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Abstract 

The distribution of knowledge (by scientists) and data sources (advanced scientific instruments), and 
the need of large-scale computational resources for analyzing massive scientific data are two major 
problems commonly observed in scientific disciplines. The two popular scientific disciplines of this 
nature are brain science and high-energy physics. The analysis of brain activity data gathered from the 
MEG (Magnetoencephalography) instrument is an important research topic in medical science since it 
helps doctors in identifying symptoms of diseases. The data needs to be analyzed exhaustively to 
efficiently diagnose and analyze brain functions and requires access to large-scale computational 
resources. The potential platform for solving such resource intensive applications is the Grid. This 
paper presents the design and development of MEG data analysis system by leveraging Grid 
technologies, primarily Nimrod-G, Gridbus, and Globus. It describes the composition of the 
neuroscience (brain activity analysis) application as parameter-sweep application and its on-demand 
deployment on Global Grids for distributed execution. 

1. Introduction 
The emergence of high speed networks has made it possible to share geographically distributed 
resources such as supercomputers, storage systems, databases and scientific instruments in order to 
gather, process and transfer data smoothly across different administrative domains. Aggregations of 
such distributed resources, called computational grids [1], provide computing power that has made it 
possible to solve large scale problems in science, engineering and commerce. Biological sciences have 
several computational and data intensive problems that can be tackled better by utilizing large-scale 
distributed computing and storage resources. The analysis of data gathered by monitoring activity in 
the brain is one such problem. 

Brain Activity Analysis 

Brain activity is measured by the Magnetoencephalography (MEG) instrument which measures the 
magnetic fields generated by the electrical activity in the brain. This method is more accurate than 
others such as Electroencephalography (EEG) and Electrocorticography (ECoG) [2]. Another 
advantage of MEG is that it is non-invasive.  

The MEG instrument consists of a number of sensors which record information about brain activity. 
Currently, MEG helmets with over 200 sensors are already used to detect magnetic brain fields by 
means of a sensitive transducer technology called Superconducting Quantum Interference Device 
(SQUID). This provides a doctor with a host of data offering the finest temporal and the highest spatial 
resolution. Specialists can detect a disorder by observing the complex brain wave form and analysing 
the frequency content. The doctor has to separate the MEG data into signal classes. Each of these 
contains a certain frequency band which allows the localisation of the signal’s source. To this end, 
wavelet cross-correlation analysis, developed at the Osaka University by Dr. Mizuno-Matsumoto et al. 
[3], is used. Unlike the traditional Fourier-based analysis, wavelet-based analysis has the capability to 
explore the frequency content without losing the time information of the original brain data. This 
process has to be performed for each pair of sensors. This analysis lacks the time information of the 
original brain data but provides the similarity between a pair of brain data for every frequency 
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spectrum. By focusing on a spectrum, one could track a signal that is within the spectrum. This enables 
mapping of brain activity to patient behaviour and is useful to diagnose several diseases. 

However, there are certain problems with MEG. Due to the high cost of equipment and the required 
shielding against stray magnetic fields, there are only limited numbers of MEG instruments around the 
world. Plus, the instrument generates a huge amount of data, all of which are not analysed due to of 
lack of computing resources. For example, a 64-sensor MEG instrument would produce 0.9GB of data 
over a period of an hour. Such a task generates 7,257,600 analysis jobs and would take 102 days on a 
commodity computer with a PentiumIII/500MHz processor and 256MB of memory. Proper recovery of 
the patient depends on the results being available as soon as possible so that the doctor can start the 
drug regimen in the shortest possible time. While it is possible to use a supercomputer to analyse the 
brain data, every medical facility cannot be expected to have access to such a machine. Also, access to 
a much larger pool of resources and consequently, larger amounts of computational power is possible if 
the application can be deployed on the Grid. Furthermore, there is also the advantage that the medical 
data can be shared easily among the partnering doctors. 

The rest of the paper is organized as follows: Section 2 presents related work. Section 3 describes the 
flow diagram for the analysis. Section 4 describes the architecture for the execution. Section 5 explains 
the process of grid-enabling this application. The scheduling experiments and the results of those are 
detailed in Section 6 and the final section summarizes the paper along with suggestions for future 
works.  

2. Related Work 
There are number of paradigms and platforms, such as message passing (using MPI[4] or PVM[5]), for 
developing and executing parallel applications on distributed systems. However, using such 
programming paradigms/platforms for creating parallel/distributed applications involve significant 
software engineering effort. These approaches are effective for tightly coupled systems such as MPP 
(Massively Parallel Processing) machines or on loosely coupled but controlled systems such as 
clusters. The inherent challenges in grid computing environments such as the load volatility, high 
network latencies and high probability of failure of individual nodes make it difficult to adopt a 
programming approach which favours tightly coupled systems. Parameter sweep model of computation 
is considered to be ideal as it allows the composition of applications for distributed execution just by 
parameterising their input data files and they can be easily deployed on Global Grids using grid 
scheduling systems such as Nimrod-G [6]. The Grid enabling of this application as a parameter sweep 
application, as described in this paper, took about 3 weeks of effort whereas a parallel implementation 
[2, 7] using MPICH-G [8] consumed over 6 months of development effort. 

There have been various efforts in Grid-enabling different applications. They include AppLeS parallel 
tomography [9], FightAIDS@Home [10] and Cactus[11]. AppLeS approach for Grid enabling 
applications involves the development of an application-specific scheduler whereas our work separates 
the task of composition of application for processing on the Grid from the scheduling system. That 
means, for a number of applications with the same processing model, we can utilize the same 
scheduling system for deploying them on Global Grids. FightAIDS@Home is based on the Entropia’s 
distributed computing network and the Scripps Research Institute’s docking application. In this system, 
volunteers need to download Entropia’s screen saver program that runs in the background on the 
volunteer computer. The volunteer PC contacts the Entropia server to download the data to perform 
docking. When docking on an assigned data is completed, it uploads the results to the server. This 
execution model is different from our model where the scheduler (Nimrod-G) assigns the work to 
computers that are available and initiates the execution. Cactus is a framework for the numerical 
solution of Einstein’s equations and it is Grid enabled by implementing it as an MPI application.  

3. NeuroGrid Analysis Model 
The NeuroGrid project aims to convert the existing brain activity analysis application into a parameter 
sweep application for executing jobs which perform wavelet cross-correlation analysis for each pair of 
sensors in parallel on distributed resources. The jobs are both computationally and data intensive.  Also 
they are independent of each other thus making them perfect for being composed as parameter sweep 
application. The flow diagram for distributed analysis of brain activity is shown in Fig 1. 
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Fig. 1: The Neuro Grid Analysis Model. 

The medical staff who is dealing with the diagnosis orders a MEG scan of the patient’s brain (step 1). 
The request is sent to the instrument which takes a MEG scan and collects data about the activity in the 
brain (step 2). This data is then collated and presented to the Grid Resource Broker for analyzing on the 
Grid (step 3).The broker discovers the resources and looks up in the Grid Market Directory for the 
corresponding service costs associated with those resources. Using the user-defined QoS (Quality-of-
Service) parameters, two of which are the deadline and the budget, the scheduler distributes the jobs 
based on the optimization method chosen. The optimization method could be one of the three: cost, 
time or cost-time. The data and the analysis code are dispatched to the remote node and the results 
collected (steps 4 and 5). 

 

Fig. 2: Architecture for Brain Activity Analysis on the Grid. 
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4. Architecture 
The architecture followed in this project is shown in Fig. 2. It consists of brain activity analysis 
application, parameterization tools (Nimrod-G parameter specification language), resource broker 
(Nimrod-G with Gridbus scheduler), grid market directory (Gridbus GMD), and low-level grid 
middleware (Globus[12]). The resources are Grid-enabled using Globus software deployed on them. 
The application has been Grid enabled by composing it as a parameter sweep application using the 
Nimrod-G parameter specification language. The GMD has been used as a register for publication of 
resource providers and services.  

4.1 Analysis Code   

The analysis code was developed by the Cybermedia Centre, Osaka University, Japan. The raw data 
obtained from the sensors in the MEG instrument is analysed in two phases as shown in Fig 3. In the 
first phase, the raw data from the brain goes through wavelet transform operation. This phase gives the 
time-frequency data of the output. In the next phase, cross-correlation analysis is performed for each 
pair of wavelet transforms. This output displays the similarity between a pair of brain data for every 
frequency spectrum. By focusing on a specific frequency spectrum, the sensor that first detected the 
signal with that focusing spectrum can be localized. This means that the path of a signal can be found 
as it travels through the brain.  The code was written in C and is highly portable. We have been able to 
compile it for different platforms such as PC/Linux, Sun/Solaris, SGI/Irix and DEC/Alpha. 

 

Fig. 3: Wavelet cross-correlational analysis. 

 

4.2 Grid Resource Broker and Scheduler 

For executing our application on the Grid, a combination of the Nimrod-G [6] resource broker 
developed using the Globus [12] middleware and our own Gridbus scheduler was used. The Nimrod-G 
resource broker identifies the user and application processing requirements and selects the combination 
of Grid resources in such a way that the user requirements are met. It performs resource discovery, 
selection, and dispatching of MEG jobs to remote resources. It also starts and manages the execution of 
jobs and gathers the results back at the home node. The following components of Nimrod-G have been 
used in our experiments: 

• a persistent task farming engine; 

• a grid explorer for resource discovery. 

The Gridbus scheduler developed as a plugin scheduler for Nimrod-G has been used instead of the 
default Nimrod-G scheduler since it has been designed to utilise the Grid Market Directory (GMD) 
[13].The default Nimrod-G scheduler calculates the processing cost based on the CPU time that is used 
to execute a job on a remote node. To support the notion of application services and pricing based on 
AO (Application Operation) instead of vanilla CPU service, the GMD already allows the GSPs (Grid 
Service Providers) to publish application services along with their AO service price. An AO service 
price describes how much it costs to execute an application once on a remote host regardless of the 
amount of resources it takes. The Gridbus scheduler has been enabled to utilise the GMD services and 
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perform resource allocation based on AO cost model. In this model, the user is charged a price for 
execution of each job on the resource. Thus, the resource owner may offer the application as a service 
and charge a fixed price for executing it. By periodically updating the resource information from the 
GMD, the Gridbus scheduler ensures that the scheduling is done based on the most recent cost-price 
for the resources. 

The Gridbus Scheduler implements three algorithms: cost minimization, time minimization and cost-
time optimization. All three algorithms are constrained by two parameters: the deadline by which the 
experiment is required to complete and the budget that the user has. Time minimization tries to execute 
the project within the shortest time while keeping within the budget. Cost minimization tries to 
complete the execution with the least cost while keeping to the deadline. Cost-time optimization gives 
jobs to the cheapest servers but performs time optimization among those. Cost-time optimization was 
only simulated until recently and it has been implemented for the first time in the Gridbus Scheduler. 
More information about these scheduling algorithms can be found in [14, 15].  

4.3 Grid Market Directory 

The Grid Market Directory (GMD) [13], developed by the Gridbus project in the University of 
Melbourne, allows service providers to publish their services along with the costs associated with 
them. The consumers will be able to browse the GMD to identify services that meet their requirements. 
The GMD is developed using standard Web services technologies such as SOAP (Simple Object 
Access Protocol) and XML(eXtensible Markup Language) therefore it can be queried by other client 
programs. To provide with an additional layer of transparency, a client API (Application Programming 
Interface) has been provided that could be used by programs to query the GMD without the developers 
having to concern themselves with details of SOAP. The GMD infrastructure was used to maintain a 
registry of participants along with the details of their contributed resources as part of the Global Grid 
Testbed [16] collaboration. The Gridbus scheduler interacts with the GMD to discover the testbed 
resources and their high-level attributes such as access price. 

5. Grid-enabling the Application 
The existing analysis code was composed as a task-farming, parameter sweep application for execution 
on grids using the Nimrod-G parameter specification language[6]. The Nimrod-G farming engine and 
dispatcher along with Gridbus scheduler is used for deploying and processing it on Global Grids.  

The brain activity analysis software suite, developed at the Cybermedia Centre at Osaka University, 
consists of two separate programs. The first, raw2wavelet, is a program that performs wavelet 
transform over the raw data and the second, wavelet2cross, is a program that does the cross-correlation 
between the wavelet transforms. A job consists of executing these two programs in sequence for a pair 
of unique sensors and for a particular offset. For 64 sensors and an offset ranging over 0 to 29,750, this 
would generate (64*63)/2 * 29750 jobs. Although this application contains numerous jobs, each 
individual job is fine-grained in nature--in certain data scenarios it can be less than a minute. The 
overhead associated with initiating each task on a separate node and collecting its results after it 
finished execution would have radically decreased the efficiency of distributed execution. So, coarse 
grained jobs had to be created by grouping the fine-grained jobs so that the computation to I/O ratio 
would work in favour of distributed analysis. For this purpose, a meta-program (metameg) was written 
that would perform pairwise analysis for all sensors for a particular range of offsets. The entire 
temporal shift region was divided into offset ranges. A job would consist of performing analysis over a 
temporal shift range for all the sensors. The pseudo-code for this meta job program, called metameg, is 
listed in Fig 4. 
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Fig. 4: Pseudo-code for meta program.  

The variable time_offset_step decides the size of the meta job as it divides the offset range into 
regions. If it is 1, then a job is the wavelet cross-correlation analysis for all sensors for one particular 
offset. If it is same as the limit of the temporal shift region (i.e. maximum offset), then it represents an 
aggregation of all the jobs. As the size of the meta job increases, the number of jobs generated 
decreases according to the following equation: 

AnalysisGridforJobsMetaofNo

offsetMaximum
SizeJobMeta

      

  
  =

 

The executables of the three programs that represented the analysis code (metameg, raw2wavelet, and 
wavelet2cross implemented in C language) were small in size and hence easily transferable at runtime 
if the code is not deployed on remote resources. Each meta job requires the full raw data captured by 
all (64) sensors. However, transferring this raw data, over 24MB, to each remote node during the 
execution any job would constitute a significant I/O load over wide-area networks. Unless an analysis 
is carried out on a MEG data with few sensors generating small amount of data, it is preferable to pre-
stage the entire raw dataset at each node. We also had to change the meta program (metameg) and the 
raw data to wavelet conversion (raw2wavelet) program to enable access to data on a path on the remote 
node. 

A Nimrod-G plan for the SPMD (single program and multiple-data) style execution of the above 
analysis operation as parametric execution is shown in Fig. 5. As the Grid comprises of heterogeneous 
resources with different architectures, we have compiled the analysis suite for different architectures 
and renamed the executables with an extension same as the OS name. That means, any reference to the 
program with .$OS in the plan file indicates that the Nimrod-G broker is able to select the correct 
executable depending on the target architecture automatically at runtime. $HOME represents the home 
directory of the user at the remote node and the directory $HOME/alphawave is where the brain data is 
stored on the remote machine. 

The output of the each pair-wise analysis is represented in image data, which can be further studied 
using a visualization program jointly developed by the Osaka University and NEC, Japan.  All the 
output files of meta job are grouped (archived using the tar command) and transferred back to the 
remote node.  

For time_offset from time_t1 to (time_t1+ time_offset_step) 
begin 
       For sensor_A from 1 to max_sensors 
       begin 
              For sensor_B from 1 to max_sensors 
     begin 
  if  sensor_A NOT EQUALS sensor_B then 
      begin 
          Execute raw2wavelet sensor_A sensor_B time_offset meg_ data_path 
                                     Execute wavelet2cross sensor_A_output sensor_B_output   
                             end 
                 end 
        end 
end 
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Fig. 5: Plan file for brain activity analysis on the Grid. 

6. Application Deployment and Evaluation 
The brain activity analysis was demonstrated at SC 2002 held in Baltimore, USA. We used the 
resources provided by the SC2002 Global Grid Testbed Collaboration [16], which we were part of, 
plus those of the World Wide Grid[14] (see Fig. 6) to schedule analysis jobs on globally distributed 
resources. After the SC 2002 conference, most of the resources that were part of this testbed have 
discontinued their participation as the original objective has been achieved. This illustrates the ever 
changing nature of collaborations on the Grid. Different organisations are able to come together and 
share their resources to achieve an objective and thus create virtual organizations[17].  

 
Fig. 6: Brain Activity Analysis at the HPC Challenge Demo @ SC 2002. 

However, at the time of writing this paper (at the end of January 2003), we continued to have access to 
some of the testbed resources. We utilised these resources for our analysis experiments whose results 
are reported in this paper. The list of machines that we have used to carry out our experiments is shown 
in Table 1. 

 

parameter meg_sensors_count label "no. of MEG sensors" integer default 64; 
parameter offset_max = 29750;  
parameter MetaJobSize label "time_offset step size" integer default 10; 
parameter time_offset label "MEG Data Temporal Region Shift" integer range from 0 to offset_max step 
MetaJobSize; 
task nodestart 
 # copy meg_data.tar node:$HOME/alphawave 
 copy raw2wavelet.$OS node:raw2wavelet 
 copy wavelet2cross.$OS node:wavelet2cross 
 copy metameg-data-path.$OS node:metameg 
endtask 
task main 
  node:execute ./metameg-data-path $time_offset $MetaJobSize $meg_sensors_count $HOME/alphawave 
 node:execute $HOME/tar cvf output.tar *.asc *.ppm  
 copy node:output.tar output.tar.$jobname 
endtask 
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Organization Node details (Architecture, No. of 
Nodes, Hostname) 

Cost Per CPU-sec 
(G$)  

N*Grid Project Korea Linux Cluster, 24  nodes 
node1001.gridcenter.or.kr 

3 

Vrije Universiteit, Netherlands Linux Cluster, 144 nodes(32 
available),fs0.das2.cs.vu.nl 

2 

N*Grid Project Korea Linux Cluster, 16 nodes, 
node2001.gridcenter.or.kr 

1 

Osaka University, Japan Linux Cluster, 2 nodes, 
date1.ics.es.osaka-u.ac.jp 

1 

Dept. of Physics, Uni. of 
Melbourne 

Linux, broker machine, 
lem.ph.unimelb.edu.au 

0 

Table 1: Grid resources utilised during the Brain activity analysis experiment. 

In Table 1 G$ stands for Grid dollars, the unit that was used to measure the cost of computation on a 
machine on the Grid. G$ can be thought of as tokens that are allocated for each execution. However, 
the Grid node access cost in G$ is made out artificially and aimed at reflecting the differentiated 
pricing for services similar to the real world marketplace. For example, pricing the user owned 
resources lower than the external resources to encourage the higher utilization of local resources. The 
experiments were carried out on Thursday, 30th of January 2003, from 10:00 a.m. to 1:00 p.m. AEDT. 
The three scheduling algorithms were tried out and their results tabulated. The experiment was 
performed for two sensors, maximum offset of 100 and meta-job size of 1 which produced 100 jobs. 
All experiments were started with: Deadline = 2hrs, Budget = 1990 Grid $.  The summary of the results 
of these experiments is shown in Table 2. 

 

 Scheduling 
Strategy 

Start Time 
(ST) 

Completion Time  
(CT) 

Elapsed Time 
(CT-ST) 

Budget 
Utilised (G$) 

Time 10:00 a.m. 10:29 a.m. 29 mins. 399 

Cost 10:35 a.m. 11.54 a.m. 79 mins. 204 

Cost-Time 12:10 p.m. 12.52 p.m. 42 mins. 330 

Table 2: Summary of experiment statistics. 

A snapshot of scheduling and number of jobs that were actively running at different times can be found 
in our technical report [18]. In the time minimization scheduling, the scheduler makes use of all the 
resources to ensure that the experiment completes in the fastest possible time. Most of the jobs were 
executed by the fastest machine (fs0.das2.vu.nl). However, it was also not the cheapest machine and 
so, the cost of computation increased. In cost minimization scheduling, most of the load is borne by the 
one of the cheapest machines (date.ics.es.osaka-u.jp). In cost-time optimization scheduling, most of the 
computation was handled by the cheapest nodes (node1001.gridcenter.or.kr and date1.ics.es.osaka-
u.jp). But, initially as these two were busy, the scheduler allocated the maximum number of jobs to the 
expensive machines. As the availability of the other two improved, the share of jobs given to the costly 
machines decreased as jobs were moved to the cheaper resources.  

The results of our scheduling experiments show that it is feasible to conduct the analysis using the 
parameter sweep model of distributed computing. Furthermore, this approach allows medical personnel 
to determine the pace of the analysis based on the urgency of their requirements. If the urgency is low, 
for example, the analysis might be conducted as a part of a study or for a report, then it is possible to 
reduce expenditure by using cost-optimization and a relaxed deadline. However, if the results are 
required in the shortest possible time, then the analysis can be performed using time optimization 
algorithm. 

The visualization of wavelet analysis results of selected sensors is shown in Fig.7 using the wavelet 
viewer. The viewer also has the ability to invoke wavelet analysis module on the local machine if the 
results corresponding to the selected sensor are not available. Wavelet analysis decomposes the 
frequency components of original data over the time. This is the reason why this analysis is promising 
in comparison with other frequency analysis such as Fourier. Most of traditional analysis methods for 
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the analysis of brain function loses the time information of the original data. Therefore, medical 
doctors had much difficulty in investigating the change in frequency of MEG data over the time. The 
visualization was performed so that maximum value of the results is visualized as red, while minimum 
value of the results is visualized as blue. It is expected that medical doctors can get the intuitive 
understanding of results at a glance. 

 

 

Fig. 7: Visualisation of wavelet analysis results for selected sensors. The numbers within oval 
shape diagram indicate the sensor number. 

7. Conclusion and Future Work 
As the new generation of medical instruments turns out to be more precise and accurate, the medical 
field will sooner or later have to find the means to deal with large volumes of data generated by them. 
Grid computing can satisfy their needs for a large amount of processing power but would have to deal 
with issues of tight deadlines, small turnaround time, consistency in performance, and reliability of 
computation before any large scale adoption. The economy based approach of processing brain activity 
data as illustrated in this paper would help in enforcing QoS requirements of medical applications and 
hence would enable adoption of Grid technologies by the bio-instrumentation field.  

It has been observed that Grid enabling the application using message passing model (MPI) took 
significantly more time develop when compared to the approach described in this paper as explicit 
parallelisation of application using MPI as master-worker application requires more effort. Hence, it 
can be safely said that the application developed and deployment time was reduced considerably by 
adopting parametric model for distributed execution of brain activity analysis application. Additionally, 
the approach presented in this paper offered QoS based deployment of analysis jobs on Global Grids.  

In the future, it is planned to implement the grouping of jobs at the broker level to obviate the need of 
developing a mechanism for creating meta-jobs (coarse-grained jobs) at user-level. This also enhances 
the utilization of large data files that are common to many jobs and reduces the communication cost.  
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