
Nature’s Heuristics for Scheduling Jobs on Computational Grids 
 
 

Ajith Abraham, Rajkumar Buyya* and Baikunth Nath  
 
 

School of Computing and Information Technology 
Monash University, Gippsland Campus 

Churchill, VIC 3842, Australia 
 

*School of Computer Science and Software Engineering  
Monash University, Caulfield Campus 

Melbourne, VIC 3145, Australia 

Email: {Ajith.Abraham, Rajkumar.Buyya, Baikunth.Nath}@infotech.monash.edu.au 
 
Abstract: Computational Grid (Grid Computing) is a new paradigm that will drive the computing arena in the new millennium. 
Unification of globally remote and diverse resources, coupled with the increasing computational needs for Grand Challenge 
Applications (GCA) and accelerated growth of the Internet and communication technology will further fuel the development of 
global computational power grids. In this paper, we attempt to address the dynamic scheduling of jobs to the geographically 
distributed computing resources. Conventional wisdom in the field of scheduling is that scheduling problems exhibit such richness 
and variety that no single scheduling method is sufficient. Heuristics derived from the nature has demonstrated a surprising degree of 
effectiveness and generality for handling combinatorial optimization problems. This paper begins with an introduction of 
computational grids followed by a brief description of the three nature’s heuristics namely Genetic Algorithm (GA), Simulated 
Annealing (SA) and Tabu Search (TS). We further demonstrate the hybridized usage of the above algorithms that can be applied in a 
computational grid environment for job scheduling. 
 
Keywords: Computational grid, grid computing, scheduling, resource management, global optimization algorithms, genetic 
algorithm, simulated annealing, tabu search, nature’s heuristics and hybrid algorithm. 
 

1 Introduction 

Grid Computing (GC) is the ultimate framework to meet the growing computational demands in the new millennium 
[1-3]. To meet the growing needs of the computational power, geographically distributed resources need to be logically 
coupled together to make them work as a unified resource (see Figure 1). The continuous exponential growth of the 
Internet and World Wide Web (WWW), ever improving high-bandwidth communications, wide spread availability of 
powerful computers and low-cost components will further enhance transformation of computational grids to a reality. 
Computing resources are geographically distributed under different ownerships each having their own access policy, 
cost and various constraints. Every resource owners will have a unique way of managing and scheduling resources and 
the grid schedulers are to ensure that they do not conflict with resource owner’s policies. In the worst-case situation, the 
resource owners might charge different prices to different grid users for their resource usage and it might vary from 
time to time. Traditionally, most of the schedulers followed system centric approach in resource selection and often 
completely ignore the user requirements. In an economic-based approach an optimal schedule often relies on a trade off 
between cost and the user specified deadline [4]. Our approach is to dynamically generate an optimal schedule so as to 
complete the tasks in a minimum period of time as well as utilizing the resources in an efficient way. 
 

 
 

Figure 1. General Framework of a Computational Grid 



 2

In recent years, several analogies from the natural and social systems have been widely accepted to form powerful 
heuristics, which have proven to be highly successful in solving several NP hard global optimization problems [5][12]. 
Some of the common characteristics of nature’s heuristics are the close resemblance of a phenomenon existing in 
nature, non-deterministic; present implicitly a parallel structure and adaptability. In section 3, 4 and 5 we will briefly 
discuss the features of genetic algorithm, simulated annealing and tabu search and in section 6 we demonstrate how it 
can be used to formulate scheduling independent tasks in a grid environment. 

 
2 Grid Resource Management and Scheduling Issues 
 
Figure 1 depicts the general framework for grid computing focusing on the interaction between grid resource broker, 
Domain Resource Manager (DRM) and the grid information server. The grid resource broker is responsible for 
resource discovery, deciding allocation of a job to a particular resource, binding of user applications (files), hardware 
resources, initiate computations, adapt to the changes in grid resources and present the grid to the user as a single, 
unified resource. It finally controls the physical allocation of the tasks and manages the available resources constantly 
while dynamically updating the grid scheduler whenever there is a change in resource availability. In a grid 
environment knowing the processing speeds of the available resources and the job length of user applications is a 
tedious task. Usually it is easy to get information about the speed of the available resources but quite complicated to 
know the computational processing time requirements from the user. When the computing power demand is much 
greater than the available resources only dynamic scheduling will be useful. To conceptualize the problem as an 
algorithm, we need to dynamically estimate the job lengths from user application specifications or historical data. Soft 
computing techniques like fuzzy logic and artificial neural networks might be of useful aid in the parameters estimation 
process especially in times of uncertainty and vague data. 
 
To formulate the problem, we consider Jn independent user jobs n={1,2,….N} on Rm heterogeneous resources 
m={1,2,….,M} with an objective of minimising the completion time and utilizing the resources effectively. The speed 
of each resource is expressed in number of cycles per unit time, and the length of each job in number of cycles. Each 
job Jn has processing requirement Pj cycles and resource Rm has speed of Si cycles/second. Any job Jn has to be 
processed in resource Rm, until completion.  
 
To formulate our objective, define Cj as the completion time the last job j finishes processing. Define Cmax = max {Cj , 
M ��«�1`�� WKH�PDNHVSDQ�DQG� Cj , as the flowtime. An optimal schedule will be the one that optimizes the flowtime 
and makespan [6]. The cRQFHSWXDOO\�REYLRXV�UXOH�WR�PLQLPL]H� Cj is to schedule Shortest Job on the Fastest Resource 
(SJFR). The simplest rule to minimize Cmax is to schedule the Longest Job on the Fastest Resource (LJFR). Minimizing 

Cj asks the average job finishes quickly, at the expense of the largest job taking a long time, whereas minimizing Cmax, 
asks that no job takes too long, at the expense of most jobs taking a long time. In summary, minimization of Cmax will 
UHVXOW�LQ�PD[LPL]DWLRQ�RI� Cj. 
 
3  Genetic Algorithm (GA) 
GAs are adaptive methods that can be used to solve optimization problems, based on the genetic process of biological 
organisms. Over many generations, natural populations evolve according to the principles of natural selection and 
"Survival of the Fittest", first clearly stated by Charles Darwin in "The Origin of Species". By mimicking this process, 
GAs are able to "evolve" solutions to real world problems, if they have been suitably encoded.  

 

 
 

Figure 2. Flowchart of GA Iteration 

GA search is constrained neither by the continuity of the function under investigation, nor the existence of a derivative 
function [7]. Figure 2 illustrates the functional block diagram of a GA. It is assumed that a potential solution to a 
problem may be represented as a set of parameters. These parameters (known as genes) are joined together to form a 
string of values (known as a chromosome). The particular values the genes represent are called its alleles. The position 
of the gene in the chromosome is its locus. Encoding issues deal with representing a solution in a chromosome and 
unfortunately, no one technique works best for all problems. A fitness function must be devised for each problem to be 
solved. Given a particular chromosome, the fitness function returns a single numerical fitness or figure of merit, which 



 3

will determine the ability of the individual, which that chromosome represents. Reproduction is another critical 
attribute of GAs where two individuals selected from the population are allowed to mate to produce offspring, which 
will comprise the next generation. Having selected two parents, their chromosomes are recombined, typically using the 
mechanisms of crossover and mutation. Traditional view is that crossover is the more important of the two techniques 
for rapidly exploring a search space. Mutation provides a small amount of random search, and helps ensure that no 
point in the search space has a zero probability of being examined. If the GA has been correctly implemented, the 
population will evolve over successive generations so that the fitness of the best and the average individual in each 
generation increases towards the global optimum. Selection is the conservation of the fittest individuals for the next 
generation and is based on 3 parts. The first part involves determination of the individual’s fitness by the fitness 
function. The second part involves converting the fitness function into an expected value followed by the last part 
where the expected value is then converted to a discrete number of offspring. To avoid premature convergence of GAs 
due to interference from mutation and genetic drift, sharing and crowding may be used to decrease the amount of 
duplicate schemata in the population. Elitism may be incorporated to keep the most superior individuals (and superior 
schemata) within the population. The use of GA in formulating the scheduling algorithm is discussed in section 6.1. 

4 Simulated Annealing (SA) 
SA exploits an analogy between the way in which a metal cools and freezes into a minimum energy crystalline 
structure (the annealing process) and the search for a minimum in a more general system. SA's major advantage over 
other methods is an ability to avoid becoming trapped at local minima. Figure 3 shows a flowchart of SA iteration. The 
annealing schedule, i.e., the temperature-decreasing rate used in SA is an important factor, which affects SA's rate of 
convergence. 
 

 
 

Figure 3. Flowchart of SA Iteration 
 

The algorithm employs a random search, which not only accepts changes that decrease objective function " f ", but also 

some changes that increase it. The latter are accepted with a probability 




−=
T
fp δexp , where fδ  is the increase 

in objective function, and " f " and T are control parameters. Several SAs have been developed with annealing schedule 
inversely linear in time (Fast SA), exponential function of time (Very Fast SA) etc. We explain a SA algorithm [10], 

which is exponentially faster than Very Fast SA whose annealing schedule is given by 
)exp(

)( 0
ke

T
kT = , where 0T is the 

initial temperature, )(kT  is the temperature we wish to approach to zero for k=1,2,…. 
 
If the generation function of the simulated annealing algorithm is represented as: 
 

∏ ∏
++

==
= =

D

i

D

i
i

i
i

ikk
kT

kT
z

zgZg
1 1 )))(/1ln(1(ln)

))(/1(ln

1
(2

1
)()(         (1) 

Where )(kTi is the temperature in dimension i at time k. The generation probability will be represented by  

 

∫ ∏∫∫ −
=

−− == Dz D

i
ikiDk

zz
k zGdzdzdzZgZG 1

1
2111 )(....)(.....)( 21               (2) 

 

Where 
)))(/1ln(1ln(2

)))(/1ln(1ln()sgn(

2

1
)(

kT

kTzz
zG

i

iii
iki +

+
+=               (3) 

 
It is straightforward to prove that an annealing schedule for  
 

))exp(exp()( /1
0

D
iii kbTkT −=                     (4) 



 4

A global minimum, statistically, can be obtained. That is,  

∑
∞

=
∞=

okk
kg                         (5) 

 
Where bi > 0 is a constant parameter and k0 is a sufficiently large constant to satisfy (5), if the generation function in (1) 
is adopted. 
 

5 Tabu Search (TS) 

TS is a meta-strategy for guiding known heuristics to overcome local optimality and has now become an established 
optimization approach that is rapidly spreading to many new fields. The method can be viewed as an iterative technique 
which explores a set of problem solutions, denoted by X, by repeatedly making moves from one solution s to another 
solution s  located in the neighborhood N(s) of s. These moves are performed with the aim of efficiently reaching 
optimal solution by the evaluation of some objective function f(s) to be minimized [8][9][13]. In the sequel we sketch 
the basic ingredients of TS.  

Let us define the notion of neighborhood N(s) for each solution s in X. By definition N(s) is a set of solutions in X 
reachable from s via a slight modification m.  

N(s) = {s �∈  X V �= s ⊕ m, m ∈  M}         (6) 

Where M contains all possible modifications and s � V�⊕ m means that s  is obtained by applying modification m to s. 
TS starts from an initial solution randomly generated in X and moves repeatedly from a solution to a neighbor. At each 
step of the procedure, a subset V* of the neighborhood of the current solution s is generated and the local optimization 

problem })()({ * sNVxxf min ⊆∈  is solved. In order to escape from local minima, the idea is to move to the best 

neighbor s  in V* even if f(s ��!�I�V�. Following a steepest descent / mildest ascent approach, a move may result in a best 
possible improvement (or a least possible deterioration) of the objective function value. Without additional control, 
however, such a process can cause a locally optimal solution to be re-visited immediately after moving to a neighbor, or 
in a future stage of the search process. To prevent the search from endlessly cycling between the same solutions, a tabu 
list T is introduced. This list keeps track of the reverses of the last 7 �PRGLILFDWLRQV� WKDW�KDYH�EHHQ�GRQH�HQDFWHG�
during the search process. A move from s to s  will be considered tabu if it is performed via a modification contained in 
T. However the concept of tabu list sometimes appears to be restrictive. Since only parts of the neighborhood are 
explored, it might be worth returning after a while to a solution visited previously to search in another direction. An 
aspiration function A deals precisely with the rigidity of the tabu list. It permits the tabu status of a move to be dropped 
under certain favorable circumstances. 

We define an aspiration level A(z) for each value z of the objective function. Then a tabu move from s to s  is permitted 
if f(s ��$�I�V��� Initially A(z)=z , for all possible values of z=f(s). This aspiration function is updated as follows 
whenever we move from s to s � 

A(f(s))=min(A(f(s)),f(s �� and A(f(s �� PLQ�$�I�V ���I�V��       (7) 

 

The above shows that the reverse move from s  to s is considered in the updating of A even though it was not done 
explicitly. Generally the process is stopped as soon as a given number of iterations have been performed without 
improving the best solution obtained. 
 
6 Schedule Formulation and Representation Issues 
 
For applying GAs directly or coupled with other meta-heuristics, problem (chromosome) representation is very 
important and it directly affects the performance of the proposed algorithm. The first decision a designer has to make is 
how to represent a solution in a chromosome. 
 

 
 
 

Figure 4. Representation of a chromosome 
 
 



 5

We assume that the jobs and resources are arranged in an ascending order according to the job lengths and processor 
speeds. The information related job lengths may be derived from historical data, some kind of strategy defined by the 
user or through load profiling. Figure 4 depicts the chromosome representation which can be used in the 3 heuristic 
algorithms presented in sections 6.1-6.3. Each block in the chromosome represents a gene, coding a particular sequence 
of jobs. Job J1 is allocated to resource R1, J2 to R2 and J3 to R3 and so on. When J1 is completed, resource R1 is empty 
and job JN is allocated. This procedure goes on until all the jobs are allocated. To optimize the makespan and flowtime 
we propose to swap the usage of LJFR and SJFR heuristic alternatively every time a new job is allocated to a resource. 
In sections 6.1-6.3, we present a pure genetic algorithm, hybrid genetic-simulated annealing and hybrid genetic-tabu 
search approach for scheduling the jobs. If the number of jobs is less than the number of resources, we propose to 
allocate the jobs based on a First-Come-First-Serve basis and LJFR heuristic (if possible). In a grid environment, a 
scheduler might have to make a multicriteria decision analysis (access policy, access cost, resource requirements, 
processing speed, etc.) for selecting an optimal resource.  
 
To formulate the algorithm, we propose the following job lists and resource lists. JList1 and Rlist1 are to be 
dynamically updated through load profiling, grid resource health status, and forecasted load status, etc. along with grid 
information services. The entire job and the resource lists are to be arranged in the ascending order of the job lengths 
and processing speeds/access-cost (based on multicriteria decision analysis). Frequency of updating the lists will very 
much depend on the grid condition, availability of resources and jobs. 
 
JList1 = Job list maintaining the list of all the jobs to be processed. 
Jlist2 = Job list maintaining only the list of jobs being scheduled. 
Jlist3 = Job list maintaining only the list of jobs already allocated. 
 
Rlist1 = List of available resources (including time frame). 
Rlist2 = List of resources already allocated to jobs. 
Rlist3 =List of free resources = (Rlist1-Rlist2). 
 
6.1 GA Approach for Job Scheduling on the Grid 
 

1. If the grid is active and (Jlist1=0) and no new jobs have been submitted, wait for new jobs to be submitted. 
Update Rlist1 and Jlist1. 

 
2. If (Rlist1=0), wait until resources are available. If Jlist1>0, update Jlist2. If Jlist2 < Rlist1 (available 

resources) allocate the jobs on a first-come-first-serve basis and if possible allocate the longest job J on the 
fastest resource M according to the LJFR heuristic. If Jlist1 > Rlist1, job allocation is to be made by following 
the heuristic algorithm detailed below. Take jobs and available resources from Jlist2 and Rlist3. 

 
3. At t =0; generate an initial population with P chromosomes Popi(t), encoding the schedules. Feasibility of each 

chromosome is to be checked and makespan for each schedule represented by the chromosome is to be 
calculated. In certain cases, illegal offspring’s (duplicated jobs, missing jobs, jobs outside the list) are 
generated due to genetic operators that require to be repaired immediately to ensure that each job appears only 
once in the sequence. 

 
4. Begin GA loop  

 
While (until the specified fitness value is achieved) do; 

 
a. For each chromosome (i=1 to P), first allocate the jobs to the available resources based on the LJFM 

heuristic and once a resource is free (due to job completion), a job is allocated based on the SJFM 
heuristic. There after LJFR – SJFR heuristic is applied alternatively after completion of every job. 
Calculate the make span and total flowtime for the generated schedule. Also calculate fitness value of 
each chromosome, Fitnessi=FitPopi(t); 

 
b. For (i=1 to P), Create new population NewPopi(t+1) which is choosen randomly based on the fitness 

value of each chromosome Popj(t) in the current population Pop(t). The probability for selection a 

chromosome for the next generation may be defined as 
∑ =

=
P
k k

j
j

Fitness

Fitness
p

1

or according to the 

selection strategy adopted; 
 

c. Apply crossover operator on the population according to the probability selected, Crospop(t+1) = 
recombined chromosomes of the population NewPopi(t+1); 

 



 6

d. Apply mutation operator on the population according to the probability selected, 
MutPop(t+1)=mutated population CrosPop(t+1). 

 
5. Evaluate fitness of each individual and when the Fitnessi has reached the required value end loop. 
 
6. Check the feasibility of the generated schedule with respect to resource availability and user specified 

requirements. Then allocate the jobs to the resources and update Jlist2, JList3, RList2 and Rlist3. Un-allocated 
jobs (infeasible schedules or resource non-availability) shall be transferred to JList1 for re-scheduling or dealt 
with separately. 

 
7. Repeat steps 1-6 as long as the grid is active. 

 
We define that a job schedule is feasible only if the makespan (Cmax) does not exceed the user specified completion 
time. We suggest the use of a penalty function to distinguish a feasible schedule from the non-feasible and relate as 
(User specified completion time - makespan of the generated schedule). If makespan exceeds the required completion 
time� WKH� ILWQHVV� YDOXH� ZLOO� EH� QHJDWLYH�� 7KH� ILWQHVV� IXQFWLRQ� LV� VHW� WR� WKH� LQYHUVH� RI� WKH� IORZ� WLPH� � Cj) from the 
generated schedule. The sequences of the jobs could be coded in a sequence of integer arrays. In our scheduling 
experimentations using GAs [6][15], we have achieved good results using 2-point crossover operator and mutation 
operators with a selection probability of 1.0.  
 
6.2 Hybrid GA-SA Approach for Job Scheduling on the Grid 

GA-SA is a hybrid random searching technique fusing GA and SA, inheriting the convergence property of SA and 
parallalization capability of GA. Each genotype is assigned an energy threshold, initially equal to the energy of the 
randomized bit string to which it is assigned. If the energy of the mutant exceeds the threshold of the parent that 
spawned it, the mutant is rejected and a new genotype is considered. However if the energy of the new genotype is less 
than or equal to the energy of the parent, the mutant is accepted as a replacement for its progenitor. GA-SA uses an 
Energy Bank (EB) to keep track of the energy liberated by the successful mutants. Whenever a mutant passes the 
threshold test, the difference between the threshold and the mutant’s energy is added to the EB for temporary storage. 
Once the quantum of energy is accounted, the threshold is reset so that it equals the energy of the accepted mutant and 
move on to next member of the population. After each member has been subjected to a random mutation, the entire 
population is reheated by changing the threshold. The rate of reheating is directly proportional to the amount of energy 
accumulated in the EB (from each member of the population) as well as designer’s choice of coolant rate (refer to 
section 4). Annealing results from repeated cycles of collecting energy from successful mutants and then redistributing 
nearly all of it by raising the threshold energy of each population member equally [11]. The GA-SA algorithm for job 
scheduling on computational grid can be formulated as follows: 

 
1. and 2 are the same as in section 6.1 

3 Generate an initial population of P schedule vectors and for i =1 to P, initialize the ith threshold, Th(i), with the 
energy of the ith configuration. For each schedule (i=1 to P), first allocate the jobs to the available resources 
based on the LJFM heuristic and once a resource is free (due to job completion), a job is allocated based on 
the SJFM heuristic. There after LJFR – SJFR heuristic is applied alternatively after completion of every job. 

4 Begin the cooling loop 

• Energy bank (EB) is set to zero and for i = 1 to N randomly mutate the ith schedule vector. 

• Compute the Energy (E) of the resulting mutant schedule vector.  

• If E > Th(i) , then the old configuration is restored. 

• If E ≤ Th(i) , then the energy difference (Th(i) –E) is incremented to the Energy Bank (EB) = EB+ 
Th(i) –E. Replace old configuration with the successful mutant  

End cooling loop. 

5 Begin reheating loop.  

• Compute reheating increment 
N

kTEB
eb i )(*

= , for i= 1 to N. (Ti(k)=cooling  constant). 

• Add the computed increment to each threshold of the schedule vector. 

End reheating loop. 

6 Go to step 4 and continue the annealing and reheating process until an optimum schedule vector is found.  



 7

7  Same as step 6 and 7 as mentioned in section 6.1. 

 
6.3 Hybrid GA-TS Approach for Job Scheduling on the Grid 
 
Contrary to the SA, there exists no convergence theorem for TS. The research and experimentation’s have proven TS is 
powerful, very flexible and easy to implement. However performance of TS very much depends on the selection of 
parameters and a good knowledge of the problem to be solved is required to design the parameters appropriately. 
Hybridization of TS with GA makes the algorithm more robust. In the hybrid GA-TS approach, reproduction, crossover 
and mutation in GA is replaced by reproduction, crossover and Tabu search. Instead of random mutation changes each 
member of the population undergoes a separate optimization process described by a tabu algorithm [13]. The 
application of the hybrid algorithm for job scheduling on computational grid can be formulated as follows: 
 

1. 2 and 3 are the same as in section 6.1. 
 
4. Begin GA-TS loop. 
  

a) b,c are the same as mentioned in section 6.1. 
 
d) Begin tabu algorithm 
 

Initialization 
 

i. Evaluate neighborhood N (S) for every individual of CrosPop(t+1). Generate maximum number 
of feasible schedule for each CrosPop(t+1) individual at each step of the search.  

  
ii. For every schedule, evaluate the makespan. Let s*=s; for the best solution reached so far and set 
iteration counter (iteration)= 0. For the best moves (schedules created) set the iteration counter 
bestiteration =0, set tabu list (T=0) and initialize the aspiration function A. 

 
Begin loop 
 
iii. While (iteration-bestiteration < nmax) do 

iteration= iteration+1; 
generate a set of feasible V* solutions ii mss ⊕= ,such that Tmi ∉  

or f(si) < A(f(s)); 
Choose the best solution s   in V*; update tabu list T and A(f); 

If (f(s   ) < f(s*)) then 
s*=s    
bestiteration=iteration; 
s=s    
End loop when no of iterations has reached nmax. 

 
5. the same as steps 6 and 7 as mentioned in section 6.1. 
 

A simple hybrid approach can be obtained by applying TS in a parallel framework to a set of starting solutions in order 
to generate a set of good quality solutions; then apply GA to recombine the elements so generated. The whole process 
is repeatedly applied using the recombined solutions as starting ones. A second kind of hybrid is given by observing the 
alleles of GA can be compared to the attributes in TS. A hybrid method can be formulated by introducing frequency-
based memory in GA to mark the history of alleles over populations’ [12]. 
 
7 Conclusions and Future Work 

 
In this paper, we attempted to address the hybridization of the three of the popular nature's heuristics namely GA, SA 
and TS for dynamic job scheduling on large-scale distributed systems. When compared to pure GA search, the GA-SA 
algorithm has a better convergence and GA-TS algorithm improves the efficiency of GA. Due to the complexity of the 
solution space due to various constraints, sometimes it is really not obvious how to enumerate (even implicitly) the 
points in the solution space. While GAs deal with population of solutions, TS and SA are search procedures that deal 
with only one solution at a time. A number of related works have shown that hybrid heuristic algorithms do perform 
better than the classical GA approach [15]. 
 
Global optimization algorithms attract considerable computational effort. In a grid environment, the main emphasize 
will be to generate the schedules at a minimal amount of time. Especially as the demand increases, when the number of 



 8

jobs and the resources starts towering up, conventional GAs become time consuming. Fortunately GAs work with a 
population of independent solutions, which makes it easy to distribute the computational load among several 
processors. The design of parallel GA’s involves choices such as using one population or multiple populations. In both 
cases, the size of population or populations must be determined carefully, and when multiple populations are used, one 
must decide how many to use.  In addition, the populations may remain isolated or they may communicate by 
exchanging individuals. Communication involves extra costs and additional decision on topologies, on how many 
individuals are exchanged, and on the frequency of communications [14]. 
 
Currently a large number of research projects worldwide are exploring different approaches to the development of grid 
technologies and global scheduling systems [16]. Even though significant progress has been made in modeling the 
infrastructure for grid computing, a close review clearly indicates that not much progress is made in formulating an 
efficient, globally optimized, grid-scheduling algorithm for allocating jobs. Therefore, we plan to explore this space in 
depth along with the implementation and evaluation of the heuristics and algorithms described here in the context of 
global computational grids. 
 
References 
 
[1] Foster I, Kesselmann C, (Eds.), The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann 

Publishers, USA, 1999. 

[2] Buyya R, Abramson D, Giddy J, Grid Resource Management, Scheduling, and Computational Economy, 
International Workshop on Global and Cluster Computing, Japan, 2000. 

[3]  Baker M, Buyya R, Laforenza D, The Grid: International Efforts in Global Computing, International Conference 
on Advances in Infrastructure for Electronic Business, Science, and Education on the Internet, Rome, Italy, 2000. 

[4] Buyya R, Abramson D, Giddy J, An Economy Driven Resource Management Architecture for Global 
Computational Power Grids, International Conference on Parallel and Distributed Processing Techniques and 
Applications (PDPTA’2000), Las Vegas, USA, 2000. 

[5] Abraham A, Nath B, Hybrid Heuristics for Optimal Design Of Artificial Neural Networks, Third International 
Conference on Recent Advances in Soft Computing (RASC2000), England, June 2000. 

[6] Nath B, Lim S, Bignall R J, A Genetic Algorithm For Scheduling Independent Jobs On Uniform Machines With 
Multiple Objectives, Proceedings of the International Conference on Computational Intelligence and Multimedia 
Applications, Australia, pp. 67-74, 1998. 

[7] Goldberg DE, Genetic Algorithms in Search, Optimization and machine learning, Addison-Wesley Publishing 
Company, Inc., 1989. 

[8] Taillard.E, Parallel Tabu Search Technique for the Job Shop-Scheduling Problem, ORSA Journal of Computing, 
(6):108-117, 1994. 

[9] Glover F, Taillard E, De Werra D, A User’s Guide to Tabu Search,. In: Hammer PL (Ed.) Annals Of Operations 
Research, Volume 41, 3-28, pp 3-27, 1993. 

[10] Yao. X, A New Simulated Annealing Algorithm, International Journal of Computer Mathematics, 56: pp.161-168, 
1995. 

[11] Price KV, Genetic Annealing, Dr. Dobbs Journal, Vol.220, pp. 127-132, Oct 1994. 

[12] Colorni A., M.Dorigo, F.Maffioli, V. Maniezzo, G. Righini & M. Trubian, Heuristics from Nature for Hard 
Combinatorial Problems, International Transactions in Operational Research, Vol (3) 1, pp 1-21, 1996. 

[13] Costa D., An Evolutionary Tabu Search Algorithm and the NHL Scheduling Problem, INFOR Vol. 33, No.3, 161-
178, 1995. 

[14] Cantu-Paz E, Designing Efficient and Accurate Parallel Genetic Algorithms, Technical Report No. 99017, Illinois 
Genetic Algorithms Laboratory, UIUC, USA, July 1999. 

[15] Nath B, A Hybrid GA-SA Algorithm for Flowshop Scheduling Problems, In Proceedings of the International 
Conference on Computer Integrated Manufacturing, ICCIM97, pp 462-471, 1997. 

[16] Grid Computing Information Centre: http://www.gridcomputing.com. 


