
mCloud: A Context-Aware Offloading Framework
for Heterogeneous Mobile Cloud

Bowen Zhou, Student Member, IEEE, Amir Vahid Dastjerdi,Member, IEEE,

Rodrigo N. Calheiros,Member, IEEE, Satish Narayana Srirama, and Rajkumar Buyya, Fellow, IEEE

Abstract—Mobile cloud computing (MCC) has become a significant paradigm for bringing the benefits of cloud computing to mobile

devices’ proximity. Service availability along with performance enhancement and energy efficiency are primary targets in MCC. This

paper proposes a code offloading framework, called mCloud, which consists of mobile devices, nearby cloudlets and public cloud

services, to improve the performance and availability of the MCC services. The effect of the mobile device context (e.g., network

conditions) on offloading decisions is studied by proposing a context-aware offloading decision algorithm aiming to provide code

offloading decisions at runtime on selecting wireless medium and appropriate cloud resources for offloading. We also investigate failure

detection and recovery policies for our mCloud system. We explain in details the design and implementation of the mCloud prototype

framework. We conduct real experiments on the implemented system to evaluate the performance of the algorithm. Results indicate

the system and embedded decision algorithm are able to provide decisions on selecting wireless medium and cloud resources based

on different context of the mobile devices, and achieve significant reduction on makespan and energy, with the improved service

availability when compared with existing offloading schemes.

Index Terms—Mobile cloud computing, code offloading framework, context-awareness

Ç

1 INTRODUCTION

FOR the past decade, the popularity of mobile devices,
such as smartphones and tablets, has been increasing rap-

idly among users because of the advanced functions provided
by the enhanced mobile device with faster CPU, substantial
memory, and multiple sensors. However, the upgrade in
hardware results in higher energy consumption, which leads
to a major concern of the insufficient battery lifetime on
mobile devices. Furthermore, mobile device users expect
improved performance from their mobile devices, which
reflects on more endurable battery and shorter processing
time of all services provided by the devices. To overcome this
obstacle between the user demand and available mobile devi-
ces, mobile cloud computing (MCC) [1] is introduced.

Mobile cloud computing provides services by bringing
abundant resources in cloud computing [2] to the proximity
of mobile devices to improve the mobile applications per-
formance and conserve the battery lifetime. One of the tech-
niques adopted in mobile cloud computing is code
offloading [3]. It identifies the computation intensive code
of a mobile program, and offloads the task to a cloud service
via wireless networks. In the concept of code offloading,
cloud resources used for offloading have many different

types. First and the most common resource is public cloud
services, such as Amazon, Google, and Microsoft Azure,
which provide pay-as-you-go services over the Internet.
Second, a nearby server named cloudlet [4] is considered as
a cloud resource with fast network connection as well as
powerful processors. Cloudlet serves as a middle layer
between mobile devices and public cloud services to reduce
the network delay and accelerates the computing. Last but
not the least, a local mobile device ad-hoc network forming
a device cloud [5] is another potential cloud resource, espe-
cially when there is no access to the Internet.

Code offloading in MCC has been comprehensively stud-
ied during the past few years [6], [7], [8], [9], [10], [11]. These
works mainly focus on the code partitioning and offloading
techniques, assuming a stable network connection and suffi-
cient bandwidth. However, the assumption is rather unreal-
istic. As in reality, the context of a mobile device, e.g.,
network conditions and locations, changes continuously as
it moves throughout the day. For example, the network con-
nection can be unavailable or the signal strength is
low. Since a mobile device usually has multiple wireless
mediums, such as WiFi, cellular networks and Bluetooth,
and each connection performs differently in terms of speed
and energy consumption, the strategy of utilizing wireless
interfaces can significantly impact the performance of the
mobile cloud system as well as the user experience. More-
over, as we described above, there are multiple options of
cloud resources that can be selected for code offloading
under different conditions. As an example, in case the Inter-
net connection is inaccessible, a group of mobile device
users can still configure a code offloading service by setting
up a wireless mobile ad-hoc network. Alternatively, a
mobile device user can also connect to a nearby cloudlet to

� B. Zhou, A.V. Dastjerdi, R.N. Calheiros, and R. Buyya are with the Cloud
Computing and Distributed Systems (CLOUDS) Laboratary, Department of
Computing and Information Systems, University ofMelbourne, Australia.
E-mail: bowenz@student.unimelb.edu.au,
{amir.vahid, rnc, rbuyya}@unimelb.edu.au.

� S.N. Srirama is with the Mobile Cloud Lab, Institute of Computer Science,
University of Tartu, Estonia. E-mail: satish.srirama@ut.ee.

Manuscript received 9 Aug. 2015; revised 9 Nov. 2015; accepted 14 Dec. 2015.
Date of publication 22 Dec. 2015; date of current version 6 Oct. 2017.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSC.2015.2511002

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2017 797

1939-1374� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

outsource the computation intensive mobile tasks when it is
infeasible to use mobile data. The heterogeneity of MCC has
not been rigorously studied in the literature as previous
works only target the public cloud service.

To tackle the issues mentioned above and improve the
service performance in mobile cloud computing, we pro-
pose a context-aware MCC system, called mCloud, that
takes the advantages of the changing context of a mobile
device and multiple cloud resources to provide an adaptive
and seamless mobile code offloading service. The objective
of mCloud is to derive offloading decisions under the con-
text of the mobile device and cloud resources to provide bet-
ter performance and less battery consumption. This paper is
a significant extension of our previous work [12]. The new
contributions reported in this paper are as follows.

� The related work is updated with some state-of-the-
art works for mobile cloud code offloading.

� We redesign the system architecture by investigating
and adding the failure detection and recovery mod-
ule, based on the nature of mobile cloud environ-
ment and our proposed framework.

� The process of realizing mCloud offloading frame-
work has been explained in a new design and imple-
mentation section. This includes the necessary
technologies and approaches adopted in the system.

� The Performance Evaluation section is updated with
new set of experiments. The new experiments, which
incorporated our updated algorithms (equipped with
failure recovery feature), consider multiple mobile
cloud resource availability scenarios to capture the
dynamic changes in the mobile cloud environment. In
addition, these experiments are also conducted under
several network condition scenarios to consider the
unstable nature of the mobile cloud network. More-
over, the new experiments used heterogeneous pool
of public cloud, cloudlet andMANET resources.

The remainder of this paper is organized as follows. We
first discuss existing offloading approaches and frameworks
for MCC in Section 2, and present an insight of mCloud
architecture in Section 3. Then we introduce the system
models and propose the context-aware offloading algorithm
in Section 4. The approaches for system implementation are
introduced in Section 5, followed by a discussion on the sys-
tem evaluation and numerical results in Section 6. Finally in
Section 7, we conclude and propose the future work.

2 RELATED WORK

Frameworks and architectures for code offloading in MCC
have been comprehensively studied in previous works.

Flinn et al. [13] proposed a remote execution system called
Spectra that provides offloading through a set of pre-defined
APIs via Remote Procedure Call. Similarly, Chroma [14] handles
offloading with an approach called tactics, which are defined
asmodules of remote calls specified by developers. The appli-
cation consists of different combinations of the tactics. Both of
the proposed systems need developers to specify the offload-
ing codes statically, which is considered non-trivial and
lack of flexibility. Hence, dynamic offloading schemes have
emerged. Cuervo et al. [3] proposed a code offloading frame-
work calledMAUI that provides method level, energy-aware

mobile application offloading for .NET applications. MAUI
enables developers to annotate methods and fetches informa-
tion from a set of profilers to make decisions dynamically on
whether to offload. ThinkAir [8] enables Android mobile
applications to offload the computation intensive jobs to their
mobile clones running on the public cloud on the method
level. Flores et al. [15] presented an evidence-based offloading
frameworkEMCO that extracts knowledge fromcode offload-
ing traces by applying machine learning algorithms to
enhance the decision making process. However it is still in its
prototype that needs to be comprehensively studied. These
works have focused on offloading to public cloud or a server
nearby, which may not be reliable under condition changes,
such as cloud availability or connection losses.

Later, several works are proposed considering other types
of resources for offloading. Bahl et al. [16] discussed the idea
of accelerating the mobile cloud processing time by adding a
middle layer called Cloudlet. Rahimi et al. [17] proposed a
three-tier offloading framework consisting of mobile device,
local cloud, and public cloud, with the consideration of
mobile devicemobility. Xia et al. [18] proposed an online loca-
tion-aware algorithm in a two-tier MCC environment consist-
ing of local cloudlet and remote cloud service. The objective
of the proposed system is to provide equal energy consump-
tion proportion on each local cloudlet. Chen et al. [19] pro-
posed an architecture consisting of wearable devices, mobile
devices and cloud for code offloading. It realized the opportu-
nity to run heavy computation applications onwearable devi-
ces, by offloading part of the workload ontomobile devices or
remote cloud. These existing works investigate the benefits of
introducing other types of computing resources than cloud
intoMCC. However, they have not investigated the impact of
wirelessmedium selection on the offloading performance.

Furthermore, the accuracy of the offloading decision
making algorithm can significantly affect the Quality-of-
Service of an MCC system. Chen et al. [20] proposed a semi-
markovian decision process based approach to decide
which part of the program to be offloaded in order to opti-
mize the execution time and energy consumption. The sim-
ulation assumes a stable network condition that is rather
infeasible in practice. Chen [21] formulated the decision
making problem as an offloading game, and provided an
offloading scheme that can achieve a Nash equilibrium of
the game. Hung et al. [22] proposed a decision making
approach by caching the previous offloading plan in the
profiles to reduce the decision making overhead. Lin et al.
[23] proposed a location based context-aware decision
engine for code offloading. The decision engine takes into
consideration the geographical location and the time-of-the-
day as the history data to make the offloading decisions. All
these works have only considered public cloud as their off-
loading location, and are lack of comprehensive studies on
multiple criteria in the device context.

In summary, comparing to existing works, we aim to
improve the MCC’s performance and service availability in
an unstable mobile cloud environment by proposing a new
framework that considers different offloading destinations
(cloudlets, mobile ad-hoc cloud, and cloud resources) and
wireless channels (WiFi, 3G, Bluetooth, WiFi-direct). We
also proposed a multi-criteria offloading decision making
algorithm. This brings the advantages of considering

798 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2017

multiple criteria of energy consumption, execution time
reduction, resource availability, network conditions, and
user preferences.

3 SYSTEM ARCHITECTURE

In this section, we give an insight of mCloud’s architecture to
address the issue of context aware code offloading in a het-
erogeneous mobile cloud environment. We first describe an
overview of the MCC environment that mCloud fits in.
Then, the design of main components is presented in details.

3.1 System Overview

Fig. 1 illustrates the overview of the proposed system for the
heterogeneous mobile cloud environment. The device
requesting the offloading service is regarded as a client. The
proposed system leverages three types of mobile cloud
resources, namely cloud, cloudlet, and mobile ad-hoc cloud.

First, cloud provides Infrastructure-as-a-Service with scal-
able computation and storage, which can be connected from
mobile clients viaWiFi or cellular network. It has the ability to
host tasks requiring high computation and communication.

Second, a cloudlet is a local “datacenter in a box”, which
resembles a cluster of multi-core processors and a high-
bandwidth WLAN connection with considerable low power
consumption [4]. A task with limited delay-resistance is
well-suited in cloudlets.

Third, a mobile ad-hoc cloud that is formed by a group of
mobile devices in the client’s proximity via short-range com-
munication technologies, e.g., Bluetooth andWiFi Direct.

Due to mobility of the devices, the mobile ad-hoc cloud
can be unstable. To ensure the stability of the mobile ad-hoc
cloud in the mCloud framework, we adopt a one-hop topol-
ogy for the mobile ad-hoc network. Moreover, we introduce
a fault recovery policy for detecting failures and recovering
tasks to obtain the consistency of the results.

3.2 Framework Components

The main components of the mCloud framework belong
to two parts: client part and cloud server part. As

depicted in Fig. 2, there are five main components on the
client side: Context Monitor, Decision Module, Task Man-
ager, Communication Manager and Failure Recovery. On the
cloud server side, main components include Communica-
tion Handler, Task Manager and corresponding mobile
cloud infrastructures.

3.2.1 Context Monitor

The Context Monitor offers the context-awareness for the
system by profiling multiple context parameters at runtime,
and assists the Decision Engine when needed. Since the con-
text of the mobile device has significant effect on the deci-
sion making accuracy, the system provides three relevant
profilers: a program profiler, a device profiler, and a net-
work monitor. However, profiling incurs additional run-
time overhead and extra energy consumption. To avoid the
high overhead, the profilers adopt the on-demand monitor-
ing strategy, which only fetches context data when the off-
loadable methods are invoked.

a) Program profiler: The program profiler tracks the exe-
cution of a program on the method level. The attrib-
utes being monitored include:
� the overall instructions executed,
� the execution time,
� the memory allocated,
� the number of calls of this method,
� the type of mobile cloud infrastructure resource

for the execution (e.g., local, cloud, cloudlet),
� and the data size of inputs.

The profile is updated at every invocation, and stored in the

Context Profile database. Later the program profile is passed

to Cost Estimation module to estimate the execution cost

Fig. 1. Overview of mCloud environment.

Fig. 2. Main components of the framework.

ZHOU ET AL.: MCLOUD: A CONTEXT-AWARE OFFLOADING FRAMEWORK FOR HETEROGENEOUS MOBILE CLOUD 799

(i.e., running time, energy consumption) for decision making.

The details of cost models are discussed in Section 4.2.

b) Device profiler: The hardware profiles collected by the
profiler represent the operating conditions of the
mobile device being monitored. Same as the pro-
gram profile, the device profile is fed into Decision
Engine when needed to assist the cost estimation.
The profile includes:
� the average CPU frequency,
� the average CPU usage,
� the maximum CPU frequency,
� and battery level.

c) Network monitor: The network monitor collects the
network information of the mobile device asynchro-
nously at runtime so that it can record any change in
the context. The profile is passed to cost estimation
models when needed. The following network condi-
tions are monitored:
� cell connection state and its bandwidth,
� WiFi connection state and its bandwidth,
� Bluetooth state,
� the congestion level of the connection (RTT) to

VMs on the cloud,
� and the signal strength of cell and WiFi

connection.

3.2.2 Decision Module

This component has the responsibility to decide whether
and how to offload the mobile task, and dispatch the task to
the appropriate mobile cloud infrastructure (i.e., cloud,
cloudlet, or MANET) based on the current context. It con-
sists of two main modules: Cost Estimation and Decision
Engine. Based on the context profiles, Cost Estimation pro-
vides a set of cost estimation models that calculate the exe-
cution time of each offloadable task running on three types
of mobile cloud infrastructure respectively, with the corre-
sponding energy consumption on the client. Decision Engine
then applies the cost estimations to the proposed context-
aware decision making algorithm to provide the offloading
decisions. We give a detailed discussion on the cost models
and decision making algorithm in Section 4.

3.2.3 Task Manager

This component works as a middle layer between Decision
Module and Communication Manager. It receives the decision,
i.e., method name, offloading location, and network inter-
face, from the upper layer. Then the Manager collects the
related information, such as the method inputs, libraries for
running the offloaded task, and network address of the off-
loading location. Last, it persists them into a format called
Task Specs and passes the information to Communication
Manager. When receiving the task results, Task Manager
stores them in the device database.

3.2.4 Communication Manager

The communication manager on both client and server side
handles connections between client mobile device and the
remote execution in either mobile ad-hoc cloud or remote
cloud VMs. It consists of a mobile cloud infrastructure dis-
covery service and a communication handler. Once the

decision engine generates the offloading decision, the com-
munication manager takes over the task and executes based
on the offloading decisions. Moreover, the Communication
Manager corporates with Failure Recovery service to detect
failures and start the recovery process.

a) Discovery service: This module is responsible for dis-
covering the mobile cloud infrastructure resources,
i.e., the available mobile devices in the MANET,
cloudlets, and cloud VMs. The service updates the
information of the detected resources, such as net-
work congestion level, IP address, computation
capacity, etc., and stores the information in Device
Profiler. Particularly, for the mobile ad-hoc cloud, the
Discovery Service detects the available mobile devices
in the proximity, forms an mobile ad-hoc cloud, and
maintains the network at runtime. Nevertheless, the
discovery via network interfaces can potentially incur
additional overhead and energy consumption. To
avoid the high detection overhead, the Discovery Ser-
vice applies the periodic detection strategy, which asyn-
chronously searches for the available devices in
certain intervals periodically. We present the detailed
implementation of theDiscovery Service in Section 5.3.

b) Communication handler: The Handler operates on
both client and mobile cloud infrastructures to han-
dle the communications and data transfer generated
in between, which include mobile cloud infrastruc-
ture detection, offloading code, state synchronization
between client and servers, failure detection, etc. In
particular, when offloading a mobile task, the
Communication Handler on the client serializes the
code, related input, and the information of libraries
needed to execute the code into the offloading pack-
age. Then it dispatches the package to the address
provided by Task Manager. On the server side, the
Handler unpacks the package and starts to synchro-
nize the missing libraries described in the package
with the client device. Once all the states are
synchronised, it passes the deserialized code to the
mobile cloud infrastructure for execution, and
returns the result to client device upon completion.

3.2.5 Failure Recovery

It works with Decision Module and Communication Manager to
detect the failures and recover the system. The details regard-
ing the types of failures handled by Failure Recovery service,
and the detection algorithm are presented in Section 4.4.

4 COST ESTIMATION MODEL AND ALGORITHM

We first introduce the system model and the problem for-
mulation. Then we present the details of our cost estimation
model and the context-aware offloading algorithm.

4.1 System Model and Problem Formulation

The system considers a heterogeneous mobile cloud envi-
ronment, consisting of a mobile ad-hoc cloud, the nearby
cloudlets and remote public cloud. There are a set of mobile
device users that run applications seeking opportunities to
offload tasks to the mobile cloud infrastructure.

800 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2017

4.1.1 Task Modelling

Different mobile applications have different QoS require-
ments. For example, face detection application requires
short processing time while anti-virus applications are usu-
ally delay-tolerant. In this model, we model the tasks being
offloaded as independent and can be partitioned into sub-
tasks for parallel execution. Thus, let t denote the task gen-
erated by the application,

t ¼ hs; wi: (1)

s is the file size of the task, and w denotes the number of
instructions of task t to execute.1 All the symbols used in the
models are listed in Table 1.

4.1.2 Mobile Ad-Hoc Cloud Modelling

We apply a one-hop mobile ad-hoc network (MANET) in
mCloud to improve the network stability. This is because
using multi-hop MANET can cause considerable delay and
increase the possibility of node failures. Moreover, when
the number of hops is more than two, cloud VMs are the
most preferred as they have less communication delay in
comparison to MANET [24]. Hence, we only consider a one-
hop MANET in mCloud.

Given the one-hop network topology, we assume that the
node movement within the signal range does not affect the
topology of the MANET and the channel data rate remains
the same. Let M = { m1, m2,. . ., mn } be the set of available
mobile devices in the mobile ad-hoc cloud. mn denotes the
CPU speed of node mn. tn denotes the link congestion level
between node mn and the client device. Then the mobile ad-
hoc cloud can be modelled as

mn ¼ hmn; tni; 8mn 2M: (2)

4.1.3 Cloud and Cloudlet Modelling

As described in Section 3, the client connects to cloudlet via
WiFi, and to cloud via WiFi or cellular network. On both
cloud and cloudlet, we deploy single-core VMs2 as the off-
loading solution. VMs within a cloudlet or cloud are consid-
ered homogeneous, while they are heterogeneous across
clouds and cloudlets in terms of computation capacity and
network delay. Then we model VMs on cloud and cloudlet
as follows:

vi ¼ hmi; ri; uii; (3)

where mi is the CPU speed, ri is the network delay from the
client to VM, and ui is the average CPU usage.

The heterogeneity of VMs between cloudlet and cloud
reflects on the different m; r values in the model.

4.1.4 Problem Formulation

Having presented the models of the system, we formulate
the decision making problem as to find a solution of select-
ing where to execute the task and how to offload so that the
overall execution time and energy consumption is the lowest
among all the cloud resources in the mobile cloud infrastruc-
ture based on the current context of the client device. Specifi-
cally, given a set of n tasks T, a set of cloud VMs C, a set of
cloudlets CL, and a mobile ad-hoc cloud with hmobile devi-
cesM, then the overall cost of executing a set of n tasks is

Ctotal ¼
Xn
i¼1

DCðti; li; wmiÞ; (4)

where DC denotes execution cost of running task ti, includ-
ing execution time and energy consumption. li represents
the execution location for task ti, which includes local,

TABLE 1
Notations

Symbol Description

t the mobile task being considered to offload
s the data size of the offloadable task t that need to be transferred during offloading, in byte
w the number of instructions for task t to complete
M a set of mobile device as a mobile ad-hoc cloud
mk mobile device k in the mobile ad-hoc cloud
m the average CPU speed of the mobile devices or VMs
tn link delay between client and local mobile device cloud
u the average CPU usage
ri data transferring time for task i
wmi the wireless medium used for task offloading
li the execution location of task i
a1;a2 weight factors used in the general cost model to adjust the user preference
rd coefficient of channel energy consumption reflecting on execution performance
Bchannel the bandwidth of the wireless medium, namely WiFi, 3G, and Bluetooth, in MB/s
CðtiÞ general overall cost of task i
DðtiÞ execution time of task i running on cloud resource
EðtiÞ energy consumption of offloading task i
DEchannel the energy consumption of task i under certain bandwidth
bchannel the estimated channel energy consumption per time unit
btail wireless medium tail time energy per time unit
Ttail wireless channel active tail time

1. Our system considers the Android Dalvik bytecode instructions.
2. VMs on cloudlet and public cloud run customized mobile operat-

ing systems, e.g., Android x86.

ZHOU ET AL.: MCLOUD: A CONTEXT-AWARE OFFLOADING FRAMEWORK FOR HETEROGENEOUS MOBILE CLOUD 801

mobile ad-hoc cloud M, cloudlet CL, or cloud C. wmi is the
wireless medium used to offload ti, including Bluetooth,
WiFi, and cellular network. Thus, the problem is to provide
an offloading decision hli; wmii for 8ti 2 T to minimize the
overall cost.

4.2 Cost Estimation Models

The cost model consists of two parts, namely the task execu-
tion time denoted by D, and the wireless channel energy
consumption denoted by E. Then the general model for
overall cost of executing tasks ti is as follows:

CðtiÞ ¼ a1 �DðtiÞ þ a2 � rd � EðtiÞ; (5)

a1 þ a2 ¼ 1;a1;a2 � 0; (6)

where a1 and a2 are weight factors to adjust the portion of
time and energy consumption in the overall cost. a1 and a2

are considered to capture user preferences on the factors. If
the user is not expert, methodologies like AHP can be used
to generate the factors from linguistic values provided by
users. The value of execution time and energy consumption
in the cost model are normalized in a 0-100 scale with the
upper and lower bound data profiled from real application
results. We adopted rd in our model to represent the effect
of hardware settings (DVFS levels and wireless channel
rate) on the device performance [20]. rd will be set on a 0-1
scale based on the processor DVFS level and wireless chan-
nel rate.

Given the general cost models in Equation (5), we
describe the specific cost models for each type of the mobile
cloud infrastructure resource.

4.2.1 Mobile Ad-Hoc Cloud Cost Model

First, we model the execution time D for tasks running in
the mobile ad-hoc cloud. Given a set of independent tasks T
¼ {ti j 1 � i � n } and a set of heterogeneous mobile devices
M ¼ {mk j 1 � k � h }, execution time D can be obtained by
calculating the earliest finishing time (EFT) among all tasks
mapped to the mobile ad-hoc cloud. This independent task
scheduling problem is proved to be NP-complete [25].
Therefore the use of heuristics is a suitable approach. For
mapping independent tasks to heterogeneous machines,
Min-Min heuristic takes less processing time with the result
as good as other heuristics [26]. Thus we adopt Min-Min in
our cost model.

The Min-min heuristic maps unassigned tasks to avail-
able machines. It firstly calculates minimum completion
times (MCT):

MCT ðti;mkÞ ¼ ½min1�k�hðCT ðti;mkÞÞ; 8ti 2 T �; (7)

where CT ðti;mkÞ is the completion time for task ti on device
mk. Then task ti with MCT is selected and assigned to
machine mk, and ti is removed from T, and the iterations
repeat until all tasks are mapped (i.e., T is empty).

In the next step, we model the energy consumption E of
the client device. Based on the results from Min-Min, we
calculate the device communication energy cost for transfer-
ring data to the MANET and receiving the results. Let
Bchannel denote the channel data rate. ti ¼ hsi; wii represents
the task ,where si is the data need to be transferred and wi is

the workload. The channel energy consumption for trans-
ferring data is given as:

DEchannelðsi; BchannelÞ ¼ bchannel

� si
Bchannel

þ sresult
Bchannel

� �
þ btail � Ttail;

(8)

where bchannel is the power consumption rate related to the
transferring time and btail is the wireless channel tail time
power consumption rate.

Let M denote the set of mobile devices in the mobile ad-
hoc cloud. mk is the CPU speed of devicemk that selected by
the MinMin algorithm and uk is the average CPU usage.
Then the overall execution cost is as follows:

Cti ¼ a1
wi

mk � uk
þ si þ si result

Bchannel

� �

þ a2 � rd � DEchannelðsj; BchannelÞ:
(9)

4.2.2 Cloud and Cloudlet Cost Models

Let ti ¼ hwi; sii denote a mobile task. There are m VMs
available on cloud or cloudlet. mVM denotes the computing
capacity, uVM denotes the average usage of the VM, and lVM
denotes the network latency of the VM. Note that the tasks
can be partitioned into subtasks, and VMs on cloud or
cloudlet are homogeneous. Hence each task can be evenly
partitioned and processed among the machines based on
the number of available VMs. Then the cost of running task
ti can be modelled as follows:

Cti ¼ a1 � wi

m � mVM � uVM
þ si þ si result

Bchannel
þ lVM

� �

þ a2 � rd � DEchannelðsi; BchannelÞ:
(10)

This cost model is utilized to estimate the task execution
cost on cloud and cloudlet VMs by alternating the parame-
ters mVM; uVM; lVM .

4.2.3 Local Execution Cost

For local cost estimation, we use a history data strategy to
reduce the overhead. The local execution time of a method
and energy consumption incurred by the device is stored in
the database and applied later to the general cost model in
Equation (5) for comparison. The estimation costs are then
used as the input of the decision making algorithm.

4.3 Context-Aware Decision Making Algorithm

Having shown how to estimate the task execution time and
energy consumption with the cost models, we present the
algorithm in this section. In order to obtain the lowest exe-
cution cost for the offloadable tasks under the context, based
on Equation (9) and (10), the context-aware decision algo-
rithm considers a set of context parameters, multiple wire-
less medium and mobile cloud infrastructure resources to
decide when it is beneficial to offload, which wireless
medium is used for offloading and which resources to use
as the offloading location.

4.3.1 Wireless Medium Selection

Most existing offloading frameworks in the literature only
consider network speed and energy consumption when

802 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2017

they make offloading decisions. Unlike those, mCloud
focuses on utilizing multiple types of mobile cloud resour-
ces (i.e., cloud, cloudlet and mobile ad-hoc cloud) and wire-
less mediums based on device context to improve the
offloading service availability and performance. Multiple
criteria regarding device context including resource avail-
ability, wireless medium availability, network congestion,
cost, energy consumption, etc. have been considered for
making offloading decisions in mCloud. Therefore, we need
a multi-criteria decision making approach (MCDM) in the
proposed framework.

Among MCDMs, we apply Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS) [27]
for wireless medium selection considering abovemen-
tioned criteria. TOPSIS offers lightweight processing and
shorter response time comparing to other MCDMs [28]. It
helps reduce the overhead of the proposed offloading
decision making algorithm, considering it is running on
mobile devices. Moreover, TOPSIS can be easily modified
to consider more criteria if necessary, and the complexity
remains the same regardless of the number of criteria. In
mCloud, the decision making algorithm considers six cri-
teria related to performance when selecting the wireless
interface:

� energy cost of the channel,
� the link speed of the channel,
� the availability of the interface,
� monetary cost (i.e., cost when using mobile data),
� the congestion level of the channel (RTT),
� and the link quality of the channel (signal strength).
Note that for the monetary cost, the algorithm only con-

siders the cost generated by using the mobile data. Other
cost such as cloud VM reservation is negligible from the
mobile device’s perspective as a mobile task generally occu-
pies a negligible time comparing to the cloud VM lifetime.

For the alternatives, the algorithm considers Bluetooth,
WiFi, and 3G in this system, but more interfaces can be
added if new techniques emerge. Then the process of wire-
less interface selection is as follows.

First, the relative weights for criteria being considered in
TOPSIS are obtained by using analytic hierarchy process
(AHP) [29]. The pairwise comparison results are presented
in a matrix

A ¼
a11 a12 . . . a16
a21 a22 . . . a26
..
. ..

. . .
. ..

.

a61 a62 . . . a66

2
6664

3
7775; ann ¼ 1:amn ¼ 1

anm
: (11)

The pairwise comparisons of six criteria are generated
based on the standardized comparison scale of nine levels
shown in Table 2. Then TOPSIS uses matrix A to calculate
the weights of the criteria by obtaining the eigenvector v

related to the largest eigenvalue �max

Av ¼ �maxv: (12)

Since the output of AHP is strictly related to the consis-
tency of the pairwise comparison, it is necessary to calculate
the consistency index [30]:

CI ¼ �max � n

ðn� 1Þ ;

CR ¼ CI

ðn� 1Þ �RamdomIndex
:

(13)

CR, which is the consistency ratio of CI, should be less
than 0.1 to have a valid relative weight output.

After the weights are generated, a evolution matrix con-
sisting of three alternatives and six criteria is created,
denoted by M ¼ ðxmnÞ3	6. The values of the criteria are col-
lected at runtime by the Context Monitor, and normalized
using Equation (14):

NMmn ¼
MmnP6
n¼1 M2

mn

: (14)

Then the weights obtained from AHP method are
applied to the normalized matrix N ¼ ðtmnÞ3	6

Mw ¼ vn �N; (15)

where vn represents the weight. The best solution and the
worst solution are then calculated from the weighted matrix
Mw, denoted by Sþ ¼ fhminðtmnjm ¼ 1 . . . 6Þjn 2 J�i; hmax
ðtmnjm ¼ 1 . . . 6Þjn 2 Jþig and S� ¼ fhmaxðtmnjm ¼ 1 . . . 6Þ
jn 2 J�i; hminðtmnjm ¼ 1 . . . 6Þjn 2 Jþig respectively, where
Jþ is the positive criteria to the cost and J� is the negative
criteria to the cost.

At last, the wireless medium is selected by calculating the
Euclidean distance between each alternative and the best and
worst solution Dþm and D�m respectively. and ranking the
alternatives by applying a closeness score to the best solution,

Dþm ¼
ffiX6
n¼1
ðtmn � tþmnÞ2

vuut ;

D�m ¼
ffiX6
n¼1
ðtmn � t�mnÞ2

vuut :

(16)

Then rank the alternatives by applying a closeness score
Rm to the best solution. The alternative with the highest Rm

is selected as the output of the wireless selection algorithm

Rm ¼ D�m
Dþm þD�m

: (17)

However, one drawback of TOPSIS is its sensitiveness to
rank reversal, thus in our system, if a new alternative
appears, the algorithm will be triggered to generate the new
weights and related matrix.

TABLE 2
Importance Scale and Definition

Definition Intensity of importance

Equally important 1
Moderately more important 3
Strongly more important 5
Very strongly more important 7
Extremely more important 9
Intermediate 2, 4, 6, 8

ZHOU ET AL.: MCLOUD: A CONTEXT-AWARE OFFLOADING FRAMEWORK FOR HETEROGENEOUS MOBILE CLOUD 803

4.3.2 Decision Making

The context-aware decision making algorithm is composed
of two main phases, which are summarized in Algorithm 1.
The first phase is estimation phase (step 2-11), during which
the context parameters such as context profiles and wireless
interface states are collected from the corresponding mod-
ules. Then the cost estimation models calculates the exe-
cution cost for each offloading request. In the selection
phase (step 12-40), the algorithm gives offloading decision
based on the available wireless interfaces and the cost
estimations. In case there are multiple wireless interfaces
available, the algorithm applies TOPSIS model to select
the best interface under current context such as data rate,
workload size to obtain the best data transfer perfor-
mance as well as minimum energy consumption. Based
on the wireless interface selection result, the algorithm
selects the offloading location that has the lowest execu-
tion cost. Finally, the algorithm returns the decision pair
of hoffload location; wireless mediumi.

Algorithm 1. Context-Aware Decision Algorithm

1: procedure GETDECISION context,tasks
2: para½� context
3: task½� tasks
4: programProfile get method profile
5: start discovery service and gather resources profiles
6: local cost estimate execution cost on client device
7: manet cost estimate execution cost on mobile device
8: cloud using MinMin heuristic
9: cloudlet cost estimate execution cost on cloudlet
10: cloud cost estimate execution coston public cloud
11: check network interface state
12: if only cell network is available then
13: check cloud availability
14: if cloud is available then
15: decision minCostðlocal; cloudÞ
16: return decision
17: else
18: return decisionðlocal execution; nullÞ
19: else if only WIFI is available then
20: check cloud, cloudlet and manet availability
21: decision minCostðlocal; cloud;manet; cloudletÞ
22: return decision
23: else if only Bluetooth is available then
24: check manet availability
25: ifmanet is available then
26: decision minCostðlocal;manetÞ
27: return decision
28: else
29: return decisionðlocal execution; nullÞ
30: else
31: interface TOPSISðcontextÞ
32: if interface is Wifi then
33: decision minCostðlocal; cloud;manetÞ
34: if interface is 3G then
35: decision minCostðlocal; cloudÞ
36: if interface is Bluetooth then
37: ifmanet is available then
38: decision minCostðlocal;manetÞ
39: else
40: return decisionðlocal execution; nullÞ

The complexity of the proposed algorithm is OðMN log
NÞ, where M is the number of devices in mobile ad-hoc
cloud and N is the number of tasks. The first phase of the
proposed algorithm uses an improved MinMin (in terms of
time complexity) [31] (step 7). Each machine maintains a
sorted queue of completion time of all tasks on the machine.
It takes OðMN logNÞ to construct the queues. In addition,
the scheduling takes OðMNÞ to compare the head of each
queue at each scheduling iteration. Thus, the overall com-
plexity is OðMN logNÞ. Next, for cloud and cloudlet cost
estimation (step 9-10), the time complexity is OðNÞ. There-
fore, the time complexity of the first phase in the proposed
algorithm is OðMN logN þNÞ ¼ OðMN logNÞ. The second
phase of the algorithm generates the offloading decision
with the time complexity of Oð1Þ. Therefore, the time com-
plexity for the proposed algorithm is OðMN logNÞ.

4.4 Failure Recovery

The mobility of mobile devices can incur node failures in the
proposed mobile cloud environment, especially the mobile
ad-hoc cloud. Although mCloud only considers a one-hop
network topology, it is necessary to ensure the consistency
of results once the failure occurs. Therefore, we apply a pair
of failure detection and recovery policy. The failures consid-
ered by the policy include remote nodes crash, remote
nodes out of communication range, and message omissions.

4.4.1 Failure Detection

The system adopts checkpointing to detect remote node
crash and communication lost in Algorithm 2.

Algorithm 2. Failure Detection Policy

1: procedure DETECTION

2: count½� initialized
3: state½� CONNECTED
4: info½� initialized
5: for checkpoint i to checkpoint n until target time do
6: Send out confirming message to each node
7: counter counterþ 1
8: for all node i in count do
9: if Confirmation message received then
10: count½i� count½i� þ 1
11: fetch the task running states on node i
12: info½i� running states
13: for node i 2 count½� do
14: gap counter� count½i�
15: if gap > �d then
16: state½i� FAILURE
17: gap 0
18: update available node list
19: Recoverðstate½�; info½�Þ
20: for node i 2 state½� ¼¼ CONNECTED do
21: if no result returned then
22: Recoverðnode i; info½�Þ

The discovery service inside communication manager
periodically broadcasts messages to the remote nodes
within the system at each checkpoint and waits for the con-
firmation message returned by the remote nodes. The dis-
covery service updates a vector that stores the number of
confirmation message received from each available node.

804 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2017

Then at the end of each checkpoint period, the discovery
service calculates the gap between the number of messages
received for each node and its own counter. Nodes with
same number as the counter or within the distance of �d are
considered as working, and are tagged as CONNECTED.
Nodes that the gap is larger than �d are then considered fail-
ure, and are tagged as FAILURE. Since we only consider
one-hop network between the hosting device, MANET
devices and cloud VMs, the delivery of the message is not
effected by the route change. The failure is mostly likely
node crash or dropping out of communication range. In this
case, we set �d to 3. In case mCloud adopts more compli-
cated network topology in the future, we can adjust the
number to fulfil the failure detection requirement.

Moreover, the detecting policy puts the target time on
completing the offloading tasks. The target time is related to
the estimated execution time provided by the cost models
inside decision engine. When the time of checkpoint looping
is beyond the target time, the discovery service considers a
failure happened in the node that has not returned the result,
and proceeds the failure recovery on the tasks from that node.

4.4.2 Recovery

When failures happen, the discovery service fetches the cur-
rent running states of the tasks on each node at each check-
point during failure detection. The information includes
task ID, the point of failure, and the partial result obtained.
If the failure is confirmed by the detection policy, the Dis-
covery Service sends a recovery request to the decision
engine. Then the Decision Engine packs all the information
of the failed task and choose another available cloud
resource node for further execution. If there are no suitable
nodes under the current context, the task is then executed
locally on the device itself.

5 SYSTEM DESIGN AND IMPLEMENTATION

The implementation of our prototype framework is built
based on ThinkAir [8]. The system is implemented on
Android operating system. We apply VM migration tech-
nology using Java Reflection [32] as our offloading method
in mCloud to minimize the modifications of the existing or
developing mobile applications. The system and program-
ming APIs are implemented as a library for the Android
application developers. Android x86 system[33] is deployed
on the cloud and cloudlet VMs. In this section, we explain in
details the design and implementation of mCloud and pro-
gramming APIs.

5.1 Android x86

In order to leverage the cloud resources, the framework
needs to offload the mobile tasks from the ARM-based sys-
tem application to an x86-based cloud VM. Android x86 is
an open-source project to port Android operating system to
an x86 or AMD host. It provides major functions of an
Android device on desktop system like Windows. As a
result, our proposed framework can fit into most of the
existing and developing Android applications and cloud
services without modifications on the program. We
deployed the Android x86 system on Virtualbox virtual
machines running on commercial public cloud services.

5.2 Offloading Method

We use Java reflection as mCloud’s offloading method. Java
reflection allows the program to inspect the available Java
classes, methods, interfaces and their properties within the
system or itself at runtime [34]. We can manipulate pro-
grams with certain classes, retrieve related properties like
parameter types and fields, and invoke the methods of other
programs remotely. Our proposed mCloud framework
implements the offloading and remote execution by using
Java reflection and Java annotations.

We provide a simple annotation @OFFLOAD for devel-
opers to annotate the methods to be considered for offload-
ing. The annotated methods will be processed at the
compile time via Java Reflection.Listing 1 shows an example
of using Java annotation for offloading. At runtime, the
application program can inspect and invoke method solve in
the offloading example.

Listing 1. Offloading example.

public class Example {
private int expA;
private int expB;
@OFFLOAD
public int solve(){
return ;

}
public void otherMethods(){
}

}

5.3 Execution Environment

The execution dataflow is depicted in Fig. 3. Five main com-
ponents are implemented, namely Context Monitor, Deci-
sion Engine, Task Manager, Communication Manager, and
Discovery Service. These components constitute the execu-
tion environment for the code offloading tasks.

5.3.1 Discovery Service

The Discovery Service starts when the application is opened
on the device. It detects two different types of resources: the
available Android x86 VMs in the remote, and mobile

Fig. 3. Execution dataflow: 1) sending offloading request to the decision
engine, 2) collecting context parameters from context monitor, 3) get
information of available cloud resources, 4) Task Manager starts once
the decision is made to offload, 5) Communication Manager divide the
jobs into subtasks for parallel processing, 6) Offload to cloud resources
for remote execution, 7) pause until receiving the result, 8) aggregate
results from parallel processing and store the result of execution time
and energy consumption in database, 9) and 10) send result back to
device for presentation.

ZHOU ET AL.: MCLOUD: A CONTEXT-AWARE OFFLOADING FRAMEWORK FOR HETEROGENEOUS MOBILE CLOUD 805

devices in the proximity. The Service first contacts a root
server on the cloud VM and retrieves a list of available
Android x86 VMs and their IP addresses on the public
cloud and local cloudlets. Meanwhile, the Discovery Service
starts an new thread in the background, which establishes a
WiFi hotspot to let the mobile devices nearby connect to the
client device. Then the Service can simply ping within a cer-
tain IP address range to detect the available mobile devices.
The benefit of this approach is that in most cases when the
public cloud services are not available, for example at a
disaster recovery site, using hotspots to form an ad-hoc net-
work is stable and easy to establish.

The service will search devices in periodical searching
strategy to keep the available mobile device list updated.
Additionally, the Service also considers Bluetooth connec-
tion in Discovery Service. It will activate the Bluetooth
module on the client device when the service starts at the
beginning and initialize a Bluetooth discovery session
that detects other Bluetooth capable devices in the range.
The hosting mobile device then gets a list of bonded devi-
ces and other available devices for connection. All the
information of the mobile devices discovered by the
system will be stored for the further decision engine
evaluation.

5.3.2 Context Monitor

Device profiler, network profiler and program profiler are
implemented in the Context Monitor. The Context Monitor
is designed to collect context data in an on-demand moni-
toring strategy in order to reduce the overhead. Hence, the
profilers are implemented with BroadcastReceiver3 to
receive the context data only when the context changes.
Listing 2 shows an example of the network profiler. The
profiler in the example will detect the current active net-
work connection type when it is changed.

Listing 2. Profiler implemented with BroadcastReceiver.

public void networkProfiler(){
networkStateReceiver = new BroadcastReceiver(){
public void onReceive(){
netInfo=connectivityManager.getActiveNetworkInfo();
networkType = netInfo.getTypeName();
}}}

5.3.3 Communication Manager

The communication manager extracts the information of the
IP address of the offloading location, offloading task ID,
method name, input parameters, and wireless medium type
being used generated by task manager. Then it starts a new
asyncTask4 in the background to initialize the connection to
the selected cloud resource. The communication manager
detects if connected cloud resource has the application files
and relevant libraries, and sends missing files. Then the
Manager waits until the asyncTask collects the results.

5.3.4 Decision Engine

Upon receiving the offloading request, the Decision Engine
first fetches all the information from Context Monitor and
Discovery Service. Then it passes all the context parameters
and available device information to the decision algorithm
for evaluation. The decision is packed into an array as execu-
tion location, machine IP address, offloading method name,
input parameters, andwireless channel for communication.

Once the Decision Engine makes the offloading decision,
the framework starts the remote execution. Listing 3 gives
an example of the remote execution. The remote cloud
resource first unpacks and get the parameters regarding
the execution environment, such as method name, input
parameters, and return types. Then it use Java reflection to
create a new instance of the offloaded class. Last, it invokes
the annotated method to execute and return the results to
the hosting mobile device. During the remote execution, the
hosting mobile device is on hold until all the results are
returned from the cloud resources.

Listing 3. An example of remote execution

private void remoteExecution(InputStream objIn){
obj = objIn.readObject();
name = objIn.readObject();
parameters = objIn.readObject();
paraTypes = objIn.readObject();
//Get the class
class = obj.getClass()
//construct class in remote host
constructor = class.getConstructor();
instance = constructor.newInstance();
//Get the offloading method
runMethod = class.getDeclaredMethod(name, paraTypes);
runMethod.setAccessible (true);
//invoke the remote method with input parameters
result = runMethod.invoke (class, parameters);

}

6 PERFORMANCE EVALUATION

6.1 Experiments Settings

To the best we know, there are no available standard test-
beds that are suitable for the performance evaluation.
Thus, to evaluate the effectiveness of mCloud and off-
loading scheme on different kinds of mobile applications,
we implement two android applications. The applications
represent two different types of tasks, one is small file
size with high computation, and the other one is big file
size with high computation. For the first type, we imple-
ment an application that performs math operations based
on the input data, and for the second type we implement
a face detection application.

We deploy the applications on one HTC G17, one Sam-
sung I997, and one Nexus 5, which form a device cloud for
the experiments. One Android x86 clone are installed within
VirtualBox on an Intel i5 laptop serving as cloudlet, the
emulated CPU speed was adjusted from VirtualBox to
match the processing speed of cloudlet. Two Android x86
clones are set up in an Amazon EC2 t2.medium instance.
Moreover, we use PowerTutor [35] to monitor the energy
consumption of CPU and communication. Unrelated

3. An Android class that can receive broadcasts across the
applications.

4. An Android class that allows to perform background operations
and publish results on the UI thread without having to manipulate
threads and/or handlers.

806 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2017

applications, background services (e.g., GPS, audio, etc.)
and screen of the mobile devices are shut down during
experiments.

The relative weights for criteria in TOPSIS model is gen-
erated based on the system priority. Due to the concern on
the processing delay and energy consumption, we assume
that the order of priority set for the six criteria under consid-
eration is: resource availability > power consumption >
bandwidth > channel congestion level > signal strength >
monetary cost. Based on this assumption we calculate the
weights from AHP and the results are shown in Table 4.
The consistency ratio5 value is 0.052 (less than 0.1), thus the
weights are valid.

We conducted three sets of experiments. A summary of
the scenarios is listed in Table 3. In the first scenario, two
applications are executed in a stable device context (i.e., all
mobile cloud resources and wireless mediums are available
and stable) to evaluate the performance of mCloud in terms
of time and energy consumption, under three user prefer-
ence policies. Then we compare them with the baselines of
local_only. In the second scenario, we conduct experiments
under multiple cases of mobile cloud resource availability,
while in the third test scenario, mCloud is tested under
unstable network conditions. These results are then com-
pared with the existing work ThinkAir. In summary, the
second and third set of experiments aim to demonstrate the
advantages of mCloud in an unstable mobile cloud context.

6.2 Results and Analysis

We run the two implemented mobile applications with
500 input tasks respectively under three offloading policies,
namely time_sensitive, energy_sensitive, and time_energy.
Then the results are compared with the baselines that runs
workload in offloading policy local_only. The characteristics
of the generated workloads is listed in Table 5. Workload
S_L and S_H are generated by the calculation application,
and workload B_H is generated by the face detection appli-
cation. Each measurement result is calculated by the aver-
age of 10 trails. Figs. 4a and 4b compare the execution time
and energy consumption respectively of each workload
under three offloading policies, which are time sensitive,
energy sensitive and time energy combination. Table 6 lists
the proportion of the tasks allocated to the multiple cloud
resources in mCloud’s mobile cloud environment.

As shown in Fig. 4a, for workload S_L, the execution
time is reduced by around 55 percent under time_sensitive
policy comparing to local_only policy. 75.4 percent of the
tasks are scheduled by the decision engine to the cloudlet
server (shown in Table 6) that has a much lower network
latency than public cloud. In Fig. 4b, the energy consump-
tion for workload S_L is reduced by 55.6 percent under
energy_sensitive policy, which has the best performance
among all policies. 84.2 percent of the tasks are scheduled
to the MANET due to the low energy consumption on
data transferring via Bluetooth. For the time_energy policy,
the result shows in Table 6 that 9.6 percent tasks are exe-
cuted in local, 70.4 percent tasks in cloudlet, and 20 percent
in public cloud, with the consideration of network condi-
tion and available cloud resources.

We can also observe similar results that, for workload
S_H, mCloud gives the best performance by achieving
65 percent of time reduction under time_sensitive policy and
70 percent of energy reduction under energy_sensitive policy.
For workload B_H, mCloud achieves 25 percent of time
reduction and 30 percent of energy reduction on average.
The experiment results show the mCloud is most beneficial
to the tasks that have low data size and high computation.

Figs. 5 and 6 break down time and energy consumption
of workload S_H and B_H respectively. For workload S_H
in Fig. 5a, the offloading overhead under different policies
is around 20 percent on average, while the offloading over-
head of workload B_H in Fig. 6a is much larger. The differ-
ence of offloading overhead between these two workloads
is due to the time consumed in transferring the data. The
energy consumption of communication is fairly small since
the workload S_H includes tasks with small data sizes
(Fig. 5b). On the contrary, workload B_H contains tasks
with large data sizes that increase the energy consumption
of transferring the data (Fig. 6b). The communication of
workload S_H costs around 13.6 percent of the total energy
consumption on average, while for workload B_H it costs
more than 30 percent on average.

Fig. 6a shows the overall time under time_sensitive is
greater than energy_sensitive, while the execution time under

TABLE 3
Experiment Scenarios

No. Application Scenario User Preference

1
Math application,
face detection

stable device context,
test performance
against baselines

time_sensitive
energy_sensitive
time_energy

2 Math application

unstable mobile
cloud resource availability,

stable network
(Table 7)

time_energy

3 Math application

stable mobile cloud
resource availability,
unstable network

(Table 8)

time_energy

TABLE 4
Criteria Weights for Topsis

Criteria Weight CR

Power Consumption 0.180

0.052
Bandwidth 0.130
Cloud Resource Availability 0.514
Congestion Level 0.081
Signal Strength 0.062
Cost 0.033

TABLE 5
Workload for the Experiments

Workload
Average

data size(byte)

Average
Android bytecode
instructions (MI)

Number of tasks

S_L 725 5.8 500
S_H 650 24 500
B_H 3,000 29.5 500

5. Calculated by Equation (13).

ZHOU ET AL.: MCLOUD: A CONTEXT-AWARE OFFLOADING FRAMEWORK FOR HETEROGENEOUS MOBILE CLOUD 807

time_sensitive is smaller. This is because the tasks under
time_sensitive policy were scheduled among local and cloud-
lets via a WiFi public access point on our site with long
latency, and tasks under energy_sensitive policy were sched-
uled among local and Manet via Bluetooth and WiFi-direct,
which has almost no network latency. Consequently, for
workload B_H that has large data size to transfer, although
the task execution time is lower, more time spent on waiting
for results and transmission under time_sensitive policy. The
overall time will be shorter under time_sensitive when using
a lower latency access point.

Furthermore, to explore the performance of mCloud in
terms of execution time and energy consumption under
unstable contexts, we conduct the experiment using
workload S_H with different combinations of available
cloud resources and network conditions under time and

energy combined policy, and compare performance with
ThinkAir.

First, we evaluate the performances in different available
cloud resources conditions while the network condition is
stable. The test cases are listed in Table 7.

Case 1 indicates all resources are available while case 2 to
case 4 represent the absence of public cloud service, cloudlet
service, and nearby wireless mobile ad-hoc network respec-
tively. The results are illustrated in Fig. 7.

Figs. 7a and 7b shows the execution time and overall
energy consumption of the workload in each case for our
proposed system and ThinkAir respectively. In Fig. 7a, it
shows that mCloud outperformed ThinkAir in terms of
time saving in all the four cases. Especially in case 2 and case
4, due to the unavailability of public resources, ThinkAir
chooses to run all the tasks locally on the device, while
mCloud offloaded part of the tasks to the mobile clones
on cloudlet and the nearby mobile device cloud, which
conserved around one third of the time ThinkAir took for
execution. The similar result can be observed for energy con-
sumption of the two systems in Fig. 7b. The results show that
our proposed system can provide code offloading services
when the mobile cloud environment is short of public cloud

Fig. 4. Overall time and energy consumption for each workload under
different policies.

TABLE 6
Proportion of Tasks Mapped in Each Location
Under Different Policies (T: time_sensitive,
E: energy_sensitive, TE: time_energy)

Workload Policy Local Manet Cloudlet cloud

S_L

T 1 0 75.4 23.6
E 15.8 84.2 0 0
TE 9.6 0 70.4 20

S_H

T 0 0 31.6 68.4
E 0 82.1 17.9 0
TE 0 0 79.3 20.7

B_H

T 41.2 0 58.8 0
E 60.8 39.2 0 0
TE 33.5 12.6 53.9 0

Fig. 5. Task processing time and offloading overhead of workload
S_H under local_only(L), time_sensitive(T), energy_sensitive(E) and
time_energy(TE) policies.

Fig. 6. Task processing time and offloading overhead of workload B_H
under different policies.

TABLE 7
Number of Each Type of Cloud Resources

Case Cloud VM Cloudlet MANET

1 2 2 3
2 0 2 3
3 2 2 0
4 0 0 3

Fig. 7. Performance under available resource changing conditions.

808 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2017

resources and help conserving execution time and battery,
unlikemany existingmobile cloud frameworks.

Second, we comparemCloudwith ThinkAir under unsta-
ble network condition. The experiments are conducted by
executing workload B_H under changing network context.
We alter the bandwidth of Internet connection and 3G con-
nection to stimulate the changing network condition in the
real world. Table 8 lists the four test cases. The maximum
bandwidth of our testing devices’ WiFi connection was 14.3
MBps, the average 3G connection speed was 3 MB/s. The
Bluetooth speed was the same throughout the experiment.
When the speed was set to 0, it represents the unavailability
of the corresponding wireless channel. In order to alter the
bandwidth of the network, we set up a virtual access point
on the laptop and connect DummyNet [36] to the virtual AP
tomanage the network bandwidth, latency, etc.

Case 1 represents the scenario where all the wireless
channels are available and operating at full speed. Case 2
represents the scenario where WiFi connection is not avail-
able. Case 3 represents neither WiFi nor 3G is available.
Case 4 represents the WiFi connection speed drops from
full speed to low speed that is slower than 3G and Blue-
tooth. Figs. 8a and 8b show the execution time and overall
energy consumption of the workload in each case for our
proposed system and ThinkAir respectively.

As illustrated in Figs. 8a and 8b, test case 1 shows that
mCloud has close performance as ThinkAir in terms of exe-
cution time and energy consumption. For case 2, 3 and 4,
mCloud has around 20 percent performance gain compar-
ing to ThinkAir. For test case 2, when only mobile data and
Bluetooth are available, mCloud schedules the offloading
tasks to either MANET through Bluetooth or local due to
the consideration of monetary cost. The result of test case 4
shows that when the network is unstable or slow, mCloud
can save more execution time and energy than ThinkAir
because of the multiple cloud resources and context being
considered in mCloud.

7 CONCLUSIONS AND FUTURE WORK

We proposed a context-aware offloading decision algorithm
that takes into consideration context changes (e.g., network
conditions and heterogeneous mobile cloud resource) to
provide decisions on wireless medium and mobile cloud
infrastructure resources to utilize at runtime. We also pro-
vide a general cost estimation model for mobile cloud infra-
structure resources to estimate the task execution cost
including execution time, energy consumption. The models
can be easily modified for the new cloud resources. We then
designed and implemented a prototype system considering
three types of cloud resources (mobile device cloud, cloud-
let and public clouds) and a decision engine that runs the

proposed algorithm and related cost estimation models. We
presented the evaluation of mCloud, and results showed
that the system can provide offloading decisions based on
the current context of mobile devices to lower the cost of
execution time and energy.

We plan to extend the framework to give the cloud
resources ability to intercommunicate with each other, with
the handover strategy to perform the failure recovery based
on the context changes, so that the current system can be
more efficient and reliable.

Moreover, future works can investigate resource man-
agement strategies for offloading-as-services cloud pro-
viders. Having access to variety of task offloading traces for
different cloud instances, providers can utilized machine
learning approaches to extract specific offloading policies
for offloading tasks in similar conditions.

In addition, the mobility of mobile devices can affect the
performance of the mobile ad-hoc cloud. Specifically, the
mobile device users may depart and arrive in different pat-
terns and the topology of the mobile cloud environment
may change as the result. Therefore, the effect of different
user mobility models on system performance need to be
investigated in the future.

REFERENCES

[1] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, “Heterogeneity in
mobile cloud computing: Taxonomy and open challenges,” IEEE
Commun. Surveys Tuts., vol. 16, no. 1, pp. 369–392, 1st Quarter
2014.

[2] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging it platforms: Vision, hype, and
reality for delivering computing as the 5th utility,” Future Gener.
Comput. Syst., vol. 25, no. 6, pp. 599–616, 2009.

[3] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making smartphones last longer
with code offload,” in Proc. 8th Int. Conf. Mobile Syst., Appl. Serv-
ices, 2010, pp. 49–62.

[4] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case
for VM-based cloudlets in mobile computing,” IEEE Pervasive
Comput., vol. 8, no. 4, pp. 14–23, Oct. 2009.

[5] I. Stojmenovic, Handbook of Wireless Networks and Mobile Comput-
ing, vol. 27. New York, NY, USA: Wiley, 2003.

[6] M. Kristensen, “Scavenger: Transparent development of efficient
cyber foraging applications,” in Proc. IEEE Int. Conf. Pervasive
Comput. Commun., Mar. 2010, pp. 217–226.

[7] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“CloneCloud: Elastic execution between mobile device and
cloud,” in Proc. 6th Conf. Comput. Syst., 2011, pp. 301–314.

[8] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic resource allocation and parallel execution in the cloud
for mobile code offloading,” in Proc. 31st IEEE Int. Conf. Comput.
Commun., Mar. 2012, pp. 945–953.

TABLE 8
Average Network Speed for Each Test Case

Case Wifi (MB/s) 3G (MB/s) Bluetooth (MB/s)

1 14.3 3.5 2.8
2 0 3.2 3.0
3 0 0 2.2
4 1.7 3.3 2.5

Fig. 8. Performance under available resource changing conditions.

ZHOU ET AL.: MCLOUD: A CONTEXT-AWARE OFFLOADING FRAMEWORK FOR HETEROGENEOUS MOBILE CLOUD 809

[9] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen,
“COMET: Code offload by migrating execution transparently,” in
Proc. 10th USENIX Conf. Operating Syst. Des. Implementation, 2012,
pp. 93–106.

[10] X. Zhang, A. Kunjithapatham, S. Jeong, and S. Gibbs, “Towards an
elastic application model for augmenting the computing capabili-
ties of mobile devices with cloud computing,” Mobile Netw. Appl.,
vol. 16, no. 3, pp. 270–284, 2011.

[11] E. E. Marinelli, “Hyrax: Cloud computing on mobile devices using
MapReduce,” DTIC Document, Carnegie Mellon Univ., 2009.

[12] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, S. N. Srirama, and
R. Buyya, “A context sensitive offloading scheme for mobile cloud
computing service,” in Proc. 8th IEEE Int. Conf. Cloud Comput.,
2015, pp. 869–876.

[13] J. Flinn, S. Y. Park, and M. Satyanarayanan, “Balancing perfor-
mance, energy, and quality in pervasive computing,” in Proc.
22nd Int. Conf. Distrib. Comput. Syst., 2002, pp. 217–226.

[14] R. K. Balan, M. Satyanarayanan, S. Y. Park, and T. Okoshi,
“Tactics-based remote execution for mobile computing,” in Proc.
1st Int. Conf. Mobile Syst., Appl. Services, 2003, pp. 273–286.

[15] H. Flores, S. N. Srirama, and R. Buyya, “Computational offloading
or data binding? bridging the cloud infrastructure to the proxim-
ity of the mobile user,” in Proc. 2nd IEEE Int. Conf. Mobile Cloud
Comput., Services, Eng., 2014, pp. 10–18.

[16] P. Bahl, R. Y. Han, L. E. Li, and M. Satyanarayanan, “Advancing
the state of mobile cloud computing,” in Proc. 3rd ACM Workshop
Mobile Cloud Comput. Services, 2012, pp. 21–28.

[17] M. R. Rahimi, N. Venkatasubramanian, and A. V. Vasilakos,
“MuSIC: Mobility-aware optimal service allocation in mobile
cloud computing,” in Proc. 6th IEEE Int. Conf. Cloud Comput., 2013,
pp. 75–82.

[18] Q. Xia, W. Liang, Z. Xu, and B. Zhou, “Online algorithms for
location-aware task offloading in two-tiered mobile cloud envi-
ronments,” in Proc. 7th IEEE/ACM Int. Conf. Utility Cloud Comput.,
Dec. 2014, pp. 109–116.

[19] Z. Cheng, P. Li, J. Wang, and S. Guo, “Just-in-time code offloading
for wearable computing,” IEEE Trans. Emerging Topics Comput.,
vol. 3, no. 1, pp. 74–83, Mar. 2015.

[20] S. Chen, Y. Wang, and M. Pedram, “A Semi-Markovian decision
process based control method for offloading tasks from mobile
devices to the cloud,” in Proc. IEEE Global Commun. Conf.,
Dec. 2013, pp. 2885–2890.

[21] X. Chen, “Decentralized computation offloading game for mobile
cloud computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4,
pp. 974–983, Apr. 1, 2015.

[22] S.-H. Hung, T.-T. Tzeng, G.-D. Wu, and J.-P. Shieh, “A code off-
loading scheme for big-data processing in android applications,”
Softw.: Practice Experience, vol. 45, pp. 1087–1101, 2014.

[23] T.-Y. Lin, T.-A. Lin, C.-H. Hsu, and C.-T. King, “Context-aware
decision engine for mobile cloud offloading,” in Proc. IEEE Wire-
less Commun. Netw. Conf. Workshops, 2013, pp. 111–116.

[24] D. Fesehaye, Y. Gao, K. Nahrstedt, and G. Wang, “Impact of
cloudlets on interactive mobile cloud applications,” in Proc. 16th
IEEE Int. Enterprise Distrib. Object Comput. Conf., 2012, pp. 123–132.

[25] D. Fern�andez-Baca, “Allocating modules to processors in a dis-
tributed system,” IEEE Trans. Softw. Eng., vol. 15, no. 11, pp. 1427–
1436, Nov. 1989.

[26] T. D. Braun, H. J. Siegel, et al., “A comparison of eleven static heu-
ristics for mapping a class of independent tasks onto heteroge-
neous distributed computing systems,” J. Parallel Distrib. Comput.,
vol. 61, no. 6, pp. 810–837, 2001.

[27] C.-L. Hwang, Y.-J. Lai, and T.-Y. Liu, “A new approach for multi-
ple objective decision making,” Comput. Operations Res., vol. 20,
no. 8, pp. 889–899, 1993.

[28] M. Velasquez and P. T. Hester, “An analysis of Multi-criteria deci-
sion making methods,” Int. J. Operations Res., vol. 10, no. 2, pp. 56–
66, 2013.

[29] T. L. Saaty, The Analytic Hierarchy Process: Planning, Priority Set-
ting, Resources AllocationNew York, NY, USA: McGraw-Hill, 1980.

[30] H. Wu, Q. Wang, and K. Wolter, “Methods of cloud-path selection
for offloading in mobile cloud computing systems,” in Proc. 4th
IEEE Int. Conf. Cloud Comput. Technol. Sci., Dec. 2012, pp. 443–448.

[31] E. Kartal Tabak, B. Barla Cambazoglu, and C. Aykanat,
“Improving the performance of independent task assignment
heuristics minmin,maxmin and sufferage,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 5, pp. 1244–1256, May 2014.

[32] G. McCluskey, “Using java reflection,” Java Developer Connection,
1998.

[33] C.-W. Huang, M. Chen, and D. Zavin. (2015). Android-x86 - porting
android to x86. [Online]. Available: http://www.android-x86.org/

[34] K. Arnold, J. Gosling, D. Holmes, andD. Holmes, The Java Program-
ming Language, vol. 2. Reading, MA, USA:Addison-Wesley, 1996.

[35] L. Zhang, B. Tiwana, R. Dick, Z. Qian, Z. Mao, Z. Wang, and
L. Yang, “Accurate online power estimation and automatic bat-
tery behavior based power model generation for smartphones,” in
Proc. IEEE/ACM/IFIP Int. Conf. Hardware/Softw. Codes. Syst. Synthe-
sis, Oct. 2010, pp. 105–114.

[36] M. Carbone and L. Rizzo, “Dummynet revisited,” ACM SIG-
COMMComput. Commun. Rev., vol. 40, no. 2, pp. 12–20, 2010.

Bowen Zhou received the BS degree from Har-
bin Institute of Technology, Harbin, China, in
2013. He is currently working toward the PhD
degree in the Cloud Computing and Distributed
Systems Laboratory, Department of Computing
and Information Systems, University of Mel-
bourne. He has been working on the computing
augmentation in mobile cloud computing, and
task scheduling in mobile cloud systems. He is a
student member of the IEEE.

Amir Vahid Dastjerdi is a research fellow with
the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, University of Melbourne.
His current research interests include cloud ser-
vice coordination, scheduling, and resource pro-
visioning using optimization, machine learning,
and artificial intelligence techniques. He is a
member of the IEEE.

Rodrigo N. Calheiros is a postdoctoral research
fellow in the Cloud Computing and Distributed
Systems Laboratory (CLOUDS Lab), Department
of Computing Information Systems, University
of Melbourne, Australia. His research interests
include cloud and grid computing and simulation
and emulation of distributed systems. He is a
member of the IEEE.

Satish Narayana Srirama received the PhD
degree in computer science from RWTH Aachen
University. He is an associate professor and the
head in the Mobile Cloud Lab, Institute of Com-
puter Science, University of Tartu. His current
research focuses on mobile web services, cloud
computing, mobile cloud, scientific computing,
and mobile community support.

Rajkumar Buyya is a professor of computer sci-
ence and software engineering, future fellow of
the Australian Research Council, and the director
in the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, University of Melbourne,
Australia. He is also serving as the founding CEO
of Manjrasoft, a spin-off company of the Univer-
sity, commercializing its innovations in cloud
computing. He has authored over 500 publica-
tions and six text books including Mastering
Cloud Computing published by McGraw Hill,

China Machine Press, Morgan Kaufmann, and for Indian, Chinese, and
international markets, respectively. He is one of the highly cited authors
in computer science and software engineering worldwide. He is a fellow
of the IEEE.

810 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2017

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

