or control dependencies
among them.

Example 1: Let, V be the finite set of tasks
{T1,T2, . . . ,Tx, . . . ,Ty,Tn} of a workflow and E be the set
of dependencies among the tasks of the form {Tx,Ty} where, Tx

is the parent task of Ty. Thus, the workflow can be represented
as, W = { V, E }.

In a workflow, an entry task does not have any parent task
and an exit task does not have any child task. We also assume
that a child task can not be executed until all of its parent tasks

Table 4: Feedbacks sent by different Grid sites to the coordination service

Feedback ID From For User ID Workflow ID Task ID Score
002 S 3 S 1 1 1 4 1.0
040 S 2 S 9 1 2 6 0.5
100 S 2 S 9 1 2 9 0.42
251 S 5 S 10 1 3 89 0.5

E
xe

cu
ti

o
n

 t
im

e
 o

f
e

a
ch

 t
a

sk
 i

n
 t

h
e

 s
y

st
e

m
 (

se
c)

600000

800000

1000000

Actual Execution Time Weibull Execution Time

X+α

X-α

X+α

X-α

Not failNot fail

Subject to failure
Subject to failure

E
xe

cu
ti

o
n

 t
im

e
 o

f
e

a
ch

 t
a

sk
 i

n
 t

h
e

 s
y

st
e

m
 (

se
c)

0

200000

400000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Task Number

Figure 3: Determination of tasks likely-to-fail based on the distribution of ex-
perimental and Weibull task execution time.

are completed. At any time of scheduling, the task that has all
of its parent tasks finished, is called a ready task.

3.3. Failure Model

The Weibull distribution [18] is one of the most commonly
used distributions in reliability engineering and has become a
standard in reliability textbook for modeling time-dependant
failure data. Therefore, in this work, we use a 2-parameter
weibull distribution to determine whether a task execution is
subject to failure or success in the system. The 2-parameter
weibull distribution is generally characterized by two parame-
ters: shape parameter, β and scale parameter, η. Fig. 2 shows
the actual and weibull distribution of the task execution time in
the system.

After a task has finished its execution on a resource, the exe-
cution time or the computational cost of that task is measured.
If it falls within a certain range of the weibull distribution, then
the task is considered as likely-to-fail. A task execution may fail
for various reasons (e.g. the resource does not have appropri-
ate libraries installed, executables are outdated or the resource
has been restarted before sending all the output files). Thus,
whether a task is likely to be failed is derived from weibull
distribution and the logic for determining this is illustrated in
Fig. 3.

Next, if a task is likely-to-fail, then whether it will be consid-
ered as a failed task further depends on the failure probability
f pi of the resource at site S i that has been assigned to execute
the task. For this, we generate a uniform random number be-
tween 0 and 1. If the value of this random number is less than
f pi, then the task is failed, otherwise it is successful.

Definition 3 (Failure Probability): Failure Probability, f pi is
defined as the likelihood or chance that the resource at Grid site
S i will fail the execution of a workflow task that is likely-to-fail
in the system.

Example 2: Let us consider that failure probability of the
resource at Grid site S 2 is 0.57. Hence, S 2 will fail 57 of the
100 likely-to-fail tasks assigned to it for execution.

4

0 1 2 3 4 5 6 7 8 9 10

x 102

0

200

400

600

800

1000

1200

Actual execution time (sec)

C
ou

nt

(a) Histogram of task execution time based on experiments
(Average execution time = 141 sec).

0 1 2 3 4 5 6 7 8 9 10

x 102

0

200

400

600

800

1000

1200

Weibull execution time (sec)

C
o

u
n

t

(b) Histogram of task execution time based on weibull distri-
bution (β = 1.2, η = 141).

Figure 2: Distribution of task execution time.

4. Proposed Methodology

4.1. Distributed Reputation Management

In this section, we propose the key methods related to the dis-
tributed reputation management and its application to depend-
able scheduling.

In a fully decentralized and distributed Grid overlay, the P2P
reputation system calculates the reputation score for a Grid site
S i by considering the opinions (i.e. feedbacks) [39, 17] from
all the Grid sites ∈ {S 1, S 2, . . . , S n}, who have previously in-
teracted with S i. After a Grid site S j completes a transaction
with another Grid site S i, S j provides its feedback for S i to
the overlay, which is utilized to compute the reputation of S i.
This reputation value drives the future application scheduling
decision making in choosing S i for task execution. A Grid
site, which accumulates higher reputation in the system is ex-
pected to be popular in the overlay. Over the period of time, the
distributed scheduling services (GASs) in the system are more
likely to prefer that site in the future for placement of tasks. On
the other hand, a Grid site that performs badly over a period
of time would accumulate comparatively lower reputation and
will eventually be shunted out of the system, i.e. would receive
none or very few job submissions from the schedulers (GAS).

In the proposed approach, the overlay maintains two reputa-
tion scores for each Grid site: (i) Global Reputation (GR) and
(ii) Local Reputation (LR). Here, the GAS service (on behalf of
local Grid site and users) rates the Grid sites, to which it sub-
mits a task, after every successful transaction (task completion)
or unsuccessful transaction (task failure) based on a feedback
function, f eed(i, j, k). The local and global reputation scores
for Grid sites are stored within the distributed overlay in the
form of local and global reputation matrix. These values are re-
cursively aggregated from the feedback scores after each trans-
action and utilized by the scheduling algorithm to dynamically
quantify the reliability of the sites.

4.1.1. Feedback Generation
GAS services can use a variety of rating functions based on

system consensus for computing the feedback value. Some of

the example functions can include the model used by eBay sys-
tem. The reputation scheme in eBay is simple: +1 for a good
or successful transaction, −1 for a poor or failed feedback, and
0 for a neutral or don’t-care feedback. In this model, the feed-
back score has three discrete values, which evaluate the result
of a transaction. However, this model does not incorporate dif-
ferent types of behaviour of the participating entities (e.g. an
entity is failing transactions of only a particular entity, an entity
is failing transactions only at the beginning or an entity is gener-
ating successful and unsuccessful transactions alternately) into
the feedback score, which is required to be considered in case
of heterogeneous and dynamic resource sharing Grid environ-
ments.

In our feedback model, the GAS service at site S j computes
the feedback, f eed(i, j, k) for a Grid site S i dynamically after
each transaction (i.e. S i completes execution of a task Tk sub-
mitted by S j). First, S j verifies the output of a task returned by
S i using the result verification function success(i, j, k) that as-
signs a value ∈ {0,1}, where 0 represents an unsuccessful/failed
task execution and 1 represents a successful task execution. A
task execution may fail for various reasons (e.g. the resource
does not have appropriate libraries installed, executables are
outdated or resource has been restarted before sending all the
output files). The result verification function is represented as,

success(i, j, k) =
{1 if task execution is sucessful

0 if task execution is failed
(1)

Then S j generates the feedback score based on the value as-
signed by result verification function. If the assigned value is 1,
feedback score is 1; on the other hand if the assigned valued is
0 then the feedback score is calculated from an exponential dis-
tribution. The output given by the exponential function (refer
to Fig. 4) is varied over the number of failed transactions be-
tween the corresponding two Grid sites. The objective of using
this exponential function is to give a Grid site greater opportu-
nity to execute tasks at the beginning so that it is not shunted
out of the system after only few failed transactions. However,
if a site continues to fail more transactions, the value for ex-
ponential function approaches 0. Thus, if Fi, j is the number of

5

unsuccessful task executions by S i with S j, the feedback score
for task Tk, after t transactions by S i with S j can be represented
as,

f eed(i, j, k)t =
{1 if success(i,j,k) = 1

α
F

1
β f

i, j
f if success(i,j,k) = 0

(2)

where, 0 < α f ≤ 0.5 and β f ∈ {1, 2, 3}.
If the feedback score given by a Grid site S j is 1, we consider

it as Positive Feedback (PF), whereas a Negative Feedback (NF)
is attained if feedback score is less than 1.

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80 90 100

V
al

u
e

 o
f
α

t

Number of transactions (t)

b = 1 b = 2 b = 3 b = 4 b = 5 b = 6

β

β β β β β β

Figure 4: The growth of αtβ over the number of transactions, t for different
values of β. Here, α = 0.5.

4.1.2. Global Reputation Calculation
The Global Reputation (GR) of a site is a statistical reputa-

tion that is calculated by averaging all the feedbacks given by
the GAS services of other Grid sites for their tasks executed
at that site. Once the overlay receives a feedback, it computes
the Transaction Feedback (TF) for that feedback. The value of
TF depends on whether the feedback is positive or negative. If
negetive feedback is received, TF is same as the feedback value.
However, if feedback is positive, the value of TF is computed
from an exponential distribution (refer to Fig. 4), where the out-
put value is varied over the total number of negative feedbacks
received by the corresponding Grid site. The purpose of using
this distribution is to allow a Grid site to accrue a higher value
of GR only if it executes more successful tasks than failed tasks.
So, if it fails very few transactions, the output of the exponential
function reaches 1 accordingly. Thus, if NFi is the total number
of negative feedbacks given by other sites for S i, the transaction
feedback value after t transactions by S i can be calculated as,

T F t
i =
{ f eed(i, j,k)t if negative feedback or (positive feedback and NFi is 0)

{(1−αp)+α
NF

1
βp

i
p }× f eed(i, j,k)t if positive feedback and NFi > 0

(3)
where, 0.5 ≤ αp < 1.0 and βp ∈ {4, 5, 6}.
The GR of a particular Grid site is calculated by taking the

average of aggregated TFs form other sites. Initially GR is as-
signed a value GRinitial that is greater than or equal to the rep-
utation threshold Rth. Afterwards, it is dynamically changed

based on the TF computed after every transaction. Thus, GR
of a Grid site, S i after total t number of transactions with other
sites is represented as,

GRt
i =
{GRinitial if t = 0

GRt−1
i ×t+T Ft

i
(t+1) if t > 0

(4)

The GR value of each Grid site is stored in a matrix. At any
instance of time, the DHT-based distributed overlay maintains
n × 1 global reputation matrix MGR (refer to Fig. 5(a)) for all
the Grid sites S i ∈ {1,2,. . . ,n} that is updated dynamically after
every transaction in the system. This MGR is utilized by the
distributed scheduler for mapping tasks to the Grid sites based
on their reputation values.

S1

S2

S3

MGR =

0.85

0.90

0.70

S1

S2

S3

MLR =

0.75

0.82

0.76

S2 S2 S2

0.82

0.98

0.56

0.95

0.75

0.88

(a) Global reputation
matrix

S1

S2

S3

MGR =

0.85

0.90

0.70

S1

S2

S3

MLR =

0.75

0.82

0.76

S2 S2 S2

0.82

0.98

0.56

0.95

0.75

0.88

(b) Local reputation matrix

Figure 5: Reputation matrix for three Grid sites (S 1, S 2, S 3).

4.1.3. Local Reputation Calculation
Sometime, considering only GR of a Grid site for mapping

tasks, cannot guarantee dependable scheduling. For example,
the resource at a site S i may fail tasks submitted by only a par-
ticular Grid site S j. In this case, as S j successfully executes
tasks submitted by other Grid sites, its GR is high. So, the
scheduler may still map the tasks submitted by S j to S i. There-
fore, we introduce another reputation score, Local Reputation
(LR) for a Grid site.

Similar to GR, LR is calculated as an average of the feedback
values except it considers feedbcks from only one Grid site. TF
for computing LR also follows the same function as generat-
ing TF for GR. Therefore, if NFi, j is the number of negative
feedbacks given by S j for S i after t transactions with S i, the
transaction feedback value can be calculated as,

T F t
i, j =
{ f eed(i, j,k)t if negative feedback or (positive feedback and NFi is 0)

{(1−αp)+α
NF

1
βp

i, j
p }× f eed(i, j,k)t if positive feedback and NFi > 0

(5)
where, 0.5 ≤ αp < 1.0 and βp ∈ {4, 5, 6}.
Now, the LR of a Grid site, S i according to S j, after t number

of transactions with S j is represented as,

LRt
i, j =
{LRinitial if t = 0

LRt−1
i, j ×t+T Ft

i, j
(t+1) if t > 0

(6)

The LR values of each Grid site in regards to other sites are
kept in a n × n local reputation matrix MLR (refer to Fig. 5(b)),
which is stored in the overlay and updated dynamically after
every transaction between the corresponding sites. Similar to
MGR, MLR is also utilized by the distributed scheduler for map-
ping tasks to the Grid sites based on their reputation values.

6

An example scenario of local and global reputation calcula-
tion in the distributed coordination space is depicted in Fig. ??.

T1

T2 T3

T4

Sj
Coordination

SpaceSi

Claim (T1)

{Event: Submit Task}

Ticket (Si)

{Event: Resource Status Changed}

[Result: T1]

{Event: Send Notification (Si)}

T1

Find match and
check reputation

GRi= 0.8
LRi,j= 0.8
Rth = 0.8

Claim (T1)

{Event: Task Submit}

{Event: Send Notification (Sn)}

T1

Find match and
check reputation

{Event: Execute Task}

Sn

{Event: Resource
Status Changed}

Ticket (Sn)

[Result: T1]

{Event: Execute Task}

{Event: Send Feedback(Sn)}

{Event: Send Feedback(Si)} Reputation
calculation

Feedback
generation

Feedback
generation

Reputation
calculation

feed(i,j,1)1=0.5

feed(n,j,1)1=1.0

fail

success

GRi= 0.65, GRn=0.8
LRi,j= 0.65, LRn,j=0.8
Rth = 0.8

TFi
1=0.5, GRi

1=0.65
TFi,j

1=0.5, LRi,j
1=0.65

TFn
1=1.0, GRn

1=0.9
TFn,j

1=1.0, LRn,j
1=0.9

Figure 6: Interaction among different Grid entities in reputation based depend-
able workflow scheduling approach.

4.2. Distributed Workflow Management

In this section, we provide the description of the algorithms
that have been devised for task scheduling and resource provi-
sioning in order to achieve reputation-based workflow manage-
ment.

4.2.1. Task Scheduling
Here, we discuss about the task scheduling algorithm (refer

to Algorithm 1) that is undertaken by a GAS in P2PG on arrival
of a job or workflow. When a user submits a workflow ap-
plication W, the GAS calculates the priority of each task (line
4). Earliest Finish Time (EFT) [36] heuristic is used to calcu-
late task priorities by traversing the task graph in Breadth First
Search (BFS) manner. Once the rank values are calculated, the
GAS generates Ready tasks in the TaskList based on the depen-
dency of each task and put them into the Ready TaskList (line
5). Finally, GAS submits the Ready tasks for execution (line 6).

Further, when the GAS receives a notification message from
site S i stating task Tk has finished execution, it first updates the
dependency lists of the tasks that are dependant on Tk (line 11);
then it computes the Ready tasks at that moment and submits
those for execution (line 12-13). Next, it generates feedback
for the transaction with S i (line 15). In order to do that it first
verifies the output of Tk using the result verification given by
equation (1) (line 18). If output of the function is 0, Fi, j is
incremented by one (line 20). Then it calculates the feedback
score for this transaction by equation (2) (line 22).

Algorithm 1 TASK SCHEDULING AT GAS
1: PROCEDURE: Event- User Workflow Submit
2: Input: Workflow W
3: begin
4: Calculate rank value for each task using EFT heuristic
5: Generate Ready TaskList for W
6: Submit Ready tasks for execution
7: end
8: PROCEDURE: Event- Task Finish Notification
9: Input: Task Tk, Workflow W

10: begin
11: Update dependency list of each task in TaskList
12: Generate Ready TaskList for W
13: Submit Ready tasks for execution
14: end
15: PROCEDURE: Generate Feedback
16: Input: Task Tk, Site S i

17: begin
18: Verify output of Tk by (1)
19: if success(i, j, k) = 0 then
20: Fi, j ← Fi, j + 1
21: end if
22: Calculate feedback score for Tk by (2)
23: end

4.2.2. Resource Provisioning

The details of the decentralized resource provisioning algo-
rithm (refer to Algorithm 2) that is undertaken by the P2P coor-
dination space is presented here. When a resource claim object
rk arrives at the coordination service, it is added to the exist-
ing claim list, ClaimList by the coordination service (line 1-5).
When a resource ticket object ui arrives at coordination service,
the list of resource claims (ClaimListm) that overlap or match
with the submitted resource ticket object is computed (line 6-
10) if global reputation of that resource is greater than or equal
to the reputation threshold Rth. The overlap signifies that the
task associated with the given claim object can be executed on
the ticket issuer’s resource subject to its availability.

Then the coordination service sorts the claim objects in
ClaimListm in descending order according to their rank value
(line 11). From the ClaimListm, the resource claimers are se-
lected one by one based on their rank value(higher rank first)
and notified about the resource ticket match if local reputation
of ticket issuer against the resource claimer is greater than or
equal to Rth and until the ticket issuer is not over-provisioned
(line 13-19).

When a feedback object is arrived at coordination service,
first it is decided whether the feedback is negetive or positive.
If feedback is negetive, NFi and NFi, j are incremented by one
(line 25-27). Then local and global reputation scores are cal-
culated consequently (line 29-30). Finally, the local and global
reputation matrices that are stored in coordination space are up-
dated by the coordination service (line 31).

7

Algorithm 2 RESOURCE PROVISIONING AT COORDINATION
SPACE

1: PROCEDURE: Event- Claim Submit
2: Input: Claim rk

3: begin
4: ClaimList ← ClaimList ∪ rk

5: end
6: PROCEDURE: Event- Ticket Submit
7: Input: Ticket ui from Resource Ri

8: begin
9: if GRi ≥ Rth then

10: ClaimListm ← list of claims in ClaimList that are
matched with ui

11: Sort ClaimListm in descending order of task’s rank
12: index← 0
13: while Ri is not over-provisioned do
14: if LRi, j ≥ Rth then
15: Send notification of match event to resource

claimer ClaimListm[index]
16: Remove ClaimListm[index]
17: index← index + 1
18: end if
19: end
20: end if
21: end
22: PROCEDURE: Event- Feedback submit
23: Input: Feedback from site S j

24: begin
25: if feedback is negetive then
26: NFi ← NFi + 1
27: NFi, j ← NFi, j + 1
28: end if
29: Calculate T Fi and T Fi, j by (3) and (5)
30: Calculate GRi and LRi, j by (??) and (??)
31: Update MGR and MLR

32: end

4.2.3. Time Complexity
This section analyses the computational tractability of the ap-

proach by deriving several time complexity bounds to measure
the computational quality. Using the example for Grid work-
flow application model, we analyse the complexity of calcu-
lating tasks ranks, feedback generation, and reputation scores
(see Algorithm 1). These complexities are further aggregated
to model a composite function that represents the overall com-
plexity.

We consider a P2PG infrastructure consisting of n number of
Grid sites. Every Grid site S i instantiates a service GAS i. This
implies that there are total n number of GAS services in the
infrastructure that are continuously injecting task to resource
mapping requests in form of Claim Objects (refer to line 1 in
Algorithm 2). We assume every user submits a workflow appli-
cation consisting of T number of tasks and E number of de-
pendencies among the tasks to its local GAS service. Then
the complexity of calculating rank values of all the tasks us-
ing EFT heuristic through BFS is O(E + T) [8]. Further, if an
adjacency list is used to handle the dependencies, then the com-
plexity of generating Ready tasks and updating dependency list
is O(E) [8].

Next, we derive the time complexity of generating feedback
in Algorithm 1 (lines 15-23). After a GAS service receives
the output for the submitted task, it has to compute a feedback
score, which has to be reported to peer-to-peer overlay. The
feedback score calculation involves few mathematical compu-
tation (see Eq. 2), therefore it involves constant complexity of
O(1). Therefore, the overall time complexity of Algorithm 1 is
O(E + T).

In worst case, ClaimList in the Algorithm 2 can contain n.T
number of enteries. So the complexity of sorting the ClaimList
is O((n.T) log(n.T)) (through the implementation of merge
sort algorithm) and finding out the total number of matches is
O(n.T). Calculating the number of resource claimers that has
to be notified about the matches also requires O(n.T) steps in
worst case.

Every new feedback score submitted by GAS services has to
be aggregated into global reputation score (using Eq. 4). Sim-
ilar to feedback computation, updating global reputation score
also involves series of mathematical steps. Hence, the overall
complexity of computing or updating global reputation score is
constant, O(1).

Finally, the adjacency matrix also handles the reputation ma-
trices. Here, updating MGR and MLR is also bounded by O(1)
. Thus the overall complexity of Resource Provisioning algo-
rithm is O((n.T) log(n.T)).

4.3. Distributed Overlay Management

In order to create a collaborative environment and achieve ef-
ficient and scalable resource lookup, a peer-to-peer Grid over-
lay is created and utilized in the proposed approach. A Grid
peer undertakes the following critical tasks related to manage-
ment of this overlay, which are important for proper functioning
of P2PG:

8

4.3.1. Overlay Construction
The overlay construction refers to how Grid peers are log-

ically connected over the physical network. In this work, we
utilize Chord [32] as the basis for creation of Grid peer overlay.
A Chord overlay inter-connects the Grid peer services based on
a ring topology. Fig. 7 shows a Chord-based Grid peer overlay.
The objects and Grid peers are mapped on the overlay depend-
ing on their key values. Each Grid peer is assigned responsi-
bility for managing a small number of objects and building up
routing information (finger table) at various Grid peers in the
network. In Fig. 7 Grid peers including 2, 8, and 14 have a fin-
ger table of size 4. The finger table aids in resolving the lookup
request within acceptable bounds such as in O(log (n)) routing
hops. The finger table is constructed when a Grid peer joins the
overlay, and it is periodically updated to take into account any
new joins, leaves or failures.

4.3.2. Multi-dimensional Data Indexing
Traditionally, Chord as well as other DHT overlays, such as

CAN [28], Pastry [29]) have been proved to be efficient for in-
dexing 1-dimensional data (e.g. find a Grid resource that offers
”Pentium” processor). However, resources hosted by a Grid site
are identified by more than one attribute; thereby a claim or a
ticket or a feedback object is always multi-dimensional in na-
ture. In order to support multi-dimensional data indexing (pro-
cessor type, OS type, CPU speed) over Chord overlay, we have
implemented a spatial indexing technique [33].

The indexing technique builds a multi-dimensional attribute
space based on the Grid resource attributes, where each
attribute represents a single dimension. An example 2-
dimensional attribute space that indexes resource attributes in-
cluding Speed and CPU Type is shown in Fig. 7.

The attribute space resembles a grid like structure consist-
ing of multiple index cells. Each index cell is uniquely iden-
tified by its centroid, termed as the control point. The Chord
hashing method (DHash(coordinates)) is used to map these con-
trol points so that the responsibility for an index cell is associ-
ated with a Grid peer in the overlay. For example in Fig. 7,
DHash(x1, y1) = k10 is the location of the control point A
(x1,y1) on the overlay, which is managed by Grid peer 12.

4.3.3. Object Mapping and Routing
This process involves identification of index cells in the at-

tribute space to map a claim, ticket, or a feedback object. For
mapping claims, a mapping strategy based on diagonal hyper-
plane of the attribute space is utilised. This mapping involves
feeding candidate claim index cells as inputs into a mapping
function, Imap(claim). This function returns the IDs of index
cells to which the given claim can be mapped (refer to step 7
in Fig. 7). Distributed hashing (DHash(cells)) is performed
on these IDs, which returns keys for Chord overlay to identify
the current Grid peers responsible for managing the given keys.
Similarly, mapping of ticket and feedback objects also involves
the identification of the cell in the attribute space using the same
algorithm.

4.4. Scheduling Example
This section provides an example scenario of the process of

task scheduling and distributed reputation management. The
key steps involved with the proposed scheduling approach (see
Fig. 8) are as follows:

1. A user submits his task to the local GAS service at site S u.
2. Following this, the GAS inserts a claim object to the DHT-

based overlay to locate a dependable and available Grid
site (resource) that has reasonable reputation rating (above
reputation threshold) in the system.

3. The GAS, GAS s at site S s submits a ticket object to the
overlay encapsulating the information about status (avail-
ability) of the local resource.

4. The overlay undertakes the decentralized matchmaking
mechanism and discovers that the resource ticket issued by
Grid site S s matches with the resource description and rep-
utation rating currently specified by claim object inserted
by site S u. Following that a match notification message is
sent to S u.

5. Next, GAS u sends the task to site S s. While the application
is being processed, GAS u periodically monitors the execu-
tion progress by sending IsAlive messages to S s. IsAlive
messages allow the GAS services to detect the hardware
and network link failure related to the site S s.

6. Once the execution of the task is finished, S s returns the
output to GAS u.

7. Finally, GAS u performs the result verification for the re-
ceived output, computes the feedback score for S s and
reports to the overlay. The feedback score is aggregated
to the local and global reputation scores for S s using the
proposed decentralized and distributed reputation model,
described in the next section.

5. Performance Evaluation

5.1. Simulation Setup
Our simulation infrastructure is created by combining two

discrete event simulators namely GridSim [6], and Planet-
Sim [14]. GridSim offers a concrete base framework for sim-
ulation of different kinds of heterogeneous resources, services
and application types. PlanetSim is an event-based overlay net-
work simulator that can simulate both unstructured and struc-
tured overlays.

5.1.1. Workload Configuration
In this study, we consider fork-join workflow (see Fig. 9) and

an example of such workflow is WIEN2K [4], which is a quan-
tum chemistry application developed at Vienna University of
Technology. In this kind of workflow, forks of tasks are cre-
ated and then joined, such that there can be only one entry task
and one exit task. We vary the number of tasks in a workflow
from 100 to 500 during the experiments and the size of each
task is randomly generated from a uniform distribution between
50000 MI (Million Instructions) to 500000 MI. Further, we as-
sume that workflows are computation intensive. Thus, the data

9

Figure 7: Overlay creation, data indexing, object mapping and routing: (1) a Grid site publishes ticket; (2) Grid peer 8 service computes the index cell, C(x3,y3),
to which the ticket maps by using mapping function IMap(ticket); (3) Next, distributed hashing function, DHash(x3, y3), is applied on the cell’s coordinate values,
which yields a overlay key, K14; (4) Grid peer 8 based on its finger table entry forwards the request to peer 12; (5) Similarly, peer 12 on the overlay forwards the
request to peer 14; (6) a GAS service submits a resource claim; (7) Grid peer 2 computes the index cell, C(x1, y1), to which the claim maps; (8) DHash(x1, y1) is
applied that yields an overlay key, K10; (9) Grid peer 2 based on its finger table entry forwards the mapping request to peer 12.

10

Grid site p

Grid site u

Application

Subscribe
Reply

Application

P
u
b
li
sh

R
ep

ly

Fe
ed

b
a
ck

Grid Autonomic
Scheduler

S
u
b
sc

ri
b
e User

User

Grid
Autonomic
Scheduler

Grid Autonomic
Scheduler

User

Grid site s

Publish

Feedback

Submit
1

2 7

4

P
u
b
lis

h

Subsc
rib

e

Fe
ed

bac
k

Rep
ly

5

6
Heart beat

Result

Task

Job queue

3

T2T1

DHT-based Overlay

of Grid Peers

Autonomic Manager

Local Resource Manager

Grid Peer

Grid Autonomic Scheduler

Feedback

Subscribe
(claim)

Publish
(ticket)

Monitor

Plan

Schedule

Analyze Reputation

Verification

output input

•Discovery
•Coordination
•Messaging

Core Services

Figure 8: Reputation-based dependable scheduling example. Grid sites p, l, s, and u are managed by their respective Grid Autonomic Scheduler services.

dependency among the tasks in the workflow is negligible. In
the Grid federation, each site has one user and each submits one
workflow for execution.

T1

T2 T3 T4 T5

T6

T11

T7 T8 T9 T10

of tasks = 11

Level 1

Level 2

Level 3

Level 4

Level 5

Width = 4 # of levels = 5

Figure 9: A fork-join workflow.

5.1.2. Network Configuration
The experiments run a Chord overlay with 32 bit configura-

tion (number of bits utilized to generate node and key ids). The
total number of GAS/broker in the system is 64. Further, net-
work queue message processing rate is fixed at 4000 messages
per second and message queue size is fixed at 104.

5.1.3. Resource Claim and Ticket Injection Rate
The GASs inject the ticket objects based on the exponential

inter-arrival time distribution. The injection rate (i.e. resource

update query rate) for the resource tickets is every 200 seconds
[23]. At the beginning of the simulation, the resource claims
for the entry tasks of all the workflows in the system are in-
jected. Subsequently, when these tasks finish, then the resource
claims for the successive tasks in the workflow are posted. This
process is repeated until all the tasks in the workflow are suc-
cessfully completed. Spatial extent of both resource claims and
ticket objects lie in a 4-dimensional attribute space (an exam-
ple is shown in Fig. 10). These attribute dimensions include
the number of processors, pi, their speed, si, their architecture,
ai, and operating system type, oi. The distribution for these re-
source dimensions is generated by utilizing the configuration
of resources that are deployed in various Grids including Nor-
duGrid, AuverGrid, Grid5000, NaregiGrid, and SHARCNET
[16].

5.1.4. Reputation Configuration

The values of the parameters for configuring reputation based
scheduling in our experiment are listed in Table 5.

Table 5: Reputation parameters

Parameter Value Parameter Value
α f 0.5 LRinitial 0.8
β f 2.0 GRinitial 0.8
αp 0.5 Rth 0.8
βp 5.0 τre f resh 1000 sec

11

0

5

10

15

20

25

500

1000

1500

2000

2500

3000

3500
0

50

100

150

200

Processor TypeSpeed

N
um

be
r

of
 P

ro
ce

ss
or

s

Figure 10: 3-dimensional attribute space for resource configuration and ticket
data distribution.

5.1.5. Failure Configuration

In our experiment, the values of weibull shape and scale pa-
rameters β and η are 1.2 and 141 respectively, where the mean
execution time of a task in the system is equal to 141 sec.

Along with this Weibull distribution, we also generate a set
of resource failure distributions, X Y by incorporating resource
failure probability f p, where X represents the percentage of re-
sources likely to fail tasks in the system and Y represents the
probability of failure. For instance, if X is 20 and Y is 0.4, then
20% of resources in the system may fail tasks with the probabil-
ity (f p) between 0.4 and 0.5. The resource failure distributions,
we use in the experiment are as follows:

X 0.1: 0.1 ≤ f p < 0.2 ; X 0.3: 0.3 ≤ f p < 0.4
X 0.5: 0.5 ≤ f p < 0.6 ; X 0.7: 0.7 ≤ f p < 0.8
X 0.9: 0.9 ≤ f p < 1.0
Some example failure distributions are presented in Fig. 6

and Fig. 7.

Table 6: Example failure distributions (25 Y)

ResourceID 25 0.1 25 0.3 25 0.5 25 0.7 25 0.9
1 0 0 0 0 0
2 0 0 0 0 0
3 0.1542 0.3390 0.5013 0.7864 0.9662
4 0 0 0 0 0

Table 7: Example failure distributions (50 Y)

ResourceID 50 0.1 50 0.3 50 0.5 50 0.7 50 0.9
1 0 0 0 0 0
2 0.1787 0.3655 0.5352 0.7573 0.9614
3 0.1135 0.3719 0.5884 0.7117 0.9418
4 0 0 0 0 0

5.2. Performance Metrics

As a measurement of scheduling performance, we evaluate
the following performance metrics:

Scheduling Efficiency: In order to determine the scheduling
efficiency, we measure two values of the system: (i) average
makespan per workflow and (ii) total number of tasks failed by
all the Grid sites in the system.

Definition 4 (Makespan): Makespan is calculated as the re-
sponse time of a whole workflow, which is equal to the differ-
ence between the submission time of the entry task in the work-
flow and the output arrival time of the exit task in that workflow.

Example 3: Let us consider that a user at Grid site Si wants
to execute a fork-join workflow illustrated in Fig. 9, consisting
of 11 tasks. If GASi submits a claim object for task T1 to the
overlay at time t1 = 20 sec and the output of task T11 is deliv-
ered to the user at time t2 = 1220 sec, then the makespan of
this workflow is t2 − t1 = 1200 sec.

The measurement of makespan is taken by averaging over all
the workflows in the system. If there are n number of Grid sites
and each site has u number of users with each user submitting
w number of workflows, then average makespan per workflow
in the system can be defined as,

Maverage =

∑
1≤i≤n
1≤ j≤u
1≤k≤w

Mi, j,k

n × u × w
If there are n number of Grid sites and site Si fails Fi number

of tasks, then the total number of tasks failed in the system can
be defined as,

Ftotal =
∑

1≤i≤n

Fi

Scheduling complexity: It is measured as the total number
of task scheduled by all GASs in the system. If there are n num-
ber of Grid sites and GASi schedules SCHi number of tasks,
then total number of task scheduled in the system can be ex-
pressed as,

SCHtotal =
∑

1≤i≤n

SCHi

Pruning Efficiency: We consider pruning efficiency as the
degree to which the failure-prone resource are shunted out of
the system. We have measured total number of tasks success-
fully executed and failed by the resource at each Grid site in
order to show the pruning efficiency.

5.3. Results and Observations

In this section, we present the experimental results ob-
tained by simulating our reputation based dependable workflow
scheduling approach and compare these with that of other ap-
proaches. The experiments are conducted with the aim at char-
acterizing:

(i) the performance of proposed reputation based dependable
scheduling approach (Failure with Reputation), compared to its
alternatives, No Failure (resources do not fail any task) and
Failure without Self-adaptation (some resources fail tasks and

12

scheduler uses a simple rescheduling technique) with respect to
various performance metrics;

(ii) the impact of different resource failure distributions and
sizes of workflow on the performance of our approach and of
its alternatives;

(iii) the significance of reputation threshold (Rth) on the per-
formance of proposed reputation based scheduling approach.

(iv) the performance of the exponential feedback function
utilized in the proposed reputation based scheduling approach.

The configuration of different parameters for all the experi-
ments are listed in Fig. 8.

5.3.1. Experiment 1: Measuring Scheduling Efficiency
Experiment 1.1 (Impact of failure distribution): Fig. 5.3

presents the results of scheduling efficiency of the proposed
reputation based scheduling approach against the other ap-
proaches, Failure without Self-adaptation and No Failure. The
total number of tasks failed by all Grid sites, Ftotal for each of
the three approaches are depicted in Fig. 11(a) and Fig. 11(b)
for different failure distributions. As we can see from Fig. 11(a)
that when the failure probability of the resources is increased
(for example, from 0.1 to 0.9), Ftotal in Failure without Self-
adaptation is heavily increased accordingly.

This situation is further aggravated for 50 Y (refer to
Fig. 11(b)) since more resources are likely to fail tasks. In
contrast, our approach, Failure with Reputation can strongly
reduce the number of task failures in the system irrespective
of failure distributions. This happens due to the reason that in
this case, the resources with higher failure probability are not
assigned any task by the schedulers as their reputation scores
are decreased beyond the threshold Rth after few task failures.
Therefore, Ftotal in Failure with Reputation is not increased
with the increase in failure probability since those failure-prone
resources are always shunted out of the system after few fail-
ures. For instance, total number of tasks failed by all sites in
Failure with Reputation is upto 96.8% and 96.5% less than
that in Failure without Self-adaptation for 25 Y and 50 Y re-
spectively.

The average makespan per workflow, Maverage also shows
(see Fig. 11(c) and Fig. 11(d)) similar trend (upto 28% and
50% makespan reduction for 25 Y and 50 Y respectively) as
reflected in total number of task failures since if one task is
failed, its child tasks can not be scheduled and eventually the
completion time of the whole workflow is increased.

Experiment 1.2 (Impact of number of tasks in workflow):
Fig. 12 presents the results of scheduling efficiency of the pro-
posed reputation based dependable scheduling approach against
the other approaches, Failure without Self-adaptation and Fail-
ure for different sizes of workflow. The results show that if
the number of tasks in a workflow increases, Maverage also in-
creases for all the three approaches since the overall workload
on the system is increased. But the impact is more evident for
Failure without Self-adaptation.

As we can see from Fig.12(a) and Fig.12(b), in case of Fail-
ure without Self-adaptation, both Ftotal and Maverage are in-
creased rapidly with the increase in workflow size (number of
tasks). This happens due to the reason that when the workflow

size is increased, average number of tasks scheduled per re-
source in the system is also increased linearly as the number of
Grid sites is not changed over time in this experiment. This re-
sults in allowing the failure-prone resources to fail more tasks.
Thus, Ftotal and Maverage in Failure without Self-adaptation
show a piecewise linear growth over the size of workflow.

However, in case of Failure with Reputation, when the work-
load on the system is increased, resources with higher repu-
tation score get more tasks leaving the failure-prone resources
isolate. This results in less number of task failures in the system
even in higher workload. Therefore, with the increase in work-
flow size across the system, the performance gain achieved in
terms of Ftotal and Maverage by applying the proposed approach
is more evident. For example, when the workflow consists of
500 tasks, Ftotal in Failure with Reputation is 88.4% less than
that in Failure without Self-adaptation and the makespan reduc-
tion is 38.1% accordingly.

0

2000

4000

6000

8000

10000

100 200 300 400 500

No Failure Failure Failure with Reputation

Workflow size

To
ta

l n
u

m
b

e
r

o
f

fa
ile

d
ta

sk
s

(a) Total task failures vs. Number of tasks in workflow

4000

5500

7000

8500

10000

11500

100 200 300 400 500

No Failure Failure Failure with Reputation

Workflow size

av
g.

m
ak

e
sp

an
 p

e
r

w
o

rk
fl

o
w

 (s
e

c)

(b) Makespan vs. Number of tasks in workflow

Figure 12: Effect of workflow size on Ftotal and Maverage in the system (failure
distribution 50 0.5).

5.3.2. Experiment 2: Measuring Scheduling Complexity
Fig. 13 shows the total number of tasks scheduled by GAS1

to GAS16 in the system for the failure distribution, 50 0.5.
From the figure, it is evident that in case of Failure without
Self-adaptation, each GAS needs to schedule more tasks than
No Failure (where, GAS is not required to schedule any extra
task than the size of workflow), which increases the load on

13

0

400

800

1200

1600

2000

2400

25_0.1 25_0.3 25_0.5 25_0.7 25_0.9

No Failure Failure Failure with Reputation

Failure distribution

To
ta

l n
u

m
b

er
 o

f
fa

ile
d

ta
sk

s

(a) Total task failures for failure distributions 25 Y

0

1000

2000

3000

4000

5000

6000

50_0.1 50_0.3 50_0.5 50_0.7 50_0.9

No Failure Failure Failure with Reputation

Failure distribution

To
ta

l n
u

m
b

er
 o

f
fa

ile
d

ta
sk

s

(b) Total task failures for failure distributions 50 Y

4000

4500

5000

5500

6000

6500

7000

25_0.1 25_0.3 25_0.5 25_0.7 25_0.9

No Failure Failure Failure with Reputation

Failure distribution

av
g.

m
ak

es
p

an
 p

er
w

o
rk

fl
o

w
 (s

ec
)

(c) Makespan for failure distributions 25 Y

4000

5000

6000

7000

8000

9000

10000

50_0.1 50_0.3 50_0.5 50_0.7 50_0.9

No Failure Failure Failure with Reputation

Failure distribution

av
g.

m
ak

es
p

an
 p

er
w

o
rk

fl
o

w
 (s

ec
)

(d) Makespan for failure distributions 50 Y

Figure 11: Effect of failure distribution on the makespan of workflow and the total number of task failures in the system.

the GAS accordingly. On the contrary, in case of Failure with
Reputation, the number of tasks scheduled by each GAS in the
system is almost equal to that of No Failure as very few tasks
are failed in this approach. For example, GAS14 schedules 100
tasks in No Failure, 102 in Failure with Reputation, whereas
in case of Failure without Self-adaptation, it needs to schedule
216 tasks, which is 112% greater than that in Failure with Rep-
utation since 116 tasks, scheduled by GAS14 are failed by the
Grid sites.

As the other GASs in the system also show the similar trend,
the total number of tasks scheduled in the system, SCHtotal for
Failure with Reputation (6569) is much smaller than that for
Failure without Self-adaptation (8075).

0

40

80

120

160

200

240

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16

No Failure Failure Failure with Reputation

Resource ID

To
ta

l s
ch

e
d

u
le

d
 t

as
ks

Figure 13: Total number of tasks scheduled by the GAS in the system (GAS1 -
GAS16) for failure distribution 50 0.5.

5.3.3. Experiment 3: Measuring Pruning Efficiency
Fig. 14 illustrates the pruning efficiency of the proposed

scheduling technique. Fig. 14(a) and Fig. 14(b) show the to-
tal number of tasks successfully executed and failed by the re-
sources in Grid site 1 to Grid site 16 respectively for 50 0.5.
From the figures, we can realize that in Failure without Self-
adaptation, if a Grid site can execute task faster, it is assigned
more tasks. Thus, the number of successful and failed tasks by
that site is high if it’s failure probability is low and high respec-
tively.

On the other hand, in case of Failure with Reputation, num-
ber of successful tasks by a Grid site is high if it is faster and
does not fail any task. If it fails task, although it can execute task
faster, it is not assigned any task further. Therefore, total failed
tasks by that resource becomes very low. For instance, total
failed tasks by resource R2 (with 0.59 failure probability and
3600 MIPS rating) is 152 in Failure without Self-adaptation,
whereas it is only 11 in Failure with Reputation. Fig. 14(c)
shows how failure-prone resource R2 is shunted out of the sys-
tem over the period of time in our proposed reputation based
scheduling approach.

5.3.4. Experiment 4: Impact of Reputation Threshold
Fig. 15 shows the impact of reputation threshold (Rth) on

Ftotal and Maverage in the system for Failure with Reputation
when failure distribution is 50 0.5. From the figure, it is evi-
dent that when Rth is slightly higher than 0, Ftotal and Maverage
for Failure with Reputation are almost equal to that for Failure
without Self-adaptation. This happens due to the reason that if
Rth is very low then the reputation based scheduling scheme is

14

Table 8: Configuration for different experiments

Parameter Experiment 1.1 Experiment 1.2 Experiment 2 Experiment 3 Experiment 4 Experiment 5
n 64 64 64 64 64 64

no. of tasks 100 100 to 500 100 100 100 100
task size (MI) 50000 to 500000 50000 to 500000 50000 to 500000 50000 to 500000 50000 to 500000 50000 to 500000

failure distribution 25 0.1 to 25 0.9, 50 0.1 to 50 0.9 50 0.5 50 0.5 50 0.5 50 0.5 50 0.5
Rth 0.8 0.8 0.8 0.8 0.0 to 0.99 0.8

feedback function exponential exponential exponential exponential exponential exponential/simple

0

60

120

180

240

300

360

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16

No Failure Failure Failure with Reputation

Resource ID

To
ta

l s
u

cc
e

ss
fu

l t
as

ks

(a) Total number of tasks successfully executed by each resource (R1 -
R16)

0

45

90

135

180

225

270

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16

No Failure Failure Failure with Reputation

Resource ID

To
ta

l f
ai

le
d

 t
as

ks

(b) Total number of tasks failed by each resource (R1 - R16)

0

30

60

90

120

150

180

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

No Failure Failure Failure with Reputation

Time (sec)

To
ta

l f
ai

le
d

 t
as

ks

(c) Total number of tasks failed by Resource 2 over time

Figure 14: Effect of considering reputation on pruning failure-prone resources
(failure distribution 50 0.5).

not able to isolate the failure-prone resources with lower repu-
tation score. Hence a considerable amount of tasks are assigned
to those resources and Ftotal is increased eventually.

However, when the value of Rth is set a little bit higher than
0, performance of the proposed reputation based scheduling ap-
proach in terms of scheduling efficiency is improved rapidly.
Furthermore, with the increase of the value of Rth, average
makespan and total task failures for Failure with Reputation
gradually become almost equal to that for No Failure. For ex-
ample, when Rth is set to 0.2, 0.6 and 0.9, Ftotal for Failure with
Reputation is 58.4%, 85.1% and 92.6% less than that for Fail-
ure without Self-adaptation respectively. Similarly, Maverage is
also reduced by 15.8%, 23.0% and 26.6% if Rth is set to 0.2,
0.6 and 0.9 respectively.

0

300

600

900

1200

1500

1800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

No Failure Failure Failure with Reputation

Reputation threshold

To
ta

l n
u

m
b

e
r

o
f

fa
ile

d
ta

sk
s

(a) Total task failures vs. Reputation threshold

4000

4500

5000

5500

6000

6500

7000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

No Failure Failure Failure with Reputation

Reputation threshold

av
g.

m
ak

e
sp

an
 p

e
r

w
o

rk
fl

o
w

 (s
e

c)

(b) Makespan vs. Reputation threshold

Figure 15: Effect of reputation threshold (Rth) on Ftotal and Maverage in the
system for Failure with Reputation (failure distribution 50 0.5).

15

5.3.5. Experiment 5: Performance of Exponential Feedback
Function

Fig. 16 shows the significance of using exponential feedback
functions on Ftotal and Maverage in the system when the pro-
posed approach, Failure with Reputation is employed. In order
to measure the performance, we compare our proposed feed-
back function against a simple linear feedback function avail-
able in the literature. From Fig. 16(a) and Fig. 16(b), it is ev-
ident that using an exponential function for calculating feed-
back results in reduced makespan and less number of total task
failures in compare to using a simple linear feedback function.
Although Maverage is not much varied, we can see a signifi-
cant improvement in terms of Ftotal. For instance, in case of
failure distribution 50 0.5, when simple feedback function is
used, 20% more tasks are failed than using exponential feed-
back function.

100

130

160

190

220

250

280

50_0.1 50_0.3 50_0.5 50_0.7 50_0.9

Exponential Feedback Simple Feedback

Failure distribution

To
ta

l n
u

m
b

e
r

o
f

fa
ile

d
ta

sk
s

(a) Total task failures

4600

4660

4720

4780

4840

4900

4960

50_0.1 50_0.3 50_0.5 50_0.7 50_0.9

Exponential Feedback Simple Feedback

Failure distribution

av
g.

m
ak

e
sp

an
 p

e
r

w
o

rk
fl

o
w

 (s
e

c)

(b) Makespan

Figure 16: Significance of exponential feedback function on Ftotal and
Maverage in the system for Failure with Reputation (failure distribution 50 Y).

5.4. Discussion and Summary
The results from the experiments show that there is a similar-

ity of trend between the two performance metrics Maverage and
Ftotal. Thus we have calculated the Pearson’s correlation coef-
ficient [3] and plotted the relationship between these metrics in
Fig. 17.

Definition 5 (Pearson’s correlation coefficient): Pearson’s
correlation coefficient ρP,Q between two random variables P,

Q with means µP, µQ and standard deviations σP, σQ is used
to measure the linear relationship between them. It is defined
as a quotient of the covariance of the two variables and the
product of their standard deviations:

ρP,Q =
cov(P,Q)
σPσQ

=
E((P − µP)(Q − µQ))

σPσQ

where, µP = E(P) and σP
2 = E(P2) − E2(P).

The correlation is 1 when there is a positive linear depen-
dence and −1 in case of negative linear dependence. Zero indi-
cates that there is absolutely no linear relationship between the
variables.

The Pearson’s correlation coefficient, ρMaverage,Ftotal between
Maverage and Ftotal in the system for different experiments con-
ducted is listed in Table 9. From the table it can be observed
that except for Failure with Reputation in Experiment 1, the val-
ues of ρMaverage,Ftotal for both Failure with Reputation and Failure
without Self-adaptation are greater than 0.9 in all other exper-
iments. This indicates that there is a high degree of positive
correlation or linear dependence between Maverage and Ftotal
in the system. This happens due to the reason that when a task
is failed, the task that depends on it’s output needs to wait for
longer period of time to be scheduled and executed. Therefore,
the completion time of exit task is delayed and makespan of
the workflow is increased, which indicates a linear relationship
between Maverage and Ftotal (see Fig.17(b) - Fig.17(d)).

However, in case of Failure with Reputation in Experiment
1, workload is not heavy, Ftotal is small and failure-prone re-
sources are isolated quickly. Thus makespan of the workflow
is not increased over the resource failure probability although
Ftotal is increase by a small margin. This means that there is no
clear relationship or correlation between Maverage and Ftotal in
such situation, which is reflected in Fig. 17(a).

Table 9: Pearson’s correlation coefficient: Maverage vs. Ftotal

Approach Exp 1.1 (25 Y) Exp 1.1 (50 Y) Exp 1.2 Exp 3
Failure with Reputation 0.2073 -0.4202 0.9904 0.9382

Failure 0.9673 0.9973 0.9971 -

In summary, the above experimental and analytical studies
indicate the following:

(i) considering reputation of Grid sites/resources for schedul-
ing can increase the reliability of application scheduling in
P2PG and improve the efficiency of distributed schedulers.

(ii) compared to Failure without Self-adaptation, Failure
with Reputation can effectively reduce application comple-
tion time by avoiding potential task failures through intelligent
scheduling irrespective of failure pattern of resources or work-
load on the system.

(iii) prunning efficiency of reputation based scheduling ap-
proach can be improved by increasing the reputation threshold
in the system.

(iv) there is a high degree of positive correlation between

16

4600

4660

4720

4780

4840

4900

50 80 110 140 170 200

25_Y 50_Y

Total number of failed tasks

av
g.

m
ak

es
p

an
 p

er
w

o
rk

fl
o

w
 (s

ec
)

(a) Makespan vs. Total task failures for Failure with Rep-
utation

4000

5200

6400

7600

8800

10000

0 1200 2400 3600 4800 6000

25_Y 50_Y

Total number of failed tasks

av
g.

m
ak

es
p

an
 p

er
w

o
rk

fl
o

w
 (s

ec
)

(b) Makespan vs. Total task failures for Failure without
Self-adaptation

4500

6000

7500

9000

10500

12000

0 2000 4000 6000 8000 10000

Failure with Reputation Failure

Total number of failed tasks

av
g.

m
ak

es
p

an
 p

er
w

o
rk

fl
o

w
 (s

ec
)

(c) Makespan vs. Total task failures for varying workflow
size (failure distribution 50. 0.5)

4500

5000

5500

6000

6500

7000

0 400 800 1200 1600 2000

Total number of failed tasks
av

g.
m

ak
es

p
an

 p
er

w
o

rk
fl

o
w

 (s
ec

)
(d) Makespan vs. Total task failures for varying Rth (fail-
ure distribution 50. 0.5)

Figure 17: Correlation between Ftotal and Maverage in the system.

makespan of workflow and total task failures in the system.

6. Conclusion and Future Work

In this paper, we have presented a reputation based depend-
able scheduling technique for workflow applications in Peer-
to-Peer Grids. Using simulation, we have measured the perfor-
mance of the proposed scheduling technique against two cases:
Failure without Self-adaptation and No Failure. The results
show that our scheduling technique can reduce the makespan
up to 50% and successfully isolate the failure-prone resources
from the system. Thus, by applying the proposed reputation
based scheduling technique, not only context-aware and oppor-
tunistic placement of workflow tasks is possible but also sig-
nificant performance gains are achievable (as analyzed in the
previous section). Moreover, our results have practical impor-
tance since they highlight the fact that the schedulers, which
do not have the ability to self-adapt in dynamic Grid conditions
deliver degraded performance to application workflows.

Thus, it is reasonable to conclude that developing self-
adapting Grid scheduling and application management tech-
niques is important to exploiting the realm of Grids. Further,
adapting to dynamic resource conditions aids in coping with the
unpredictability and uncertainty of Internet-scale, multi-sites
Peer-to-Peer Grids. In future, we intend to focus on imple-
menting this reputation based dependable scheduling technique
in real world P2PG system such as Aneka Federation [25]. As
this paper shows that the variation in Rth has an impact on the
system performance, in our future work, we also endeavour to
devise an approach considering dynamic Rth, adjusted by the
scheduler.

7. Acknowledgements

This work is partially supported by Australian Research
Council (ARC) Discovery Project grant. We gratefully thank
Xiaofeng Wang for his assistance in formulating the distributed
reputation model.

[1] M. Agarwal, V. Bhat, H. Liu, V. Matossian, V. Putty, C. Schmidt,
G. Zhang, L. Zhen, M. Parashar, B. Khargharia, and S. Hariri. Auto-
Mate: enabling autonomic applications on the grid. In Proceedings of
Autonomic Computing Workshop, USA, June 2003.

[2] F. Azzedin and M. Maheswaran. Integrating Trust into Grid Resource
Management Systems. In Proceedings of 31st International Conference
on Parallel Processing, Canada, 2002.

[3] N. Balakrishnan and C. R. Rao. Order statistics: Applications. Handbook
of Statistics, vol. 17, 1998.

[4] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz.
Wien2k - an augmented plane wave plus local orbitals program for calcu-
lating crystal properties. Technical report, Vienna University of Technol-
ogy, Austria, 2001.

[5] B. Bode, D. Halstead, R. Kendall, and D. Jackson. PBS: The portable
Batch Scheduler and the Maui scheduler on Linux clusters. In Proceed-
ings of 4th Linux Showcase and Conference, Atlanta, USA, October, 2000.

[6] R. Buyya and M. Murshed. Gridsim: A toolkit for the modeling and
simulation of distributed resource management and scheduling for grid
computing. Concurrency and Computation: Practice and Experience,
Volume 14, Issue 13-15, pages 1175-1220, Wiley Press, 2002.

[7] E. Byun, Y. Kee, E. Deelman, K. Vahi, G. Mehta, and J. Kim. Estimating
resource needs for time-constrained workflows. In Proceedings of 4th
IEEE International Conference on eScience, USA, December, 2008.

[8] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to algorithms.
MIT Press, 1990.

[9] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid informa-
tion services for distributed resource sharing. In Proceedings of the 10th
IEEE International Symposium on High Performance Distributed Com-
puting, USA, June, 2001.

[10] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M. H.

17

Su, K. Vahi, and M. Livny. Pegasus: Mapping scientific workflow onto
the grid. In Proceedings of Across Grids Conference, Cyprus, 2004.

[11] L. Clementi et al. Services oriented architecture for managing workflows
of avian flu grid. In Proceedings of 4th IEEE International Conference
on eScience, USA, December, 2008.

[12] T. Fahringer et al. Askalon: A tool set for cluster and grid computing.
Concurrency and Computation: Practice and Experience, 17:143-169,
2005.

[13] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor-G:
A computation management agent for multi-institutional grids. In Pro-
ceedings of 10th IEEE International Symposium on High Performance
Distributed Computing, USA, June, 2001.

[14] P. Garca, C. Pairot, R. Mondjar, J. Pujol, H. Tejedor, and R. Rallo. Plan-
etsim: A new overlay network simulation framework. In Proceedings of
Software Engineering and Middleware, Linz, Austria, 2004.

[15] W. Gentzsch. Sun Grid Engine: Towards Creating a Compute Power
Grid. In Proceedings of 1st IEEE International Symposium on Cluster
Computing and the Grid, Brisbane, Australia, May, 2001.

[16] A. Iosup, Hui Li, Mathieu Jan, Shanny Anoep, C. Dumitrescu, Lex
Wolters, and Dick Epema. The grid workloads archive. Future Gener-
ation Computing Systems, Elsevier Press, Amsterdam, The Netherlands,
2009.

[17] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The Eigentrust
algorithm for reputation management in P2P networks. In Proceedings of
12th international conference on World Wide Web, Hungary, 2003.

[18] D. Kececioglu. Reliability Engineering Handbook. Prentice Hall, Inc.,
New Jersey, Vol. 1, 1991.

[19] J. Kim, P. Keleher, M. Marsh, B. Bhattacharjee, and A. Sussman. Us-
ing content-addressable networks for load balancing in desktop grids. In
Proceedings of 16th international symposium on High performance dis-
tributed computing, USA, June, 2007.

[20] M. Litzkow, M. Livny, and M. Mutka. Condor-a hunter of idle work-
stations. In Proceedings of 8th International Conference of Distributed
Computing Systems, IEEE CS Press, USA, June 1988.

[21] B. Ludscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, and Y. Zhao. Scientific workflow management and the
kepler system. Concurrency and Computation: Practice and Experience,
Special Issue on Scientific Workflows, 2005.

[22] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,
T. Carver, K. Glover, M.R. Pocock, A. Wipat, and P. Li. Taverna: A tool
for the composition and enactment of bioinformatics workflows. Bioin-
formatics, 20(17):3045-3054, 2004.

[23] M. Rahman, R. Ranjan, and R. Buyya. Cooperative and decentralized
workflow scheduling in global grids. Future Generation Computing Sys-
tems (in press), Elsevier Press, Amsterdam, The Netherlands, 2010.

[24] L. Ramakrishnan, M. Reed, J. Tilson, and D. Reed. Grid portals for bioin-
formatics. Renaissance Computing Institute, University of North Car-
olina, USA.

[25] R. Ranjan and R. Buyya. Decentralized Overlay for Federation of Enter-
prise Clouds. Handbook of Research on Scalable Computing Technolo-
gies. K. Li et al. (eds), IGI Global, USA, 2009.

[26] R. Ranjan, L. Chan, A. Harwood, S. Karunasekera, and R. Buyya. De-
centralized resource discovery service for large scale federated grids. In
Proceedings of the 3rd IEEE International Conference on e-Science and
Grid Computing, India, December, 2007.

[27] R. Ranjan, A. Harwood, and R. Buyya. A case for cooperative and incen-
tive based coupling of distributed clusters. Future Generation Computer
Systems, Volume 24, No. 4, Pages: 280-295, Elsevier Press, Amsterdam,
The Netherlands, 2008.

[28] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scal-
able content-addressable network. In SIGCOMM ’01: Proceedings of the
2001 conference on Applications, technologies, architectures, and proto-
cols for computer communications, USA, 2001.

[29] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object lo-
cation, and routing for large-scale peer-to-peer systems. In Proceedings
of IFIP/ACM International Conference on Distributed Systems Platforms,
2001.

[30] F. Schuller and J. Qin. Towards a workflow model for meteorological
simulations on the austriangrid. In Proceedings of 1st Austrian Grid Sym-
posium, Schloss Hagenberg, Austria, December, 2005.

[31] J. Sonnek, A. Chandra, and J. Weissman. Adaptive Reputation-Based

Scheduling on Unreliable Distributed Infrastructures. IEEE Transactions
on Parallel and Distributed Systems, volume 18, issue 11, pages 1551-
1564, 2007.

[32] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. In
Proceedings of ACM SIGCOMM Conference on Applications, technolo-
gies, architectures, and protocols for computer communications, USA,
2001.

[33] E. Tanin, A. Harwood, and H. Samet. A distributed quad-tree index for
peer-to-peer settings,. In Proceedings of 21st IEEE International Confer-
ence on Data Engineering, Tokyo, Japan, 2005.

[34] I. Taylor, M. Shields, and I. Wang. Resource management of triana p2p
services. Grid Resource Management, Netherlands, June 2003.

[35] D. Theiner and P. Rutschmann. An inverse modelling approach for the es-
timation of hydrological model parameters. Journal of Hydroinformatics,
2005.

[36] H. Topcuouglu, S. Hariri, and M.Y. Wu. Performance-effective and low-
complexity task scheduling for heterogeneous computing. IEEE Trans-
actions on Parallel and Distributed Systems, volume 13, issue 3, pages
260-274, 2002.

[37] Y. Yang, J. Chen, J. Lignier, and H. Jin. Peer-to-peer based grid workflow
runtime environment of swindew-g. In Proceedings of 3rd IEEE Inter-
national Conference on e-Science and Grid Computing, India, December
2007.

[38] J. Yu and R. Buyya. A novel architecture for realizing grid workflow
using tuple spaces. In Proceedings of 5th IEEE/ACM Workshop on Grid
Computing, IEEE CS Press, USA, 2004.

[39] R. Zhou and K. Hwang. PowerTrust: A Robust and Scalable Reputation
System for Trusted Peer-to-Peer Computing. IEEE Transactions on Par-
allel and Distributed Systems, volume 18, issue 4, pages 460-473, 2007.

18

