
A Microkernel Based Operating System for PARAM 9000

MOHAN RAM N RAJKUMAR VENKATAKRISHNAN R BALAJI N S SRIRAMA RAO K
Operating Systems Group

Centre for Development of Advanced Computing
2/1, Brunton Road, Bangalore - 560 025, India

e-mail: {mohan, raj, krishna, balaji, rao}@cdacb.ernet.in

Abstract
High performance computing requires the use of massively parallel processing systems containing thou-
sands of powerful CPUs. Every node in these parallel systems requires an operating system (radically
different from current ones) to manage its resources. To meet this requirement, we have developed an OS
kernel called PARAS Microkernel for the PARAM family of parallel systems (being developed by C-DAC)
based on state-of-the-art microkernel technology. It supports most essential services such as process,
memory, and interprocess communication management. In the design of the PARAS microkernel, we have
adopted the philosophy of migrating traditional operating system services into user-level processes. It
removes the concept of using application ignorant systems and allows the user to build subsystems suitable
to the application. Various subsystems such as CORE, PVM, and MPI layered on top of the PARAS
microkernel have demonstrated the simplicity and extensibility features of this design approach.

Keywords: Microkernel, MPP, PARAM, PARAS, IPC, subsystems.

1 Introduction
It is now clear that silicon based processor chips are reaching their physical limits in processing speed, as
they are constrained by the speed of electricity, light, and certain thermodynamic laws. A viable solution
to overcome this limitation is to connect multiple processors working in coordination with each other to
solve grand challenge problems. Hence, high performance computing requires the use of Massively
Parallel Processing (MPP) systems containing thousands of powerful CPUs. To perform well, these
parallel systems require an operating system radically different from current ones. Most researchers in the
field of operating systems have found that these new operating systems will have to be much smaller than
traditional ones to achieve the efficiency and flexibility needed. The solution appears to be to have a new
kind of OS that is effectively a compromise between having no OS at all and having a large monolithic OS
that does many things that are not needed. At the heart of this approach is a tiny operating system core
called a microkernel.

A microkernel provides the foundation for modular and portable extensions. Every next-generation
operating system will have one [1]. In theory, a microkernel with a small privileged core surrounded by
user-mode services, would deliver unprecedented modularity, flexibility, and portability. The appendage
micro suggests that the kernel provides only minimal functionality that allows user-level processes called
subsystems to perform operating system services efficiently. Thus, it aims at migrating traditional operat-
ing system services out of the monolithic operating system kernel into user-level processes. This division
of labor allows the microkernel to be small and fast and does not burden each CPU with facilities, such as
a complete file system, that it does not need [2].

The subsystems running on top of the microkernel implement their own policies which can manage the
resources better than the application ignorant general-purpose conventional OS mechanism [3]. This in
turn leads to a simplified OS base, improved reliability, portability, and extensibility. Some of the dominant
representatives of this new generation OS technology are QNX [1], Amoeba [2], Mach [4], and Chorus [5].

The remainder of this paper presents the PARAM 9000 architecture, PARAS microkernel and its
architecture, and PARAS operating environment. It also presents communication performance of PARAS
microkernel on PARAM 9000 and brings out comparative analysis with traditional network protocols
under Solaris 2.x on PARAM 9000.

2 PARAM 9000 Machine Architecture
PARAM (Parallel Machine) is a distributed memory, message passing parallel computer. The PARAM
family of supercomputers include PARAM 8000, PARAM 8600, and PARAM 9000. PARAM 8000 is based
on the INMOS's transputers and PARAM 8600 is based on the Intel's i860 RISC processors. Current
implementation of PARAM 9000 is based on the SUN's SPARC processors. The OpenFrame architecture
of C-DAC (adopted in building PARAM 9000), designed for teraflop performance, provides seamless
scalable computing power from a single interactive workstation to a cluster of workstations to the grand
challenge systems [6].

The battle between MPP and Cluster computing began with the emergence of powerful workstations
in the 90’s and the possibility of connecting them through high speed networks. This is the motivation for
unification of both MPP and cluster personality within a single framework in PARAM 9000. The architec-
ture of PARAM 9000 exhibiting dual personality is shown in Figure 1. The PARAM communication
Network (PARAM-Net) connects all processing elements and allows smooth transition from Cluster to
MPP computing. It offers a high speed, low latency, and packet switched network based on wormhole
routing algorithm [7].

Work Station Work Station

Gateway ServerGateway ServerCompute Node

Microkernel

Compute Node

Solaris

Solaris

MPP mode

Cluster mode

Solaris

DS Link

LAN(Boot-time)
Plug-and-Play

Solaris Solaris

File Server File Server

Figure 1: PARAM 9000 as Dual Personality System - MPP and Cluster

DLPI Driver

DLPI Driver

DLPI Driver

DLPI Driver DLPI Driver

PARAM Net

The PARAM 9000 hardware architecture allows the nodes to be configured as compute nodes or
service nodes. The compute nodes can only execute user jobs, while the service nodes in addition
provide various services required to support the execution of user jobs. The services provided include
file services, gateway services for external connectivity, etc. The service nodes providing gateway ser-
vices (gateway nodes) support external connectivity through Ethernet, FDDI, or token ring.

In both the personalities (MPP and Cluster), the basic hardware of PARAM 9000 remains the same.
These personalities differ only in terms of operating environment and their configuration in terms of
software. In the cluster personality, all nodes of the system are configured with the industry standard
Solaris OS from SunSoft. In the alternate personality, few nodes (service nodes) of the system run Solaris
OS while the others (compute nodes) are configured with PARAS microkernel and system servers. This
allows plug-and-play of the needed personality; during boot-time PARAM can be configured to support
either the MPP or the Cluster personality. The use of a custom microkernel provides the required flexibility
to extract maximum performance from the system.

2.1 Cluster Personality
The system exports the Solaris 2.x operating system on all the nodes and the PARAM interconnection
network supports a Data Link Provider Interface (DLPI) driver which implements ISO Data Link Standard
Definition and Logical Link Service Definition. The DLPI support allows mapping of common network
protocols such as TCP/IP to the underlying network PARAMNet. Thus the system provides an environ-
ment which is functionally equivalent to a cluster of Solaris workstations over a LAN. Much of the
software available under a distributed Solaris environment becomes readily available on PARAM also.

2.2 MPP Personality
The PARAM 9000 OS architecture allows the microkernel to be loaded on the compute nodes instead of
Solaris. The communication subsystems over the microkernel have been highly optimized providing an
order-of-magnitude improvement in performance. Custom designed Concurrent Runtime Environment
CORE [10] and standard message passing interfaces Parallel Virtual Machine (PVM) [11] and Message
Passing Interface (MPI) [12] are supported for parallel programming.

3 PARAS Microkernel Architecture
PARAS microkernel is a message passing, multithreaded operating system kernel designed for high
performance massively parallel processing systems. It supports multiple tasks with a paged virtual memory
space, multiple threads of execution within each task and message based interprocess communication.
Message passing is the primary means of communication among tasks, and to some extent between the
tasks and the kernel itself. Location independent interprocess communication is supported through the
port abstraction, with support for both synchronous and asynchronous modes of communication. The
microkernel integrates the following essential services:

u An executive — derived from the Mach microkernel [9] which preemptively schedules priority-based
threads.

u A location transparent interprocess communication mechanism.
u A simple virtual memory model.
u A low level hardware supervisor which dispatches interrupts and traps.

3.1 Microkernel Architecture
The architecture of the PARAS microkernel is shown in Figure 2. All the client requests are notified to the
PARAS microkernel by using system calls. These system calls are accessible both to subsystems and
applications. The PARAS service request dispatcher will in turn route all requests to the appropriate
service providers, which are built in the form of resource managers. They are Process Manager, Virtual
Memory Manager, and Inter-Process Communication (IPC) Manager.

The process manager is responsible for handling issues related to task/thread creation, scheduling,
dispatching, control, resource handling, etc. The memory manager is responsible for serving user re-
quests for memory. It handles memory allocation/deallocation management and maps user addresses
(logical) to the machine (physical) addresses. The IPC manager in cooperation with system servers,
provides port abstraction for communication among the tasks. These ports can be created, named, lo-
cated, and deleted.

3.2 Abstractions
The microkernel supports [8] five basic programmer visible abstractions: tasks, threads, ports, mes-

sages, and regions. The first and second abstractions (tasks and threads) arise from separating the
traditional notion of a process into two subconcepts. Tasks contain the resources associated with a
process such as the address space, file descriptors, and port access capabilities. Tasks do not perform
computations themselves, but serve as a framework in which threads can operate. A thread is the control
unit most basic to CPU utilization, containing the minimal processing state associated with a computa-
tion: a program counter, a stack pointer, and other hardware register state information.

In terms of these concepts, a UNIX process corresponds to a PARAS task containing a single thread.
A PARAS task can contain multiple threads, but each thread is associated with exactly one task. Since
each thread may access all its associated task’s resources, including shared memory, the PARAS design
naturally supports parallel-programming techniques. Multiple threads within a task can execute in paral-
lel, yet incur slightly more overhead than a single UNIX process. Hence, threads are generally termed
lightweight processes.

User Mode

Kernel Mode

messagesmessages

traps

Process Manager Virtual Memory
Manager

IPC Manager

(threads, tasks) (regions) (messages)

Applications Applications Applications

CORE POSIX Threads PVM / MPI
System Servers

PARAS Microkernel

Dispatcher

Figure 2: PARAS Microkernel Functional Block Diagram

The third of the five fundamental abstractions is a port. A PARAS port is a queue of messages
protected by the kernel. All message passing operations within PARAS make references to a port as read
or write destinations.

Tasks and threads can have an exception port associated with them. The thread’s exception port is
the port to which the kernel sends messages indicating an exception in the thread. Exceptions raised by
the microkernel include illegal memory accesses, protection violations, arithmetic exceptions, etc. The
kernel sends exception messages to the task’s exception port if the thread causing the exception has no
exception port registered. If neither the task nor the thread have exception ports registered, the thread
encountering the exception is terminated.

A message is a stream of bytes used to communicate between threads. It contains the data to be
communicated.

Each task has a large virtual address space within which its threads execute. The virtual address range
may be sparse, with ranges of addresses which are not allocated, followed by ranges of addresses that are
allocated. A region of an address space is that memory associated with a continuous range of addresses;
that is, a start address and an end address. Regions consist of pages which may have different protection
attributes, enabling a task to protect pages in its address space to allow/prevent access to that memory.
Regions are not swapped, which means that tasks have to be resident in memory to execute. This ex-
tremely simple memory model has been chosen for reasons of performance and simplicity. Having a task
resident in memory allows faster interprocess communication. Also, a design without swapping makes
the kernel simpler, smaller, and more manageable.

4 Operating Environment
The operating environment includes the PARAS microkernel running on compute nodes and Solaris 2.x
running on service nodes. The power of PARAM 9000 in MPP mode is provided to the user with the help
of two sets of servers: one running on the Service Partition (SP) and the other running on the Compute
Partition (CP). The microkernel as a whole interacts with various other components which are migrated
into user level processes. They include server loader, process server, file server, name server, etc., to
provide a complete operating environment as shown in Figure 3. The process server, partition manager,
file server, and name server run on the compute partition. The server loader and a front end server (Param
Resource Manager) run on the service partition.

Process
Server

Name
Server

Partition
Manager

UNIX file
system calls

port naming services

global resource server

task birth, death,
unhandled user
thread exceptions

File
Server

Microkernel

Since the microkernel runs on the compute partition, a front-end server running on the service parti-
tion is required to download user tasks on to the compute partition and service its input/output requests.

4.1 Partition Manager - PM
Partition Manager serves as a global resource manager for a partition and is responsible for management
of that partition’s resources. It maintains information about the user tasks, system servers, and memory
usage on each of the nodes in the partition. In addition to this it also maintains the system configuration
information. Partition manager runs on any one of the compute nodes of a partition.

4.2 Process Server - PS
The microkernel interacts with the process server on the birth and death of any task and on any unhandled
user thread exception. The PS is responsible for spawning tasks on a node and providing a remote system
call interface using which the user can access the microkernel facilities, from the service partition itself.
Process server runs on each and every compute node of a partition.

4.3 MicroKernel Filesystem Server - MKFS
The microkernel communicates with the file server (MKFS) in order to serve UNIX file system calls made
by user applications. The MKFS services the Solaris file system requests on behalf of the user tasks on
the compute nodes. File server runs on each and every compute node of a partition.

4.4 Name Server - NS
The microkernel also interacts with the name server for providing port naming services (like naming,
locating, etc.) to user applications. It handles all the issues related to naming services and maintaining
legacy of communication. Name server runs on any one of the compute nodes of a partition.

5 Communication Performance
Evaluating the performance of a parallel computer working in a scientific and engineering environment is
a complex process since, it is a function of many interrelated considerations. The performance depends
upon varied number of factors such as the particular application, underlying algorithm(s), the ability of the
compiler to optimize the code, the operating system abilities, the system architecture, node processor
technology, network speeds, and most predominantly, communication pattern. However, on distributed
MIMD machines performance measurement mainly concentrates on the communication overhead, which
helps in evaluating the overall performance of the systems. The communication performance of the PARAS
microkernel and the UDP under Solaris observed on the PARAM 9000 (in MPP and cluster modes respec-
tively) is discussed in the following subsections.

5.1 Platform Specifications
PARAM 9000-SS with SuperSPARC processors running at 75 MHz and C-DAC Communication Proces-
sor (CCP) connected to the PARAMNet operating at 50 Mbits/s. The three communication parameters
measured are latency, bandwidth, and exchange bandwidth on PARAS microkernel and UDP (User Datagram
Protocol) under Solaris 2.4 on PARAM 9000.

5.2 Latency
One half of the time taken for the round-trip of a zero byte message is considered as the latency. The
measured latencies on microkernel and UDP are given in Table 1. TCP latencies are typically higher than
UDP latencies, due to the nature of the protocol. The latencies on the Microkernel are much lower than
that on UDP/Solaris, as expected. The round-trip time increases almost linearly in both cases.

5.3 Bandwidth
Bandwidth is measured in the same manner as latency. The message size divided by one half the round
trip time, is a measure of the bandwidth. Table 2 shows the performance obtained by using Microkernel

and UDP. It is found that the Microkernel has a better performance than UDP. It should be noted that the
maximum communication bandwidth attainable on the Microkernel is usable by the application, due to the
reliability provided by the communication protocol. In contrast, the maximum bandwidth obtainable on
Solaris over UDP is not usable by the application, since UDP does not provide reliable communication.

5.4 Exchange Bandwidth
Exchange bandwidth is the sum of the throughput that may be obtained when data transfer proceeds in
both directions simultaneously, utilizing the bidirectional capability of the communication link. On the
Microkernel, send and receive are handled simultaneously, by dedicating one thread for each operation.
On Solaris, nonblocking variants of send and receive are used. The asymptotic exchange bandwidth for
a message size of 1 MB is given in Table 3.

5.5 Remarks
Communication latency on the Microkernel is less than one-fifth of the latency on Solaris. The maximum
throughput obtainable asymptotically, is the same on UDP/Solaris and the Microkernel, and is limited
only by the speed of the communication link. It is expected that the asymptotic throughput obtained on
the microkernel could be much more than that on Solaris with faster communication links as the copy
overhead under the UDP protocols will become more predominant. The maximum asymptotic throughput
is achieved with a smaller message size on the microkernel when compared to the UDP.

6 Conclusions and Future Work
PARAM is being increasingly adopted at numerous institutions worldwide for high performance comput-
ing. Many scientific, industrial, business, and medical applications are being deployed over PARAM.
Abstractions provided by the PARAS microkernel do not expose the machine’s architecture in great detail

MessageSize
(Bytes)

MessageSize
(K Bytes)

Latency in (s)µ

Exchange Bandwidth (KB/s)

Microkernel

Microkernel

UDP/Solaris

UDP/Solaris

1
101
201
301
401
501
601
701
801
901

1001
2001

1024

325
365
390
410
455
495
500
545
555
625
621
960

7137.5

62
86

109
133
158
182
207
230
253
278
301
542

9279.4

Message
(KB) Microkernel UDP/Solaris

2
4
6
8
10
20
30
40
50
60
70
80
90
100
200
300
400
500

1000

2122.3
2874.4
3142.7
3399.2
3200.0
3413.3
3572.1
3810.2
4015.7
4068.9
4179.5
4289.6
4296.6
4376.1
4602.2
4726.1
4708.0
4818.8
4876.2

2560.0
3413.3
3780.9
3996.1
4137.3
4501.1
4619.5
4681.1
4718.8
4735.2
4754.9
4769.5
4768.9
4790.6
4844.4
4856.9
4861.7
4864.6
4880.7

Bandwith (KB/s)

Table 1 : Communication Latencies

Table 3: Exchange Bandwidth

Table 2: Communication Bandwidth

to the user. Hence, the acceptance of the machine has (will be) significantly increased with the availability
of standard parallel programming interfaces layered on top of the microkernel.

The communication performance study has revealed that the PARAS microkernel has less protocol
overhead when compared to the UDP/Solaris. The optimization of the PARAS microkernel and other
subsystems is under progress, which is expected to further improve overall system performance. The
PARAS operating environment needs to be enhanced to support multiuser and timesharing concepts.
The future enhancement of the PARAS microkernel would be to support a fully preemptible kernel which
will facilitate real-time extensions.

Acknowledgments
The authors are grateful to all those who have contributed towards the development of PARAM machine
and PARAS operating environment. We owe a debt of gratitude to Dr. Vijay P Bhatkar, Executive Director
who is the reckoning force behind the reality of the PARAM and PARAS. We express our sincere thanks
to Mr. Sasikumar S, Director for his constant encouragement and for providing the required facilities.

References
1. Peter D Varhole, Small Kernels Hit it Big, Special Edition, Byte Magazine, January, 1994.

2. Andrew S. Tanenbaum, A Comparison of Three Microkernels, The Journal of Supercomputing, Volume 9,
Number 1/2, 1995.

3. Rajkumar et al, PEACE Threads Interface on Microkernel, The Third Conference on Advanced Computing, Tata
McGraw Hill, India, 1995.

4. Michael et al, Microkernel Modularity with Integrated Kernel Performance, Operating Systems, Collected Pa-
pers, Vol.3, OSF Research Institute, April 1994.

5. Dick Pountain, The Chorus Microkernel, Special Edition, Byte Magazine, January, 1994.

6. V P Bhatkar et al, Philosophy of PARAM 9000, PARAM 9000 - Towards a National High-Performance Informa-
tion Infrastructure, (c) C-DAC, 1995.

7. P R Eknath et al, PARAM 9000 Systems Architecture Overview, PARAM 9000, (c) C-DAC, 1995.

8. C-DAC, PARAS Microkernel interface manual for PARAS 9000, 1996.

9. Mohan Ram N et al, PARAM 9000 Operating Environment, PARAM 9000, (c) C-DAC, 1995.

10. C-DAC, COncurrent Runtime Environment (CORE) manual, 1996.

11.V S Sunderam, PVM: A Framework for Parallel Distributed Computing, Journal of Concurrency: Practice and
Experience, December 1990.

12.David W Walker, The Design of a Standard Message Passing Interface for Distributed Memory Concurrent
Computers, Oak Ridge National Laboratory, Oak Ridge, 1993.

About the Authors
Mohan Ram N received M. Tech. in Computer Science from the IIT, Madras, in the year 1985. He is with C-DAC,
since its inception and his research interests include Parallel Architecture, Operating System, and Networking.

Rajkumar received M.E. in Computer Science from the University of Bangalore in the year 1995. He has coau-
thored the books, Microprocessor x86 Programming and Object Computing with C++. His research interests include
Programming Paradigms, Multithreaded Computing, and Microkernel OS for MPP.

Venkatakrishnan R received B.E. in Computer Science from the Bharathiar University in the year 1991. For two
years before joining C-DAC in ’93, he was with Wipro Systems Ltd., Bangalore. He has contributed to the design &
development of Paras Microkernel. His interests are in OS & Quality Management Systems.

Balaji N S received B.E. in Computer Science from the Bangalore University in 1992 and has been with C-DAC since
then. He has contributed to the design & development of Paras microkernel. His interest is in Distributed Computing.

Srirama Rao K received M.Tech. in Computer Science from the University of Mysore in 1993 and has been with
C-DAC since then, working on Paras microkernel design & development.His interest is in Communication Protocols.

