
Grid-based Indexing of a Newswire Corpus

Baden Hughes, Srikumar Venugopal and Rajkumar Buyya
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
{badenh, srikumar, raj}@cs.mu.oz.au

Abstract

In this paper we report experience in the use of computa-
tional grids in the domain of natural language processing,
particularly in the area of information extraction, to cre-
ate query indices for information retrieval tasks. Given the
prevalence of large corpora in the natural language pro-
cessing domain, computational grids offer significant utility
to researchers in the domain who are reaching the bounds
of computational efficiency. We leverage the affinities be-
tween the segmented data sources prevalent in natural lan-
guage processing and the parallelisation model from the
grid domain. The experiment reported here is a large-scale
newswire corpus indexing task, with the goal to efficiently
create a queryable index of the entire corpus. By parallelis-
ing the indexing task and executing it on an Australian com-
putational grid, we observe overall performance improve-
ment of a 2.26x speedup over the same experiment on a sin-
gle computational node. In addition to reporting the raw
performance impact, we reflect on a number of interesting
points discovered during the execution of the experiments
and propose a number of new requirements for grid middle-
ware.

1 Introduction

Grid computing [9] enables the sharing and aggregation
of geographically distributed high-end computers, networks
and databases for solving large-scale problems in science,
engineering and commerce. By enabling access to compu-
tational resources, data collections and remote instrumen-
tation, grid computing has encouraged symbiosis between
various complimentary domains in the pursuit of common
goals. The potential for collaboration has sparked interest
in grid computing within diverse areas such as high-energy
physics, molecular biology and natural language process-
ing. Grids are therefore, emerging as the computing plat-
form of choice for the next generation of large-scale scien-
tific research, also sometimes called eScience [21].

The natural language processing (NLP) domain in focus
here is a broad discipline. One common feature across di-
verse NLP research is the use of large, collated corpora, or
collections of naturally-occurring human language in writ-
ten and/or spoken forms. In many areas, NLP has a long
history of computational innovation; and increasingly, is
reaching the bounds of computational efficiency. Thus NLP
researchers are beginning to seek new approaches to large-
scale analysis of human language data.

In the experiment described here, we process a text-
based broadcast news media corpora, and derive a queryable
index for information retrieval tasks. Newswire is a com-
mon data type, provided by large news agencies, and de-
signed for a content syndication by smaller publishers.
Newswire content is essentially a continuous stream of text
with little internal structure, inherited from earlier imple-
mentations where telegraph and serial line printers were
used to receive the data. In electronic form, the majority
of newswire services are provided in basic Standard Gener-
alized Markup Language (SGML).

Newswire is internally indexed by the use of series of
coded tags called ‘slugs’. However, owing to its stream-
based nature, external indices such as those required for ef-
ficient querying are not available by default. For research on
the content of newswire corpora, such indices are required
to be manually constructed. The complexity of such an in-
dexing task increases exponentially with the increased vol-
ume of newswire sources. An efficient indexing approach
would filter the newswire sources by content type, extract
the most pertinent key phrases for each story, and construct
an inverted index which references phrases against locations
in the raw newswire corpus.

Since the newswire corpus is naturally segmented, paral-
lelisation of the indexing process is a convenient approach
to adopt. Here we use the natural divisions in the newswire
corpus as the basis for parallelisation; distributing and exe-
cuting the index creation application across a computational
grid, and aggregating the results into a single master index.
We show comparative results for the same process on a sin-
gle computational node and on an Australian computational

grid, and find there are, as to be expected, significant per-
formance gains from this mode of exection.

The remainder of this paper is organized as follows: we
commence by providing a brief overview of the motiva-
tions for approaching computational grids from within nat-
ural language engineering application domain. We consider
related work in both the grid and natural language process-
ing communities. Next we describe the architecture, data
set, application, grid interface, and grid infrastructure used
in the experiment. Our results are reported and evaluated,
followed by some general observations about the domain
specific features which impact on the efficiency of widely-
adopted computational grid models. Finally, we describe a
number of directions for future work.

2 Motivation

The motivation for NLP researchers to adopt computa-
tional models such as distributed, grid and cluster comput-
ing may not appear obvious at first glance. However, even a
cursory review of typical computational approaches preva-
lent within NLP indicate a strong affinity for such tech-
niques.

NLP applications are typically constructed from a num-
ber of processing components, each responsible for a spe-
cialized task. Typical components include speech recogni-
tion, tagging, entity detection, anaphora resolution, parsing,
etc. Each component is heavily parameterized and must be
trained on very large datasets. Discovering optimal param-
eterizations is both data- and processor-intensive. Building
complex applications, such as spoken dialogue systems, de-
pends on identifying and integrating suitable components
often from a range of sources.

In addition to heavy parameterisation, NLP also makes
significant use of very large collections of human language
data. Text corpora of more than a billion words are increas-
ingly common, and multimodal corpora of thousands of
hours of speech are being actively curated. From a data pro-
cessing perspective alone, NLP requires high performance
computational facilities to approach acceptable throughput.

It is now not uncommon to find references to NLP re-
search which is unable to be completed owing to the bounds
of the computational efficiency of traditional serialised pro-
cessing. An excellent example is provided by Salomon
et. al. [15] who posit that for the exhaustive combinatori-
cal traversal of the multi-dimensional space represented by
speech phones in a corpus, an estimated 6 years of CPU
time would be required to complete the task. This constraint
is not uncommon in NLP as a whole.

NLP research is increasingly empirical in orientation,
and with such a data-intensive approach, the need for com-
putational gains is reinforced. Many algorithms within NLP
have not been tested for scaling over large data sets; nor

have the bounds of many algorithms been quantified. As
such research becomes more pressing, so to does the need
for new models of computation which allow collaborative,
distributed, data-intensive research.

Hence the motivation for NLP researchers to consider
the grid computing paradigm is obvious. The natural affin-
ity between segmented corpora prevalent in NLP and the
parallel execution mode supported by the grid model are be-
ginning to be exploited. The potential for grid-enabled pa-
rameter sweep applications to enable common tasks such as
language modelling [14] and word-frequency counting [14]
is beginning to be recognised within the discipline. The
field is seeking new enablement models for data-intensive
experiments which both allow existing techniques to be
evaluated as to their accuracy and efficiency, and for new
techniques to be developed to reveal new aspects of the sys-
tem of human language.

3 Related Work

The work reported here is derivative of two distinct
streams of research, one within the grid computing domain,
and the other within NLP.

Grid and web service technologies have been applied
successfully in many scientific and business domains. Some
examples are high energy physics [3], astronomy [24] pro-
tein aggregation simulation [23] and medical image pro-
cessing [16]. Grid resource brokers provide an abstraction
from the complexity of grids by undertaking tasks for re-
source discovery, job scheduling, execution and monitoring
and job output retrieval among others. Nimrod-G [4] is such
a Grid resource broker which follows the parameter-sweep
model of Grid execution, i.e., executing an application over
a combinatorial range of values in its parameter space. It
has been used in grid-enabling scientific applications such
as modelling of chemical processes [17], drug discovery [5]
and brain activity analysis [6]. The Gridbus broker [22]
extends this well-known model to execute distributed data-
intensive applications. As will be shown later, the Gridbus
broker uses a native XML format for input which would be
invaluable for defining future NLP-specific schemas. Here
we use the Gridbus broker to grid-enable the newswire in-
dexing application.

NLP shares some common characteristics with the afore-
mentioned applications - namely large collections of data
and the requirement for huge amounts of computational
power to process this data. However, most of the above
applications are numerically-oriented and the size of the
data has a direct relationship with the amount of comput-
ing power required. Within NLP, as we have noted in our
observations, this may not be the case.

The benefits offered by computational grids are slowly
being realised within the NLP community. A review of

2

a number of recent contributions follows. Curran [7] pro-
vided an overview of the architecture of a high performance
computation environment for NLP generally, and specifi-
cally for language learning tasks. Hughes and Bird [13]
proposed a closer integration between natural language pro-
cessing approaches and the broker-mediated computational
grid environment. Furthermore, Hughes and Bird [12] re-
fined and proposed an XML-grounded, workflow oriented
upper middleware layer which provides ease of interface
with grid brokering services. More recently, Tamburini [18]
provided further evidence as to the utility of computational
grids for NLP as a method for distributed corpora colla-
tion. Finally, empirical experiments have been conducted
by Hughes et al [14] showing the significant benefit of com-
putational grids in data-intensive natural language process-
ing.

In both the computational grid and NLP domains the
convergent themes of research are that where the bounds of
computational efficiency have been met or exceeded, ease
of acccess to computational resources can facilitate new
types of analysis. Additionally we propose that the natu-
ral affinity of segmented large corpora resources prevalent
in natural language processing with the data-oriented ap-
proach to grid-based computation offer a compelling solu-
tion which will enable cooperative, data-intensive, natural
language processing research.

4 Architecture

Figure 1 shows the high-level architecture that has been
used in conducting this experiment.

The newswire corpora are archived and are stored in a
repository. This repository is then made available to the grid
through standard data transfer protocols such as GSIFTP.
The natural language processing application is decomposed
as a parameter-sweep application using the natural corpus
segmentation. The parameterisation is then encoded as in-
put to the grid resource broker. The broker discovers avail-
able computational resources, creates a job schedule and
dispatches jobs to remote resources for execution. The bro-
ker monitors the dispatched jobs and retrieves their output
after completion. At the end of the execution phase, the out-
put of all the jobs is collated and post-processed to obtain
the final results.

The next four subsections consider each of these phases
in greater detail.

4.1 NLP Corpora

Typically a newswire service is a dedicated feed of sto-
ries from a larger news agency such as Reuters or AAP,
which is provided to smaller content aggregators for syn-
dication. Newswire content is primarily received via a ded-

Figure 1. High-Level Architecture

icated subscription circuit such as a leased line or satellite
service.

The corpus used in this experiment is the English Gi-
gaword Corpus [10] from the Linguistic Data Consortium.
This corpus is a collection of four international sources of
English newswire, from Agence France Press English Ser-
vice (afe), Associated Press Worldstream English Service
(apw), The New York Times Newswire Service (nyt), and
The Xinhua News Agency English Service (xie).

LDC English Gigaword Corpus

Source Files Mb-gzip Mb M-words M-docs
afe 44 417 1,216 171 .656
apw 91 1,213 3,647 540 1.48
nyt 96 2,104 5,906 914 1.30
xie 83 320 940 132 .679
TOTAL 314 4,054 11,709 1,757 4.11

Newswire content is essentially a continuous stream of
text with little internal structure. In electronic form, the ma-
jority of newswire services are provided in basic SGML.
Newswire content is relatively error free, but may contain
occasional transmission or human errors. Newswire ser-
vices themselves vary between stream-based and chunk-
based delivery modes - realtime stream-based services don’t
have much structural differentiation, whilst chunk-based
services have better grouping of content and delineation be-
tween content types.

3

Within newswire content there is inherent duplication
- transmissions are repeated, sometimes with minor alter-
ations as stories change, or sometimes exact copies, de-
pending on the delivery mode and editorial process of the
source agency. Furthermore, the style of the newswire may
vary based on orientation of the supplier (eg official gov-
ernment information sources vs independent commercial
news operations). Another complication is that in some
cases newswire services are multilingual, providing mul-
tiple translations of each story, thus interleaving linguistic
variation along with structural complexity.

4.2 Indexing Application

The overall purpose of the application is to create a
query index for the newswire corpus, which will allow ef-
ficient key phrase search and retrieval operations to iden-
tify sections of interest within the overall corpus. Given
that newswire is natively a stream-based data source with
only incidental internal indexing, the creation of such a ref-
erence index can only be achieved by processing the indi-
vidual corpus segments and aggregating the results into a
master index. Thus, the task of the indexing application it-
self is to construct extract the most pertinent key phrases for
each story, and construct an inverted index which references
two-word sequences against locations in the raw newswire
corpus. The index itself can then be queried by external
parties, and provides Key-Word-in-Context-style output to-
gether with document identifier and the headline from each
story relevant to the query.

While newswire content is divided into 4 main categories
(story, multi, other, advis), it is only the story category
(which contains actual narrative content) which is in focus
here. The other categories are significantly artificial in their
construction and are not designed for average human con-
sumption, but are rather codifications for news editors.

For the purposes of grid-enabling the application, the in-
dexing application has been decomposed into three distinct
parts from the original serialised version. Certain modifica-
tions were inevitable given the requirement that the appli-
cation be dynamically parameterised at run time rather than
making a linear pass through the data, however the indexing
task is essentially the same.

4.3 Gridbus Broker and Parameterisation

The Gridbus broker is able to make scheduling decisions
on where to place the jobs on the Grid depending on the
computational resources characteristics (such as availabil-
ity, capability, and cost), the user’s quality-of-service re-
quirements such as the deadline and budget, and the prox-
imity of the required data or its replicas to the computa-
tional resources. However, for this experiment, we have

conducted studies using a simple adaptive scheduling pol-
icy with load balancing, as the experiment output is simply
an aggregate of all jobs, and all the source data is distributed
from the central node at runtime.

The entire indexing application consists of 3 stages. The
first part, executed on the broker host, derives the execution
parameters for a given corpus segment, conducting a linear
pass through all segments of the corpus, and creates a job
tarball containing the indexing script supplemented by the
parameters dynamically determined from the sweep. The
second part, which is distributed, grid-enabled and man-
aged by the broker, involves the execution of the index-
ing application on each corpus segment. The job tarball
is uncompressed, the indexing script executed on the cor-
pus segment, results obtained and transferred to the broker
host, and cleanup performed. The third part, executed on
the broker host, collates the output of the individual corpus
segments, and aggregates them into two indices - one for
each corpus, and one for the whole corpus.

A sample plan file for the execution stage, modelled af-
ter Nimrod-G’s declarative programming language [1], and
expressed in the native XML format accepted by the Grid-
bus broker is shown in Figure 2. The division of the cor-
pora into archives based on months and years lends itself
easily to parameterisation. The arch parameter selects the
corpus on which the indexing is to be done. This parameter
can be varied to select a single corpus or multiple corpora
for simultaneous analysis. The other parameters are self-
explanatory. By default, the parameterization process cre-
ates job objects within the broker based on the cross-product
of all the values of all defined parameters. This causes
problems for analysis of discontinous corpora in which the
newswire archives of certain months or years may not be
present, thus needlessly causing the failure of jobs based on
the missing archives. To avoid this condition, in the current
experiments, we were forced to override the plan file analy-
sis by creating the parameter collections outside the broker
and providing these as the input for cross-production. In
future work, we plan to restrict the parameter value com-
binations by introducing user-defined validation conditions
for parameter value sets.

4.4 Grid Infrastructure

Figure 3 shows the Grid testbed used in our experiments.
We have deployed the application on a subset of the re-
sources that are part of the Belle Analysis Data Grid [2]
testbed, setup in collaboration with IBM, and a cluster at the
Victorian Partnership for Advanced Computing (VPAC).
The nodes were connected by GrangeNet (Grid and Next
Generation Network) [11], a multi-gigabit network support-
ing grid and advanced communications services between
academic institutions across Australia. The broker was de-

4

 <parameter>
 <name> year</name>
 <domain> <range> <from> 1994</from> <to> 2002</to> <step> 1 </step> </range> </domain>
 </parameter>
 <parameter>
 <name> month</name>
 <domain><range><from> 1</from><to>12</to><step>1</step></range></domain>
 </parameter>
 <parameter>
 <name>arch</name>
 <domain>
 <select_anyof> <text>
 <value_list> afe apw nyt xie</value_list>
 <default>afe apw nyt xie</default></text>
 </select_anyof></domain>
 </parameter>
 <task>
 <type> main</type>
 <copy>
 <source> <location> <nospec/> </location> <file>$arch/jobs/$arch$year$month.job.tar.gz</file> </source>
 <destination><location><node/></location><file> $arch$year$month.job.tar.gz</file></destination>
 </copy>
 <execute>
 <location> <node/> </location>
 <command> gunzip $arch$year$month.job.tar.gz</command>
 </execute>
 <execute>
 <location><node/></location>
 <command> tar -xvf $arch$year$month.job.tar</command>
 </execute>
 <execute>
 <location><node/></location>
 <command>./$arch$year$month.index.sh</command>
 </execute>
 <copy>
 <source><location><node/></location><file>$arch-out.docids+head</file></source>
 <destination><location><nospec/></location><file>output/$arch-out.docids+head.$month.$year</file></destina
tion>
 </copy>
 </task>
 </plan>

Figure 2. Parameter-sweep specification file for NLP task

Grid
Service
Broker

Analysis Request

Analysis Results

ANU, Canberra

GridFTP

Dual Intel Xeon 2.8 Ghz, 2GB RAM

Globus
Gatekeeper

GRIS

Dept. of Physics,
University of Sydney

GridFTP

Dual Intel Xeon 2.8 Ghz, 2GB RAM,

Globus
Gatekeeper

GRIS

VPAC, Melbourne
Cluster (Only Head Node Used)

GridFTP

 Intel Xeon 2.8 Ghz, 2GB RAM

Globus
Gatekeeper

GRIS

GRIDS Lab,
University of Melbourne

GridFTP

Dual Intel Xeon 2.8 Ghz, 2GB RAM

Globus
Gatekeeper

GRIS

Figure 3. The testbed used for NLP experiments

5

ployed on the Melbourne GRIDS Lab machine from where
jobs were dispatched to the other nodes at runtime.

All the nodes were running Globus 2.4.2 [8] which pro-
vided services for job submission and monitoring. The file
transfer was done through GSIFTP and Globus GASS.

5 Experimental Results

It can be seen from the results below that a significant
performance improvement was obtained by executing this
task in parallel on an Australian computational grid de-
scribed in the previous section, compared to execution in
serial on a single node.

First we consider the elapsed time taken for the two dif-
ferent modes of computation as can be seen in the tables
below.

Elapsed Time (Seconds) - Centralised Mode

Job.Gen Job.Exec Job.Collate Total
afe 79 1,863 18 1,960
apw 330 3,777 44 4,151
nyt 576 4,003 42 4,621
xie 62 3,407 20 3,489
Total 1,047 13,050 144 14,221

Elapsed Time (Seconds) - Distributed Mode

Job.Gen Job.Exec Job.Collate Total
afe 79 834 18 931
apw 330 1,438 44 1,812
nyt 576 1,907 42 2,525
xie 62 937 20 1,019
Total 1,047 5,116 144 6,287

In the figures above, it should be observed that only cer-
tain parts of the application were actually executed on the
computational grid, namely the indexing phase. The pre-
and post- processing parts were executed in serial in both
the centralised and distributed modes, owing to their pro-
portionally smaller computational requirements.

Comparing results for the elapsed time metric, the per-
formance improvement on a per corpus segment basis
ranged from 1:2.10x for afe, 1:2.29 for apw, 1:1.83x for nyt,
1:3.42 for xie; with an average per segment improvement of
1:2.41x. Overall we report a whole corpus performance im-
provement of 1:2.26x.

Next we consider a derived metric, words per second, for
the two different modes of computation, in the tables below.

Words Processed per Second - Centralised Mode

Words Time (Sec) Words/Sec
afe 170,969,000 1,960 87,229
apw 539,665,000 4,151 130,008
nyt 914,159,000 4,621 197,827
xie 131,711,000 3,489 37,750
Total 1,756,504,000 14,221 123,514

Words Processed per Second - Distributed Mode

Words Time (Sec) Words/Sec
afe 170,969,000 931 183,640
apw 539,665,000 1,812 297,828
nyt 914,159,000 2,525 362,043
xie 131,711,000 1,019 129,255
Total 1,756,504,000 5,116 343,335

Comparing results for the words per second metric, the
performance improvement on a per corpus segment basis
ranged from 1:2.10x for afe, 1:2.29 for apw, 1:1.83x for nyt,
1:3.42 for xie; with an average per segment improvement
of 1:2.41x. Overall we report a whole corpus performance
improvement of 1:2.26x.

In both the elapsed time metric and the words per sec-
ond metric we observe a performance improvement which
is significantly less than linear when compared to the num-
ber of CPUs used for execution. While we do see an im-
provement in overall performance, the comparative ratios
are 1:2.26 for elapsed time and/or words per second, as op-
posed to 1:3.5 for the number of CPUs utilised. In part
this indicates that the task itself is not CPU bound so much
as I/O bound. Another important point here is that in dis-
tributed mode, the bandwidth latency factor is much higher
and is derived from the average between the broker and
all nodes rather than between the broker and any single
node. However, the raw performance improvement is sig-
nificant enough to warrant further optimisation (eg adaptive
scheduling) of the application instance. An improvement
of 2.26x may represent in aggregate application contexts a
significant performance gain and should not be discounted
simply because it is not linear.

Our other observations based on these results are four-
fold. First, if we derive a per node average of the words per
second metric for the 4-node grid execution instance, we
can see that the average throughput per node is significantly
less in distributed mode (85,833 words per second) than in
centralised mode (123,514 words per second). While it is
not immediately clear as to the origin of this performance
degradation, we can posit two viable reasons for it: 1) the
non-symmetrical nature of the nodes on the computational
grid in terms of the number of CPUs and 2) the impact of
overlapping jobs as dispatched by the broker. Second, there
is a significant variation in the words per second metric be-
tween corpus segments. This can be accounted for by the
previously mentioned variable distribution of the items of
interest within a corpus, namely, those of type story in rela-
tion to other types.

Third we can consider the comparative job execution rate
for the distributed vs centralized segment of the indexing
task (since that is the only point which differs between the
two experiments). We can observe from that overall the ex-
ecution time is much shorter under distributed mode when
compared to centralized mode. This is to be expected, as

6

Figure 4. Comparative Job Completion

in distributed mode there are a greater number of jobs com-
pleted per unit time based on parallelisation.

Fourth, and finally, from Figure 5 we can see that the
Gridbus broker distributed the individual jobs relatively
evenly across the lifetime of the experiment. One anomaly
is that the host brecca2.vpac.org only received a relatively
small number of jobs in the afe corpus analysis. We can
attribute this anomaly to two factors: 1) the host itself has
only a single CPU, rather than a dual CPU architecture, and
thus broker-detected metrics as to the overall load on the
machine would be impacted; and 2) the bandwidth between
the broker host and this particular computational node was
in fact the most variable.

6 Observations

A number of interesting general observations can now be
made.

In common with the findings in a number of other do-
mains, not all tasks in natural language processing are ripe
for parallelisation. We can see from the results that although
not all aspects of the application are grid-enabled, the time
elapsed in pre- and post- processing is insignificant com-
pared to the time taken to actually index the corpus seg-
ments. Hence there would be little benefit gained from dis-
tributing these parts of the overall application - in fact the
time required to distribute them would surpass the computa-
tion time thus rendering such efforts inherently inefficient.

We also note that the natural segmentation of corpora
is an important factor in reviewing performance gains - it
appears that a greater proportional speedup is gained in cor-
pora which have fewer but larger files (eg xie, with 1:3.42),
than in those which have more but smaller files (eg nyt, with
1:1.83. This is possibly counter-intutive to a fundamental
tenet of parallel computing, that a greater degree of paral-
lelisation should result in greater performance.

Furthermore, we note that the typology of corpora con-
tent is an important factor. Since we only process items

of type story, then the relative number of these items in
relation to all other items in a corpus segment can impact
performance, within each segment we are essentially con-
ducting a linear pass to find such data instances.

It is also interesting to note that much of the processing
within this experiment required transfer of the segmented
archives from the broker host to the compute resources. It
is possible to gain improved performance by minimising
the data transfer time, although in this particular case, a
high bandwidth connection between all sites does mean that
a relatively small amount of optimisation could be gained
in this fashion. In the immediate future, we would like
to apply data-oriented scheduling, i.e., scheduling taking
into account bandwidth considerations and the relative size
of each job, into this domain and contrast its performance
with the computational scheduling to measure the benefits
gained and to establish the minimum I/O:computation ratio
required for any efficiency gain.

7 Conclusion and Future Work

In this paper we have shown the adaptation of a NLP ap-
plication, an indexer for newswire sources, to be executed
on a computational grid. The input data source is naturally
segmented, allowing the application to be easily parameter-
ized, and thus deployed. It can be seen from the results re-
ported that there is a clear performance benefit in executing
this NLP application on a computational grid.

However, much work is required before grid solutions
can be applied within the NLP domain on a daily basis by
ordinary researchers. A large number of NLP applications
can be construed as only requiring grid-based analysis at a
single point in the overall workflow. Thus, there is a need
for integration of services provided by grid brokers within
common NLP application frameworks. We note that al-
ready this work has begun in the context of the Annotation
Graph Toolkit [19] and the Natural Language Toolkit [20].

References

[1] D. Abramson, R. Sosic, J. Giddy, and B. Hall. Nim-
rod: A tool for performing parameterised simulations using
distributed workstations. In Proceedings of the 4th IEEE
Symposium on High Performance Distributed Computing
(HPDC). IEEE Computer Soceity Press, USA, 1995.

[2] Australian Belle Analysis Data Grid
. http://roberts.ph.unimelb.edu.au/epp/grid/badg/. Accessed
June 2004.

[3] J. Bunn and H. Newman. Data-intensive grids for high-
energy physics. John Wiley and Sons, Inc., New York, 2003.

[4] R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An Ar-
chitecture for a Resource Management and Scheduling Sys-
tem in a Global Computational Grid. In Proceedings of the

7

Figure 5. Job Distribution

4th International Conference on High Performance Comput-
ing in Asia-Pacific Region (HPC Asia 2000), Beijing, China,
2000. IEEE Computer Press, USA.

[5] R. Buyya, K. Branson, J. Giddy, and D. Abramson. The
virtual laboratory: Enabling molecular modeling for drug
design on the world wide grid. The Journal of Concurrency
and Computation: Practice and Experience, 15:1–25, 2003.

[6] R. Buyya, S. Date, Y. Mizuno-Matsumoto, S. Venugopal,
and D. Abramson. Neuroscience Instrumentation and Dis-
tributed Analysis of Brain Activity Data: A Case for
eScience on Global Grids. Journal of Concurrency and
Computation: Practice and Experience. Accepted and in
print.

[7] J. Curran. Blueprint for a High Performance NLP Infras-
tructure. In HLT-NAACL 2003 Workshop on Software En-
gineering and Architecture of Language Technology Sys-
tems, pages 40–45. Association for Computational Linguis-
tics, 2003.

[8] I. Foster and C. Kesselman. Globus: A Metacomputing In-
frastructure Toolkit. The International Journal of Super-
computer Applications and High Performance Computing,
11:115–128, 1997.

[9] I. Foster and C. Kesselman. The Grid: Blueprint for a Future
Computing Infrastructure. Morgan Kaufmann Publishers,
1999.

[10] D. Graff. English Gigaword. Linguistic Data Consortium,
Philadelphia, 2003. LDC Catalog LDC2003T05 ISBN 1-
58563-260-0.

[11] GrangeNet (GRid And Next GEneration Network).
http://www.grangenet.net. Accessed Jun 2004.

[12] B. Hughes and S. Bird. A Grid Based Architecture for High
Performance NLP. Paper submitted to Natural Language
Engineering, 2003.

[13] B. Hughes and S. Bird. Grid-Enabling Natural Language
Engineering By Stealth. In HLT-NAACL 2003 Workshop on
Software Engineering and Architecture of Language Tech-
nology Systems, pages 31–38. Association for Computa-
tional Linguistics, 2003.

[14] B. Hughes, S. Bird, H. Lee, and E. Klein. Experiments with
Data-Intensive NLP on a Computational Grid. In Proceed-
ings of the International Workshop on Human Language
Technology. University of Hong Kong, 2004.

[15] J. Salomon, S. King, and M. Osborne. Framewise phone
classification using support vector machines. In 7th Interna-
tional Conference on Spoken Language Processing, 2002.

[16] S. Smallen, H. Casanova, and F. Berman. Applying Schedul-
ing and Tuning to On-line Parallel Tomography. In Proceed-
ings of the IEEE/ACM SuperComputing Conference (SC
2001), Denver, CO, USA, 2001. IEEE Computer Society
Press, Los Alamitos, CA, USA.

[17] W. Sudholt, K. Baldridge, D. Abramson, C. Enticott, and
S. Garic. Parameter Scan of an Effective Group Difference
Pseudopotential Using Grid Computing. New Generation
Computing, 22:125–135, 2004.

[18] F. Tamburini. Building distributed language resources
by grid computing. In Proceedings of the 4th Interna-
tional Conference on Language Resources and Evaluation,
pages 1217–1220. European Language Resources Associa-
tion, 2004.

[19] The Annotation Graph Tool Kit. http://agtk.sf.net.
[20] The Natural Language Tool Kit. http://nltk.sf.net.
[21] The UK eScience Programme.

http://www.rcuk.ac.uk/escience/.
[22] S. Venugopal, R. Buyya, and L. Winton. A Grid Service

Broker for Scheduling Distributed Data-Oriented Applica-
tions on Global Grids. Technical Report GRIDS-TR-2004-1,
Grid Computing and Distributed Systems Laboratory, Uni-
versity of Melbourne, Australia, 2004.

[23] Vijay Pande, et. al.,. Atomistic protein folding simulations
on the submillisecond timescale using worldwide distributed
computing. Biopolymers, 2002.

[24] W.T. Sullivan, III, et. al. A new major SETI project based on
Project Serendip data and 100,000 personal computers. In
Proceedings of the Fifth International Conference on Bioas-
tronomy, Capri, Italy, 1997.

8 Acknowledgements

The research reported in this paper has been supported
by the Victorian Partnership for Advanced Computing,
the University of Melbourne and the Australian Research
Council.

8

