
 1

Cluster Computing: High-Performance, High-Availability, and
High-Throughput Processing on a Network of Computers

�

�

�

�

Chee Shin Yeo1, Rajkumar Buyya1, Hossein Pourreza2, Rasit Eskicioglu2, Peter Graham2, Frank Sommers3

1Grid Computing and Distributed Systems Laboratory and NICTA Victoria Laboratory
Dept. of Computer Science and Software Engineering

The University of Melbourne, Australia
{csyeo, raj}@cs.mu.oz.au

2 Parallel and Distributed Systems Laboratory
Department of Computer Science

The University of Manitoba, Canada
{pourreza, rasit, pgraham}@cs.umanitoba.ca

3 Autospaces, LLC

895 S. Norton Avenue Los Angeles, CA 90005, USA
fsommers@autospaces.com

1. Introduction
The first inspiration for cluster computing was developed in the 1960s by IBM as an alternative of linking
large mainframes to provide a more cost effective form of commercial parallelism [1]. At that time, IBM's
Houston Automatic Spooling Priority (HASP) system and its successor, Job Entry System (JES) allowed
the distribution of work to a user-constructed mainframe cluster. IBM still supports clustering of
mainframes through their Parallel Sysplex system, which allows the hardware, operating system,
middleware, and system management software to provide dramatic performance and cost improvements
while permitting large mainframe users to continue to run their existing applications.

However, cluster computing did not gain momentum until the convergence of three important trends in the
1980s: high-performance microprocessors, high-speed networks, and standard tools for high performance
distributed computing. A possible fourth trend is the increasing need of computing power for computational
science and commercial applications coupled with the high cost and low accessibility of traditional
supercomputers. These four building blocks are also known as killer-microprocessors, killer-networks,
killer-tools, and killer-applications, respectively. The recent advances in these technologies and their
availability as cheap and commodity components are making clusters or networks of computers such as
Personal Computers (PCs), workstations, and Symmetric Multiple-Processors (SMPs) an appealing
solution for cost-effective parallel computing. Clusters, built using commodity-off-the-shelf (COTS)
hardware components as well as free, or commonly used, software, are playing a major role in redefining
the concept of supercomputing. And consequently, they have emerged as mainstream parallel and
distributed platforms for high-performance, high-throughput and high-availability computing.

The trend in parallel computing is to move away from traditional specialized supercomputing platforms,
such as the Cray/SGI T3E, to cheaper and general purpose systems consisting of loosely coupled
components built up from single or multiprocessor PCs or workstations. This approach has a number of
advantages, including being able to build a platform for a given budget that is suitable for a large class of
applications and workloads.

 2

The emergence of cluster platforms was driven by a number of academic projects, such as Beowulf [2],
Berkeley NOW [3], and HPVM [4] that prove the advantage of clusters over other traditional platforms.
These advantages include low-entry costs to access supercomputing-level performance, the ability to track
technologies, incrementally upgradeable system, open source development platforms, and vendor
independence. Today, clusters are widely used for research and development of science, engineering,
commerce and industry applications that demand high performance computations. In addition, clusters
encompass strengths such as high availability and scalability that motivate wide usage in non-
supercomputing applications as well, such as clusters working as web and database servers.

Figure 1. Cluster architecture (R. Buyya [1]).

A cluster is a type of parallel or distributed computer system, which consists of a collection of inter-
connected stand-alone computers working together as a single integrated computing resource [1][5]. The
typical architecture of a cluster is shown in Figure 1. The key components of a cluster include multiple
standalone computers (PCs, Workstations, or SMPs), operating systems, high-performance interconnects,
middleware, parallel programming environments, and applications. The remaining part of this chapter
focuses on cluster-specific components and their functionality along with representative examples. It
assumes that the reader is familiar with the standard commodity hardware and software components such as
stand-alone computers, operating systems such as Linux and Windows, and standard communication
software such as TCP/IP.

2. Interconnection Technologies and Communication Software
Clusters need to incorporate fast interconnection technologies in order to support high-bandwidth and low-
latency inter-processor communication between cluster nodes. Slow interconnection technologies had
always been a critical performance bottleneck for cluster computing. Today, improved network
technologies help realize the construction of more efficient clusters.

Selecting a cluster interconnection network technology depends on several factors, such as compatibility
with the cluster hardware and operating system, price, and performance. There are two metrics to measure
performance for interconnects: bandwidth and latency. Bandwidth is the amount of data that can be
transmitted over the interconnect hardware in a fixed period of time, while latency is the time to prepare
and transmit data from a source node to a destination node.

���������	
���	�
������

����		�	
���	�
������

���������������		
�����

���	����

���������
���������
��
����������	��	���������
�
���
�
������������������

���������	
���	�
������

�������
�������
���
����

����		�	
���	�
������

�������������
���
����

�� !��"����
���
�

Network Interface
Hardware

Communication
Software

Operating System

�� !��"����
���
�

Network Interface
Hardware

Communication
Software

Operating System

�� !��"����
���
�

Network Interface
Hardware

Communication
Software

Operating System

�� !��"����
���
�

Network Interface
Hardware

Communication
Software

Operating System

��������������������
���#�����" ��
��$

 3

Table 1. Examples of some interconnection technologies.

Interconnection
Technology Description

Gigabit Ethernet � Provides a reasonably high bandwidth given its low price, but suffers from relatively high
latency, thus restricting Gigabit Ethernet as a good choice. However, the low price of
Gigabit Ethernet is appealing to building clusters.

� http://www.10gea.org

Giganet cLAN � Giganet cLAN is developed with the goal of supporting VIA in hardware and supports a
low latency. But, it only provides a low bandwidth of less than 125 MBytes/s, thus
making it not a viable choice for implementing fast cluster networks.

� http://www.giganet.com

Infiniband [6] � The latest industry standard based on VIA concepts and released in 2002, Infiniband
supports connecting various system components within a system such as interprocessor
networks, I/O subsystems or multi-protocol network switches. This makes Infiniband
independent of any particular technology.

� http://www.infinibandta.org

Myrinet [7] � The current most widely used for fast cluster networks. The key advantage of Myrinet is
that it operates in user space, thus bypassing operating system interferences and
delays.

� http://www.myrinet.com

QsNet II � The next generation version of QsNet that is based on high performance PCI-X
interface, compared to QsNet’s PCI interface. QsNetII is able to achieve 1064 MBytes/s,
support 4096 nodes, and provide 64-bit virtual address architecture.

� http://www.quadrics.com

Scalable Coherent
Interface (SCI) [8]

� The first interconnection technology standard specified for cluster computing. SCI
defines a directory-based cache scheme that can keep the caches of connected
processors coherent, thus able to implement virtual shared memory.

� http://www.scizzl.com

Table 1 gives a summary of some interconnection technologies which are then compared as shown in table
2. The comparisons examine factors that include: bandwidth, latency, hardware availability, support for
Linux, maximum number of cluster nodes supported, how the protocol is implemented, support for Virtual
Interface Architecture (VIA), and support for Message Passing Interface (MPI). VIA [9] is a standard for
low latency communication software interface that was developed by a consortium of hardware producers
and academic institutions and has been adopted for use by most cluster vendors. MPI [10] provides
message passing thru a set of libraries that users can use to develop parallel and distributed applications.
This means that MPI provides the communication layer for user applications and thus ensures portability of
application code across all distributed and parallel platforms.

With the current popularity of cluster computing, it is increasingly important to understand the capabilities
and potential performance of various network interconnects for clusters. Furthermore, due to the low cost
of clusters and their growing acceptance within the scientific community, many recent cluster builders are
not computer scientists or engineers and thus have limited technical computing skills. This new group of
cluster builders is less interested in features as Network Interface Card (NIC) programmability and special
messaging libraries. Instead, they are concerned with two primary factors: cost and performance. While
cost is easily determined and compared, performance is more difficult to assess particularly for users who
may be new to cluster computing.

 4

Table 2. Comparison of some interconnection technologies (updated version from [11]).

Comparison
Criteria

Gigabit
Ethernet

Giganet
cLAN Infiniband Myrinet QsNet II

Scalable
Coherent
Interface
(SCI)

Bandwidth
(MBytes/s)

< 100 < 125 850 230 1064 < 320

Latency (µs) < 100 7-10 < 7 10 < 3 1-2

Hardware
Availability

Now Now Now Now Now Now

Linux Support Now Now Now Now Now Now

Max. No. of Nodes 1000’s 1000’s > 1000’s 1000’s 4096 1000’s

Protocol
Implementation

Hardware Firmware on
adaptor

Hardware Firmware on
adaptor

Firmware on
adaptor

Firmware on
adaptor

Virtual Interface
Architecture (VIA)
Support

NT/Linux NT/Linux Software Linux None Software

Message Passing
Interface (MPI)
Support

MVICH [12]
over M-VIA
[13], TCP

3rd Party MPI/Pro [14] 3rd Party Quadrics 3rd Party

Several performance assessments of cluster systems, and of specific interconnects, have been performed
[15][16][17][18][19]. Unfortunately, much of the work done has, in some sense, been “comparing apples to
oranges”. This is because most existing performance analysis have been forced to compare results for
interconnects being used on different cluster systems (since any given cluster seldom has more than one or
two interconnects available). To be as useful as possible, interconnect performance assessments should:

� be based on timing runs done on real hardware using real programs, thereby eliminating any issues
related to either limitations of simulation or over-tuning of synthetic benchmarks,

� use identical cluster node hardware for all runs with all network interconnects so that the results do
not have to be carefully “interpreted” to account for possible performance variations due to
differences in system components other than the network interconnect,

� concurrently consider as many different network interconnects as possible to avoid possible
discrepancies between independent experiments done at different times, and

� should include a number of real-world applications in addition to the key benchmark suites
commonly used to assess cluster performance to provide greater confidence that the results
observed are not only those that can be expected of in particular well-tuned benchmark code
(results for real applications are likely to be more indicative of what new cluster users can expect
from their applications than results from well-established benchmarks).

A subset of the authors (Pourreza, Eskicioglu and Graham) have conducted performance assessments of a
number of interconnects identified in Table 2 by taking timings when running identical applications on
identical cluster nodes. Repeated isolated runs of a number of standard cluster computing benchmarks
(including the NAS parallel benchmarks [20] and the Pallas benchmarks [21]) as well as some real world
parallel applications1 on first and second generation Myrinet [7], SCI [8], as well as Fast (100Mbps) and
gigabit (1000Mbps) Ethernet were made, and the key results are summarized below. For those readers who
are interested, additional details are available in [23].

1 Among these applications were PSTSWM (http://www.csm.ornl.gov/chammp/pstswm), a shallow water model commonly used as
part of larger Global Climate Models (GCMs) and Gromacs [22] (http://www.gromacs.org), a molecular dynamics package.

 5

For small-scale compute clusters, most first-time cluster builders tend to choose between a very low-cost
commodity interconnect (most commonly fast or gigabit Ethernet) and a more expensive but higher
performance interconnect (such as Myrinet or SCI). In many cases, this choice is made prior to any serious
investigation of the interconnection needs of the application(s) to be run on the cluster and is often
determined by simply asking the question: “Can our budget afford a fast interconnect?” This approach is
undesirable and may lead to frustration with the resulting cluster performance due to two possible reasons.
One possible reason is that the selected network interconnect is inadequate for the work to be done.
Another possible reason is that the money spent on an underutilized interconnect could have been better
spent on other useful components such as faster processors and larger memory. Cluster builders could have
easily avoid these problems by following some simple guidelines and considering the performance
characteristics of the various interconnects as determined by independent analysis.

In general, the cost of commodity interconnects is currently approximately an order of magnitude lower
than the cost of high-performance interconnects. The wide price differential means that whenever possible,
it is highly desirable to use a commodity interconnect. The primary difference between commodity and
high-performance interconnects is the latency of sending messages and, to a somewhat lesser extent, the
bandwidth available for messaging. This naturally means that high-performance interconnects are most
desirable when the applications to be run over them communicate frequently (particularly if they exchange
many small messages). Applications that communicate only infrequently and that exchange larger
messages often perform quite well using commodity interconnects. These general observations are
confirmed by the example graphs shown below.

The cost of fast (100Mbps) Ethernet is now so low that a common strategy among many first-time cluster
builders is to start by using fast Ethernet for their interconnect and then upgrade when necessary (or when
they have a better idea of their application characteristics and hence requirements). Given the extremely
low cost of fast Ethernet, there is little concern if the equipment is used only for a short period of time.
Furthermore, many cluster builders will keep their fast Ethernet network to carry maintenance traffic (such
as NIS, NFS, and remote logins) even after adding a high-performance interconnect to their cluster. Thus,
they avoid “polluting” the high-speed interconnect with unnecessary traffic that may interfere with the
actual executing programs. In addition, if the fast Ethernet equipment is no longer required, it can be easily
redeployed for usage elsewhere in the organization. Gigabit Ethernet is also increasingly being treated in a
similar fashion even though it is more expensive. But, advantages of Gigabit Ethernet are a longer lifespan
as an active interconnect and the ability to support a much wider range of applications.

All the timings reported are done on an eight-node Linux cluster (with RedHat 9.0, kernel 2.4.18smp and
gcc 3.2.2). Each node has dual Pentium III, 550-MHz processor with 512MB of shared SDRAM memory
and local IDE disks (all I/O activity in the experiments occurs on local disks to eliminate the effects of NFS
access). Each node also has first and second generation Myrinet, GigaNet, fast Ethernet, gigabit Ethernet
and point-to-point SCI (Dolphin WulfKit) Network Interface Cards (NICs). All NICs except the SCI NICs
are connected to dedicated switches. The SCI NICs are interconnected in a 4x2 mesh configuration. The
fast Ethernet network is also used for “maintenance” traffic, but steps were taken to ensure that traffic
“maintenance” would be minimal during the experiments. Although each node has a dual processor, only a
single processor is used for running most of the applications since most small-scale cluster nodes are still
uniprocessor. The results from the best performing version of MPI that is available for each interconnect
are reported. The public domain GNU compilers (gcc and g77 version 3.2.2) are used to compile all
applications because GNU compilers are the most commonly used by most cluster builders. All timings are
taken in isolation from other work and logins (in other words, no other applications are running while the
timings are being taken, no other users are allowed to log in and the operating systems on all nodes are only
running cluster-essential software daemons). This represents the characteristics of a “production” cluster
environment. Results for the GigaNet interconnect are not reported due to lack of a suitable MPI
implementation. Also, results using the second generation Myrinet NICs are omitted since the cluster nodes
do not support 64 bit transfers, which is one of the key benefits of second generation Myrinet. Through
experimentation, we discovered that without such wide transfers, there is little difference between the two
generations of Myrinet.

 6

Pallas Ping-Pong Bandwidth

0

100

200

300

400

500

600

700

800

900

1 10 100 1000 10000 100000 1000000 10000000

size (byte)

M
bp

s

Fast Eth

Gigabit Eth

Myrinet

SCI

Figure 2. Bandwidth of four interconnects (H. Pourreza, et al. [23]).

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 1 32 1024 32768 1.04858e+06

us
ec

on
ds

size (bytes)

Latency of Ping-Pong Packets

Fast Eth
Gigabit Eth

Myrinet
SCI

Figure 3. Latency of four interconnects (H. Pourreza, et al. [23]).

The base performance of the various interconnects (in terms of bandwidth and latency) are shown in
Figures 2 and 3 respectively. The relative figures for the four networks are as expected with fast Ethernet
clearly being inferior to all the other interconnects and gigabit Ethernet being noticeably below SCI and
Myrinet despite advertising a similar raw bandwidth. Even from these results, it is clear that fast Ethernet
would likely only be suitable for the most compute-bound applications.

 7

FT-A Benchmark

0

0.5

1

1.5

2

2.5

3

2 4 8

Number of Processors

N
or

m
al

iz
ed

 M
Fl

op
s

Fast Eth

Gigabit Eth

Myrinet

SCI

Figure 4. The NPB FT-A benchmark (H. Pourreza, et al. [23]).

LU-A Benchmark

0

0.2

0.4

0.6

0.8

1

1.2

2 4 8

Number of Processors

N
o

rm
a

liz
e

d
 M

F
lo

p
s

Fast Eth Gigabit Eth

Myrinet SCI

Figure 5. The NPB LU-A benchmark (H. Pourreza, et al. [23]).

The NPB suite consists of a number of parallel programs implemented using MPI that have a variety of
communication patterns and frequencies (some of the programs are compute bound while others are
communication bound). All programs are derived from real-world program codes. The sample results
shown below are for the FT and LU benchmarks. The FT-A benchmark (shown in Figure 4) implements a
Fourier Transform (on relatively small data – the “-A” suffix) and is quite communication bound while the
LU-A benchmark (shown in Figure 5) implements LU decomposition (also on small data) and is relatively
compute bound. The trends seen for FT are consistent with those described earlier and expected. The fact

 8

that LU is more compute bound is reflected by the improved relative performance of the commodity
interconnects in Figure 5.

FT-A Speedup

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16

Number of Processors

S
pe

ed
up

Ideal

Fast Eth

Gigabit Eth

Myrinet

SCI

Figure 6. Speedup for the FT-A benchmark (H. Pourreza, et al. [23]).

LU-A Speedup

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16

Number of Processors

S
pe

ed
up

Ideal

Fast Eth

Gigabit Eth

Myrinet

SCI

Figure 7. Speedup for the LU-A benchmark (H. Pourreza, et al. [23]).

Figures 6 and 7 show speedup values for FT-A and LU-A on the four interconnects, in this case using all 16
processors in the cluster. Again, the impact of LU’s being compute bound is clearly evident, reinforcing the
idea that strongly compute-bound code can make good use of cheap, commodity interconnects.

It is useful to note that the overall results obtained for the large, real world MPI applications are highly
consistent with the results for the NPB suite. Both sample applications (PSTSWM and GROMACS) are

 9

moderately compute bound (PSTSWM more so than GROMACS). As a result, fast Ethernet is an
undesirable interconnect to use when running them. It is interesting to note that the effect of the point-to-
point interconnects in SCI also begin to have a negative impact in GROMACS (presumably since some of
the nodes must forward messages on behalf of other nodes).

From the graphs shown (as well as other related work) and considering the cost of the networking
equipment, it is clear that fast Ethernet is no longer a desirable choice for a cluster interconnect unless cost
is an over-riding consideration (in which case, poor cluster performance for all but the most compute-
bound applications must be expected). Despite its extremely low raw latency, SCI can experience problems
when used in a point-to-point configuration due to the overhead of forwarding “third-party” messages. To
take full advantage of SCI’s capabilities, the cluster programmer must be prepared to expend significant
effort to ensure that the application is structured to minimize non-direct communication. This is often an
onerous task and one that should not be taken lightly. Of all interconnects, Myrinet offers the best and most
consistent performance but is also (not surprisingly) the highest cost interconnect. Gigabit Ethernet, a
commodity interconnect, offers surprisingly good performance for a fair range of applications (excluding
those which are heavily communication bound) and is likely a good interconnect for many cluster builders
if they expect their applications to be at least partially compute bound. Gigabit Ethernet is now significantly
cheaper than Myrinet and other similar interconnect technologies (e.g. GigaNet and Infiniband). Further,
with the appropriate switches, better performance can be obtained with Gigabit Ethernet using “Jumbo”
frames. But of course, the best way to select an interconnect is by benchmarking the application(s) to be
run. If this is not possible, the use of the guidelines described and tests based on the NPB suite appear to be
reasonable alternatives.

3. Single System Image (SSI)
The Single System Image (SSI) [24] represents the view of a distributed system as a single unified
computing resource. This provides better usability for the users as it hides the complexities of the
underlying distributed and heterogeneous nature of clusters from them. SSI can be established through one
or several mechanisms implemented at various levels of abstraction in the cluster architecture: hardware,
operating system, middleware, and applications.

The design goals for SSI cluster-based systems focus on complete transparency of resource management,
scalable performance, and system availability in supporting user applications. Key SSI attributes that are
generally considered desirable includes point of entry, user interface, process space, memory space, I/O
space, file hierarchy, virtual networking, job management system, and control point and management.
Table 3 summarizes how SSI can be achieved at different levels of abstraction with examples. The next
section explains the cluster resource management systems.

Table 3. Achieving Single System Image (SSI) at different levels of abstraction.

Level of Abstraction Description and Examples

Hardware Implementing SSI at Hardware layer (lowest level of abstraction) allows the user to view a
cluster as a shared-memory system. Some examples are:

� Memory Channel [25]

� Distributed Shared Memory (DSM) [26][27]

Operating System Modifying existing operating system kernel to support SSI. Some examples are:

� MOSIX [28]

� Solaris MC [29]

� UnixWare [30][31]

Constructing a new operating system layer that integrates operating systems on each node.
Some examples are:

� GLUnix [32]

Middleware Implementing SSI at Middleware layer is the most common for clusters.

 10

Level of Abstraction Description and Examples

Using a programming environment for development and execution of applications. Some
examples are:

� Parallel Virtual Machine (PVM) [33]

Installing resource management systems (RMS) that manage resources and applications in
the cluster. Some examples are:

� Condor [34]

� Loadleveler [35]

� Load Share Facility (LSF) [36]

� Open Portable Batch System (OpenPBS) [37]

� Sun Grid Engine (SGE) [38]

� Libra [39]

Application Implementing SSI at Application layer (highest level of abstraction) provides an application-
specific user interface. Some examples are:

� PARMON [40]

� Linux Virtual Server [41]

� Problem Solving Environments [42]

SSI at Operating System Level
The operating system in each of the cluster nodes provides the fundamental system support for the
combined operation of the cluster. The operating system provides services such as protection boundaries,
process/thread coordination, inter-process communication, and device handling, thus creating a high-level
software interface for user applications.

A cluster operating system is desired to have the following features:

� Manageability: Ability to manage and administrate local and remote resources.
� Stability: Support for robustness against system failures with system recovery.
� Performance: All types of operations should be optimized and efficient.
� Extensibility: Provide easy integration of cluster-specific extensions.
� Scalability: Able to scale without impact on performance.
� Support: User and system administrator support is essential.
� Heterogeneity: Portability over multiple architectures to support a cluster consisting of

heterogeneous hardware components. May be achieved through the use of middleware.

There are two main types of cluster operating systems: free and commercial. Examples of free releases are
Linux and MOSIX. Linux [43] is the most widely used cluster operating system since it is free, open-source
and has a wide user and developer community. MOSIX [28] is a set of extensions built on top of the Linux
kernel that enables process migration in a cluster environment to support automatic load balancing.
Commercial releases of cluster operating systems are proprietary and shipped with commercial clusters.
Examples include IBM’s AIX [44], SGI’s IRIX [45], Sun’s Solaris MC [29], HP/Compaq’s Tru64 [46],
SCO’s Unixware [30], and Microsoft’s Windows NT/2000 [47] and Windows Server family.

4. Resource Management System (RMS) Middleware
A cluster resource management system (RMS) acts as a cluster middleware that implements the SSI [24]
for a cluster of machines. It enables users to execute jobs on the cluster without the need to understand the
complexities of the underlying cluster architecture. A RMS manages the cluster through four major
branches, namely: resource management, job queuing, job scheduling, and job management.

 11

Figure 8. Cluster RMS architecture.

Figure 8 shows a generic architecture of cluster RMS. A RMS manages the collection of resources such as
processors and disk storage in the cluster. It maintains status information of resources so as to know what
resources are available and can thus assign jobs to available machines. The RMS uses job queues that hold
submitted jobs until there are available resources to execute the jobs. When resources are available, the
RMS invokes a job scheduler to select from the queues what jobs to execute. The RMS then manages the
job execution processes and returns the results to the users upon job completion.

The advent of Grid computing [48] further enhances the significance of the RMS in clusters. Grid brokers
can discover Grid resources such as clusters and submit the jobs to via a RMS. The RMS then manages and
executes the jobs before returning the results back to the Grid brokers. To enable effective resource
management on clusters, numerous cluster management systems and schedulers have been designed. Table
4 gives a summary of some examples of RMS.

Table 4. Examples of Resource Management Systems (RMS) middleware.

RMS Organization Brief Description and Website

Condor University of
Wisconsin-Madison

� Able to detect and execute jobs on idle non-dedicated machines.

� http://www.cs.wisc.edu/condor

Loadleveler IBM � Manages resources and jobs for IBM clusters.

� http://www.ibm.com/servers/eserver/clusters/software

Load Share
Facility (LSF)

Platform
Computing

� Adopts a layered architecture that supports many extension utilities.

� http://www.platform.com/products/LSF

Open Portable
Batch System
(OpenPBS)

Altair Grid
Technologies

� Supports multiple scheduling policies based on extensible scheduler
architecture.

� http://www.openpbs.org

Sun Grid Engine
(SGE)

Sun Microsystems � The Enterprise edition supports scheduling of jobs over multiple
clusters within an organization.

� http://gridengine.sunsource.net

Libra University of
Melbourne

� Supports resource allocation based on computational economy
principles and users’ quality of service requirements.

� http://www.gridbus.org/libra

Resource Manager

Job Manager

Computation
Node 1

:
:
:

Computation
Nodes

User u

:
:
:

job

Manager
Node

Node Status
Monitor

User
Population

execution results
User 1

job

execution results

Job Scheduler Computation
Node c

 12

Condor [34] developed by the University of Wisconsin-Madison is not only able to manage a cluster of
dedicated machines, but also allows execution of jobs on non-dedicated machines that are otherwise left
idle. Condor can automatically detect these idle machines and use them via checkpointing and migration of
job processes. Idle machines are placed into a Condor pool so that they are allocated for job execution, and
taken out of the pool when they become busy. Condor also provides extensions for using multiple Condor
pools. A technique in Condor called flocking allows jobs submitted within a Condor pool to execute on
another separate pool of machines. A version of Condor called Condor-G also supports the utilization of
Globus [49] software that provides the infrastructure for authentication, authorization and remote job
submission of Grid resources.

LoadLeveler [35] is a resource management system developed by IBM to manage resources for IBM
cluster products. LoadLeveler schedules jobs and provides functions for building, submitting, and
processing jobs. When a user submits a job, LoadLeveler examines the job command file to determine what
resources the job requires. Based on the jobs’ requirements, it determines which machines are best suited to
provide these resources and the best time for the job to be dispatched to the machines, and then dispatches
the job at that time. To aid this process, LoadLeveler uses job queues to store the list of jobs that are
waiting to be processed. LoadLeveler also uses a classification mechanism called job classes to schedule
jobs to run on machines. For example, a job class called “short” contains short running jobs, while a job
class called “weekend” contains jobs that are only allowed to run on the weekends. Job classes can be
defined by the administrator to restrict which users can use a specific job class and what jobs can run on a
particular machine.

LSF [36] is a loosely coupled cluster solution for heterogeneous systems, allowing LSF extension modules
to be installed to provide advanced services. This is possible due to LSF’s design based on a layered
architecture. It follows a layered architecture. The base layer consisting of Base System and Server
Daemons layers, provides low-level cluster services such as dynamic load balancing and transparent access
to the resources available on all participating machines in the cluster. Other LSF Utilities are then
supported on top of the base layer at the Utilites layer. Examples of LSF utilities include: LSF Batch that
provides a centralized resource management system for the cluster, LSF MultiCluster that enables users to
access resources on multiple LSF clusters in different geographic locations, and LSF Analyzer that generate
reports about the cluster by processing historical workload data.

OpenPBS [37] is the open-source version of the Portable Batch System (PBS). PBS was developed for
NASA to control job execution and manage resources for Numerical Aerodynamic Simulation (NAS)
applications. It aims to be a flexible and extensible batch processing system that supports multiple
scheduling policies and job migration to meet the unique demands of heterogeneous computing networks.
Currently, a new commercial version of PBS called PBSPro is available with more advanced features, such
as supporting preemption, backfilling algorithm and advanced reservation for scheduling. OpenPBS adopts
an independent scheduler architecture that enables the administrator to modify the existing default
scheduling policies easily to suit different requirements of the cluster. The administrator can create his own
new customized scheduler that define what types of resources and how much of each resource can be used
by each job.

SGE [38] is currently an open source project by Sun Microsystems that aims to establish community-driven
standards that facilitates execution of computationally intensive applications. The user is able to submit
batch, interactive and parallel jobs to SGE. SGE also provides transparent workload distribution within the
cluster and supports check-pointing that enables jobs to migrate automatically between machines without
user intervention based on load demands. The Enterprise Edition of SGE supports resource management
and scheduling over multiple clusters within an organization. This enables the negotiation of resource and
job policies to facilitate cooperation across multiple clusters.

Libra [39] is a computational economy driven scheduling system that aims to improve the value of utility
delivered to the user and quality of services, as opposed to existing cluster RMS that focuses on system
centric approach to resource management. Developed as part of the Gridbus Project at the University of
Melbourne, Libra is designed to support allocation of resources based on the users’ quality of service (QoS)

 13

requirements. It is intended to work as an add-on to the existing queuing and resource management system.
The first version has been implemented as a plug-in scheduler to PBS. The scheduler offers market-based
economy driven service for managing batch jobs on clusters by scheduling CPU time according to user-
perceived value (utility), determined by their budget and deadline rather than system performance
considerations. Libra shows that the deadline and budget-based proportional resource allocation strategy
improves the utility of the system and user satisfaction as compared to system-centric scheduling strategies.
We believe that such a feature of Libra helps in enforcing resource allocation based on service-level
agreements when cluster services are offered as a utility on the Grid.

5. Cluster Programming Models
All of a cluster’s subsystems, from I/O to job scheduling to the choice of node operating system, must
support the applications the cluster is designed to run. While small clusters are often constructed to support
a single class of applications, such as serving Web pages or database applications, larger clusters are often
called on to dedicate parts of their resources to different kinds of applications simultaneously [50][51].
These applications often differ not only in their workload characteristics, but also in the programming
models they employ. The programming models employed by an application, in turn, determine the key
performance characteristics of a cluster application. This section details the most important programming
models used to construct cluster-aware applications; the next section provides examples of cluster
applications constructed with one or more of these models.

Cluster computing programming models have traditionally been divided into categories based on the
relationship of programs to the data the programs operate on [52]. The Single-Instruction, Single-Data
(SISD) model defines the traditional von Neumann computer. Multiple-Instruction, Multiple-Data (MIMD)
machines include most of today’s clusters as well as parallel computers. In the Single-Instruction, Multiple-
Data (SIMD) model each processor executes the same program. Finally, the Multiple-instruction, Single-
Data model (MISD) defines systems where multiple programs operate on the same data. MIMD emerged as
the most prevalent programming model on clusters.

In addition to dividing cluster programming models based on how programs relate to data, programming
models can also be categorized on how they exploit a cluster’s inherent parallelism. On that basis, cluster
computing programming models can roughly be divided in two categories: The first category of models
allow a serial (non-parallel) application to take advantage of a cluster’s parallelism. The second category of
programming models aid in the explicit parallelization of a program. Since cluster users are much more
familiar with creating a serial program than developing explicitly parallel applications, the first category of
programming models have become dominant in cluster computing applications.

Pfister [5] coined the term SPPS (serial program, parallel subsystem) to describe a common technique of
running a serial program on a cluster. In SPPS, many instances of a serial program are distributed on a
cluster. A parallel subsystem provides input to each serial program instance, and captures output from those
programs, delivering that output to users. Because there are multiple programs on the clusters, operating on
multiple data, SPPS is a form of MIMD. This section describes the two most common categories of SPPS
programming models: distributed shared virtual memory-based systems, and message passing as illustrated
by the Message Passing Interface (MPI) standard. Finally, programming models based on virtual machines
are explained.

The SPPS model facilitates a division of labor in developing a cluster application: it allows a domain expert
to write serial programs, and delegates the task of creating an often complex parallel subsystem to highly
skilled parallel programming specialists. The parallel subsystem in an SPPS-style cluster application is
increasingly provided in the form of off-the-shelf middleware.

For example, Database Management Systems (DBMS) and Transaction Processing Monitors (TPM)
routinely apply the SPPS technique to hide the complexity of parallel operations from users. A database
query is typically submitted from a serial program to a cluster-aware DBMS subsystem responsible for
query processing. That subsystem may process the query in a parallel fashion, possibly involving many
cluster nodes. The query results are then returned to the serial program [53]. SPPS is used in scientific
applications as well, allowing a scientist to focus on writing a serial program and submit that serial program

 14

for parallel execution on a cluster. An example is found in FermiLab’s Cooperative Processes Software
(CPS) [54].

When many instances of a serial program operating in parallel, those instances must coordinate work
through a shared cluster resource, such as distributed shared memory or a message passing infrastructure.
The primitive operations that coordinate the work of concurrently executing serial programs on a cluster
define a coordination language [55]. A coordination language is often described in terms of an Application
Programming Interface (API) to a parallel subsystem. Such an API offers bindings to one or more
programming languages. Another way to describe a coordination language is to use declarative scripting,
which differs from API since it describes the required conditions and relationships, and let the computer
system determine how to satisfy them. A coordination language together with a programming language
defines the programming model of a cluster parallel application. Table 5 shows some examples of cluster
programming models.

Table 5. Examples of cluster programming models.

Programming
Environment

Coordination
Language

Supported
Programming
Language

Website

Linda API C, Fortran � http://www.cs.yale.edu/cswwworig/Linda/linda.html

JavaSpaces API Java � http://www.sun.com/jini

� http://www.jini.org

Message
Queues

API C, C++, Java � http://www.microsoft.com/windows2000/technologies/com
munications/msmq/default.asp

� http://www-306.ibm.com/software/integration/mqfamily

� http://wwws.sun.com/software/products/message_queue

Message
Passing
Interface (MPI)

API C, C++,
Fortran

� http://www.mpi-forum.org

JavaGroups API Java � http://www.jgroups.org/javagroupsnew/docs

Parallel Virtual
Machine (PVM)

API C, C++,
Fortran

� http://www.csm.ornl.gov/pvm/pvm_home.html

Parameter
Sweep

Script based
constructs

Declarative
programming

� http://www.csse.monash.edu.au/~davida/nimrod

The Linda tuplespace system [56] exploits distributed shared memory [57] to facilitate the parallel
execution of a serial program on a cluster. Linda defines primitive operations on a shared memory resource,
allowing data items – “tuples” – to be written to that memory, read from shared memory, and deleted from
shared memory. A tuple is similar to a database relation. A serial process with access to the shared memory
writes data items to memory, marking each item with an attribute indicating that that item requires
processing. Another process awaiting newly arriving tuples removes such an item from the shared memory,
performs computations on that data item, and deposits the results into the shared memory. The original
submitter of the job then collects all the results from the tuplespace. Each process operating on a tuplespace
is typically a serial program, and the Linda system facilitates the concurrent execution of many such
programs.

JavaSpaces [58] is an object-oriented Linda system that takes advantage of Java’s platform-independent
code execution and mobile code facility. Mobile code allows not just data, but also code to move from one
cluster node to another at runtime. A master node runs a JavaSpace process, providing a shared memory
resource to other cluster nodes that act as workers. When a worker removes a job request from the shared
JavaSpace, the operating codes for that job dynamically download to that worker. The worker executes that

 15

downloaded code, and places the output of that execution into the JavaSpace. JavaSpaces, therefore,
facilitates the automatic runtime distribution of code to cluster nodes. JavaSpaces also provides optional
transactional access to the shared memory resource, which is especially helpful in the case of very large
clusters with frequent node failures.

While message queues first became popular with SMPs as a load distribution technique [5], distributed
message queues have become increasingly popular with clusters as well. Distributed queues are a form of
distributed shared memory with the added property of ordered message delivery. Most message queues in
commercial use also provide transactional access to the queue.

While distributed shared memory facilitates communication via a shared cluster resource, the message
passing model coordinates work by sending and receiving messages between processes. The Message
Passing Interface (MPI) [10] standard defines a programming model for message passing, along with a
series of functions to support that programming model. Language bindings to MPI functions exist for a
variety of languages, such as C, C++, and Fortran. In addition, a Java-based version of MPI specifies how
this programming model can be used from Java programs [59].

In the MPI model, a set of processes are started at program startup. There is one process per processor, but
each processor may execute a different process. Thus, MPI is a message passing programming model for
MIMD systems. During program execution, the number of processes in an MPI program remains fixed.

MPI processes are named, and processes send and receive messages in a point-to-point fashion based on
process name. Processes can be grouped, and collective communication functions can be used to perform
global operations on a group, such as broadcast and synchronization. Message exchanges in MPI can
convey the communication context in which a message exchange occurs. MPI even offers a process the
ability to probe its environment, and to probe for messages, allowing MPI programs to use both
synchronous and asynchronous message exchange.

In addition to defining message exchange semantics, the MPI programming model provides explicit
support for the construction of parallel programming libraries suitable for execution on a cluster [60].
Libraries written for the MPI standard are portable, and can be reused by higher-level application software.
The chief MPI tools for library construction are communication contexts, process groups, virtual
topologies, and cached attributes. An MPI construct called a “communicator” encapsulates all these
functions in a reusable fashion.

An MPI process group is an ordered collection of processes that defines the scope for process names and
for collective communication. Because the system can differentiate between processes sharing a context,
communication context allows partitioning of information during message exchange. Separate contexts by
MPI libraries insulate communication internal to the library execution from external communication.

An MPI communicator can be thought of as a group identifier associated with a context. Intra-
communicators operate on a single group, whereas inter-communicators are used for point-to-point
communication between two groups of processes. While intra-communicators let a library developer
encapsulate communication internal to a library, inter-communicators bind two groups together, with
communication contexts shared by both groups.

The MPI standard limits itself to defining message passing semantics and functions, and to defining the
primitives required for reusable libraries. MPI does not provide an infrastructure for program construction
and task management. Those responsibilities are left to MPI implementations. The most popular
implementation of the MPI standard is MPICH [61]. Available as an open-source package, MPICH
supports the latest MPI 2 standard [10]. MPI has recently been extended for Grid communication with the
MPICH-G library [62].

While MPI provides a comprehensive message passing library of over 150 functions, several of the key
MPI concepts have influenced the design of smaller, special-purpose message passing libraries. JavaGroups
[63] is an open-source Java toolkit for reliable multicast communication on a cluster, or even on a wide-

 16

area network. Similar to MPI, JavaGroups facilitates the creation of processes groups, and also allows the
processes to dynamically join or leave groups. An automatic membership detection infrastructure in
JavaGroups handles the removal of non-responsive group members. Communication in JavaGroups can be
point-to-point from one group member to another, or group communication (from one group member to an
entire group). Several cluster-aware Java applications rely on JavaGroups for group message passing, such
as the JBoss application server [64].

In addition to message passing and virtual shared memory, programming models based on virtual machines
also facilitate the parallel execution of serial programs on a cluster (SPPS). The Parallel Virtual Machine
(PVM) [33] consists of daemon processes, to be executed on all cluster nodes, and an application
programming library. PVM presents heterogeneous cluster resources as a homogenous environment to a
program. The PVM daemon process can run on machines with widely differing computational capabilities,
from notebooks to supercomputers. PVM offers language bindings to C and C++ as a set of API functions,
and a binding to Fortran as a series of subroutines.

Using PVM is straightforward. First, the user starts up the PVM daemons on the set of cluster nodes he
wishes to incorporate into the shared cluster resource. Next, the user writes a set of serial programs,
includes calls to the PVM routines, and links those programs with the PVM libraries. Finally, the user
executes a “master” program on one machine. That program, through the PVM API calls, will spawn other
programs, “slaves,” on other cluster nodes as needed. Those programs communicate with each other
through a simple message passing mechanism. The run concludes with the termination of the initial serial
master program. Code for each slave program must be made available to the PVM daemon on each node
prior to executing the master.

Each serial program running on nodes that make up a PVM instance typically runs as a task on a host’s
operating system. Therefore, the unit of parallelism in PVM is a task. A group of such tasks make up a
PVM program. PVM tasks are identified by a task ID, typically an integer. Task IDs are assigned by PVM,
and inter-task communication takes place in PVM based on task IDs. Currently, PVM does not use MPI for
inter-task message passing communication. However, an effort is under way to incorporate the benefits of
MPI into PVM [65].

A PVM task can belong to one or more task groups during its execution. Task groups in PVM are dynamic:
A task can join or leave a task group during its execution without having to notify other tasks in a given
group. PVM also supports group communication primitives: A task can broadcast a message not only to
other members of the group to which it currently belongs, but also to tasks belonging to other task groups.

Parameter Sweep supports parallelism by executing the same program with different parameters in parallel
as individual processes. An example of a tool that supports parameter sweep is Nimrod [66] which
performs parameter sweep over a cluster of computers. Nimrod provides a script-based declarative
programming language for defining parameter-sweep specification. It allows users to define varying values
for key parameters to be studied in a simple script. Using the script, it automatically generates the required
data files for each program depending on the set of parameters. Nimrod then selects a computer for each
program, transfers the generated data files and other required files for each program to the selected
workstation for execution, and transfer back the execution results.

6. Cluster Applications
One category of applications where cluster computing is rapidly becoming the architecture of choice is
Grand Challenge Applications (GCA). Grand Challenge Applications (GCAs) [67] are defined as
fundamental problems in science and engineering with broad economic and scientific impact whose
solution can be advanced by applying High Performance Computing and Communications (HPCC)
technologies.

The high scale of complexity in GCAs demands enormous amount of resource needs, such as processing
time, memory space, and communication bandwidth. A common characteristic of GCAs is that they
involve simulations that are computationally intensive. Examples of GCAs are applied fluid dynamics,

 17

environmental modeling, ecosystem simulation, biomedical imaging, biomechanics, molecular biology,
molecular design, cognition, and computational sciences.

Other than GCAs, cluster computing is also being applied in other applications that demand high
availability, scalability and performance. Clusters are being used as replicated storage and backup servers
that provide the essential fault tolerance and reliability for critical applications. For example, the Internet
search engine, Google [68] uses cluster computing to provide reliable and efficient internet search services.
There are also many commercial cluster products designed for distributed databases and web servers. In the
following sub-sections, we will discuss some of these applications and examine how cluster computing is
used to enable them.

Google Search Engine
Internet search engines enable Internet users to search for information on the Internet by entering specific
keywords. A widely used search engine, Google [68] uses cluster computing to meet the huge quantity of
worldwide search requests that comprise of a peak of thousands of queries per second. A single Google
query needs to use at least tens of billions of processing cycles and access a few hundred megabytes of data
in order to return satisfactory search results.

Google uses cluster computing as its solution to the high demand of system resources since clusters have
better price-performance ratios than alternative high-performance computing platforms, and also use less
electrical power. Google focuses on 2 important design factors: reliability and request throughput.

Google is able to achieve reliability at the software level so that a reliable computing infrastructure can be
constructed on clusters of 15,000 commodity PCs distributed worldwide. The services for Google are also
replicated across multiple machines in the clusters to provide the necessary availability. Google maximizes
overall request throughput by performing parallel execution of individual search requests. This means that
more search requests can be completed within a specific time interval.

A typical Google search consists of the following operations:

1. An Internet user enters a query at the Google webpage.
2. The web browser searches for the Internet Protocol (IP) address via the www.google.com Domain

Name Server (DNS).
3. Google uses a DNS-based load balancing system that maps the query to a cluster that is

geographically nearest to the user so as to minimize network communication delay time. The IP
address of the selected cluster is returned.

4. The web browser then sends the search request in Hypertext Transport Protocol (HTTP) format to
the selected cluster at the specified IP address.

5. The selected cluster then processes the query locally.
6. A hardware-based load balancer in the cluster monitors the available set of Google Web Servers

(GWSs) in the cluster and distributes the requests evenly within the cluster.
7. A GWS machine receives the request, coordinates the query execution and sends the search result

back to the user’s browser.

Figure 9 shows how a GWS operates within a local cluster. The first phase of query execution involves
index servers consulting an inverted index that match each query keyword to a matching list of documents.
Relevance scores are also computed for matching documents so that the search result returned to the user is
ordered by score. In the second phase, document servers fetch each document from disk to extract the title
and the keyword-in-context portion of the document. In addition to the 2 phases, the GWS also activates
the spell checker and the ad server. The spell checker verifies that the spelling of the query keywords is
correct, while the ad server generate advertisements that relate to the query and may therefore interest the
user.

 18

Figure 9. Google query-serving architecture (L. A. Barroso, et al. [68]).

Petroleum Reservoir Simulation
Petroleum reservoir simulation facilitates a better understanding of petroleum reservoirs that is crucial to
better reservoir management and more efficient oil and gas production. It is an example of GCA as it
demands intensive computations in order to simulate geological and physical models. For example, The
Center for Petroleum and Geosystems Engineering of the University of Texas at Austin is constructing a
new parallel petroleum reservoir simulator called General Purpose Adaptive Simulator (GPAS) [69] using a
cluster of 64 dual-processor servers with a total of 128 processors.

A typical petroleum reservoir simulator consists of a coupled set of non-linear partial differential equations
and constitutive relations that describe the physical processes occurring in a petroleum reservoir. There are
2 most widely used simulators. The first is the black oil simulator that uses water, oil, and gas phases for
modeling fluid flow in a reservoir. The second is the compositional simulator that uses phases with
different chemical species for modeling physical processes occurring in a reservoir. Previously,
compositional simulators were used less often since they are more complicated and thus require more
intensive memory and processing requirements. With the advent of cluster computing, more researchers are
using compositional simulators that use more data to characterize reservoirs.

The GPAS [69] is a compositional petroleum reservoir simulator that can perform more accurate, efficient
and high-resolution simulation of fluid flow in permeable media. It uses a finite-difference method which
divides a continuous domain into smaller cells to solve the governing partial differential equations. The
higher number of cells produces more accurate results, but requires more computation time. A fully implicit
solution results in a structure of non-linear equations that are then resolved using Newton’s method.
However, large sparse linear systems of equations are needed to obtain numerical solution of these non-
linear equations. Therefore, the Portable Extensible Toolkit for Scientific Computation (PETSc) [70], a set
of tools for solving partial differential equations, is used to solve these linear systems.

To handle the parallel processing requirements, an Integrated Parallel Accurate Reservoir Simulator
(IPARS) framework has been developed to separate the physical model development from parallel
processing. IPARS provides input and output, memory management, domain decomposition, and message
passing among processors to update overlapping regions. Communications between the simulator
framework and a physical model are carried out through FORTRAN subroutine calls provided within the
IPARS, thus hiding the complexities from the physical model developers who only need to call the
FORTRAN subroutines to perform corresponding tasks.

Protein Explorer
The Bioinformatics Group at RIKEN Genomic Sciences Center in Japan is currently building the world-
first petaflops supercomputer – the ‘Protein Explorer’ (PE) system [71] will be a specialized system for
molecular dynamics simulations, specifically, protein simulations, and is expected to be ready in early
2006. The PE system will be a PC cluster equipped with special-purpose engines to calculate non-bonded
interactions between molecular atoms. These calculations constitute the most time-consuming portion of

 19

the simulations. The PE project is motivated by the national ‘Protein 3000’ project in Japan that was
initiated in 2002 with the goal of solving the structures of 3,000 proteins by the year 2007.

Figure 10. Block diagram of Protein Explorer system (M. Taiji, et al. [71]).

Figure 10 shows the components of the PE system. It will be a cluster of 256 dual-processor nodes giving a
total of 512 processors, connected via Gigabit Ethernet. Each cluster node has 2 special-purpose engine
boards (with 12 MDGRAPE-3 chips on each board) connected to it, giving it a total of 6,144 chips.

The cluster nodes will transmit the coordinates and the other data of particles for the molecular dynamics
simulation to the special-purpose engines, which then calculate the non-bonded forces, such as Coulomb
force and van der Walls force between particles before returning the results to the hosts. In other words, the
special-purpose engines only focus on computing the most complex portion of the simulation that is
calculating the non-bonded forces. All the coordination and other calculations are handled by the cluster
nodes themselves.

Earthquake Simulation
Earthquake simulation is classified as a GCA given its high modeling and computational complexities [72].
First, multiple spatial scales characterize the earthquake source and basin response ranging from tens of
kilometers for the basin dimensions to hundreds of kilometers for earthquake sources. Second, temporal
scales differ from the hundredths of a second for depicting the highest frequencies of the earthquake source
to several minutes of shaking within the basin. Third, many basins have highly irregular geometry. Fourth,
the soils in the basins comprise heterogeneous material properties. And fifth, there remains great
uncertainty into the modeling process due to the indirect observation of geology and source parameters.

An ongoing research in the United States [72] focuses on developing the capability for generating realistic
inversion-based models of complex basin geology and earthquake sources. This capability can then be used
to model and forecast strong ground motion during earthquakes in large basins such as Los Angeles (LA).
Ground motion modeling and forecasting is essential to studying which structures will become vulnerable
during the occurrence of an earthquake. This can be used to design future earthquake-resistant structures
and retrofit existing structures so as to mitigate effects of an earthquake. The Los Angeles region is chosen
as the case study because it is the most highly populated seismic region in the USA, has well-characterized
geological structures (including a varied fault system), and has extensive records of past earthquakes.

The earthquake simulation is conducted using a terra-scale HP AlphaServer cluster which has 750
quadruple-processor nodes at the Pittsburgh Supercomputing Center (PSC). It simulates the 1994
Northridge earthquake in the Greater LA Basin at 1 Hz maximum frequency resolution and 100 m/s
minimum shear wave velocity. The resulting unstructured mesh contains over 100 million grid points and
80 million hexahedral finite elements, ranking it as one of the largest unstructured mesh simulations ever
conducted. This is also the most highly resolved simulation of the Northridge earthquake ever done. It
sustains nearly a teraflops over 12 hours in solving the 300 million wave propagations.

 20

Figure 11. The etree method of generating octree meshes (V. Akcelik, et al. [72]).

Figure 12. Snapshots of propagating waves from simulation of
1994 Northridge earthquake (V. Akcelik, et al. [72]).

The simulations are based on multi-resolution mesh algorithms that can model the wide range of length and
time scales depicting the earthquake response. Figure 11 shows the process of generating a mesh using the
etree method. That method is used for earthquake simulations in heterogeneous basins where the shear
wave velocity and maximum resolved frequency determine the local element size. At the initial “construct”
step, an octree is constructed and stored on disk. The decompositions of the octants are dependent on the
geometry or physics being modeled, thus resulting in an unbalanced octree. Then, the balance step
recursively decomposes all the large octants that violate the 2-to-1 constraint until there are no more illegal
conditions, thus creating a balanced octree. Finally, in the transform step, mesh-specific information such
as the element-node relationship and the node coordinates are derived from the balanced octree and
separately stored in two databases: one for the mesh elements, another for the mesh nodes.

For the balancing step, the whole domain is first partitioned into equal-size blocks. Then, internal balancing
enforces the 2-to-1 constraint within each block. Finally, boundary balancing is used to resolve interactions

 21

between adjacent blocks. This local balancing step is very effective since it can achieve a speed-up ranging
from 8 to 28, depending on the size of the meshes being balanced.

Figure 12 shows snapshots at different times of the simulation of the wave propagation throughout the
basin based on the 1994 Northridge earthquake. These snapshots reflect the directivity of the ground
motion along the strike from the epicenter and the concentration of motion near the fault corners.

Image Rendering
The Scientific Computing and Imaging (SCI) Institute at University of Utah has explored cluster-based
scientific visualization [73] using a 32-node visualization cluster composed of commodity hardware
components connected with a high-speed network. The OpenGL [74] scientific visualization tool Simian
has been modified to create a cluster-aware version of Simian that supports parallelization by making
explicit use of remote cluster nodes through a message-passing interface (MPI). Simian is able to generate
3D images for fire-spread simulations that model scenarios such as when a missile located within a pool of
jet fuel catches fire and explodes. Using image rendering for fire-spread simulations enables researchers to
have a better visualization of the destructive effects.

Normally, Simian uses a swapping mechanism to manage datasets that are too large to load into the
available texture memory, resulting in low performance and interactivity. For the cluster-aware Simian,
large datasets are divided into sub-volumes that can be distributed across multiple cluster nodes, thus
achieving the interactive performance. This “divide-and-conquer” technique first decomposes the dataset
into sub-volumes before distributing the sub-volumes to multiple remote cluster nodes. Each node is then
responsible for rendering its sub-volume using the locally available graphics hardware. The individual
results are finally combined using a binary-swap compositing algorithm to generate the final image. This
enables the cluster-aware Simian to visualize large-scale datasets to maintain interactive rates without the
need of texture swapping.

Figure 13. Visualization of fire-spread datasets (C. Gribble, et al. [73]).

Figure 13 shows the visualization of two fire-spread datasets simulating a heptane pool fire, generated by
the cluster-aware version of Simian using 8 cluster nodes. The top row of Figure 13 shows two views (side
and top views) of the h300_0075 dataset, while the bottom row shows the h300_0130 dataset.

7. Summary
We have discussed the motivation for cluster computing as well as the technologies available for building
cluster systems. The emphasis placed for using commodity-based hardware and software components to
achieve high performance, availability, and scalability means that cluster computing is a more cost-
effective platform compared to traditional high performance platforms.

 22

We have examined the various cluster-specific components such as interconnection technology, operating
system, middleware and programming model. We have discussed the performance of a number of common
cluster interconnects. We have also presented various parallel programming models and concepts of single
system image and its realization at the cluster resource management level. The rapid research and
developments of cluster hardware and software components has enhanced the usage of cluster computing
for a wide variety of applications both in scientific and commercial domains. We studied some of these
applications and how clusters are used to implement them.

For recent developments and innovations in cluster computing technologies and its applications, we
recommend readers to refer to the proceedings of IEEE Task Force on Cluster Computing (TFCC) [75]
events such as ClusterXY [76] and CCGridXY [77] conference series.

8. References
[1] R. Buyya (ed.), High Performance Cluster Computing: Architectures and Systems, vol. 1, Prentice

Hall, 1999.
[2] The Beowulf Cluster site, http://www.beowulf.org
[3] T. E. Anderson, D. Culler, and D. A. Patterson, "A Case for NOW (Network of Workstations),"

IEEE Micro, vol. 15, no. 1, Feb. 1995, pp. 54-64.
[4] A. Chien, S. Pakin, M. Lauria, M. Buchanan, K. Hane, L. Giannini, and J. Prusakova, “High

Performance Virtual Machines (HPVM): Clusters with Supercomputing APIs and Performance,”
Proc. 8th SIAM Conference on Parallel Processing for Scientific Computing (PP97), Minneapolis,
USA, Mar. 1997.

[5] G. F. Pfister, In Search of Clusters, 2nd Edition, Prentice Hall, 1998.
[6] T. Shanley, Infiniband Network Architecture, Addison-Wesley, Nov. 2002.
[7] N. J. Boden, D. Cohen, R. E. Felderman, A.E. Kulawik, C.L. Seitz, J.N. Seizovic, and Wen-King Su,

“Myrinet: A Gigabit-per-second Local Area Network,” IEEE Micro, vol. 15, no. 1, Feb. 1995, pp.
29-36.

[8] K. Alnaes, E. H. Kristiansen, D. B. Gustavson, and D. V. James, “Scalable Coherent Interface,”
Proc. 1990 IEEE International Conference on Computer Systems and Software Engineering
(CompEuro ’90), Tel-Aviv, Israel, May 1990, pp. 446-453.

[9] D. Cameron, and G. Regnier, Virtual Interface Architecture, Intel Press, Apr. 2002.
[10] Message Passing Interface (MPI) Forum, http://www.mpi-forum.org
[11] M. Baker, A. Apon, R. Buyya, and H. Jin, “Cluster Computing and Applications,” Encyclopedia of

Computer Science and Technology, vol. 45 (Supplement 30), A. Kent, and J. Williams (eds.), Marcel
Dekker, Jan. 2002, pp. 87-125.

[12] MVICH: MPI for VIA, http://old-www.nersc.gov/research/FTG/mvich
[13] M-VIA: VIA for Linux, http://old-www.nersc.gov/research/FTG/via
[14] MPI/PRO, http://www.mpi-softtech.com
[15] M. Banikazemi, J. Liu, D. K. Panda, and P. Sadayappan, “Implementing TreadMarks over Virtual

Interface Architecture on Myrinet and Gigabit Ethernet: Challenges, Design Experience, and
Performance Evaluation”, Proc. 2001 International Conference on Parallel Processing (ICPP '01),
Valencia, Spain, Sep. 2001, pp. 167-174.

[16] Z. Lan, and P. Deshikachar, “Performance Analysis of a Large-Scale Cosmology Application on
Three Cluster Systems,” Proc. 2003 IEEE International Conference on Cluster Computing (Cluster
2003), Hong Kong, China, Dec. 2003, pp. 56-63.

[17] A. J. van der Steen, “An Evaluation of Some Beowulf Clusters,” Cluster Computing, vol. 6, no. 4,
Oct. 2003, pp. 287-297.

[18] H. Chen, P. Wyckoff, and K. Moor, “Cost/Performance Evaluation of Gigabit Ethernet and Myrinet
as Cluster Interconnects,” Proc. 2000 Conference on Network and Application Performance
(OPNETWORK 2000), Washington, USA, Aug. 2000.

[19] J. Hsieh, T. Leng, V. Mashayekhi, and R. Rooholamini, “Architectural and Performance Evaluation
of GigaNet and Myrinet Interconnects on Clusters of Small-Scale SMP Servers,” Proc. 2000
ACM/IEEE conference on Supercomputing (SC2000), Dallas, USA, Nov. 2000.

[20] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A. Fatoohi, P. O.
Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and W. K.

 23

Weeratunga, “The NAS Parallel Benchmarks,” International Journal of Supercomputing
Applications, vol. 5, no. 3, Fall 1991, pp. 63-73.

[21] Pallas MPI Benchmarks, http://www.pallas.com/e/products/pmb/index.htm
[22] E. Lindahl, B. Hess, and D. van der Spoel, “GROMACS 3.0: a package for molecular simulation and

trajectory analysis,” Journal of Molecular Modeling, vol. 7, no. 8, Aug. 2001, pp. 306-317.
[23] H. Pourreza, R. Eskicioglu, and P. C. J. Graham, “Preliminary Performance Assessment of Four

Cluster Interconnects on Identical Hardware,” Proc. 18th International Symposium on High
Performance Computing Systems and Applications (HPCS2004), Winnipeg, Canada, May 2004.

[24] R. Buyya, T. Cortes, and H. Jin, “Single System Image (SSI),” International Journal of High
Performance Computing Applications, vol. 15, no. 2, Summer 2001, pp. 124-135.

[25] Hewlett-Packard, Memory Channel, http://www.hp.com/techservers/systems/symc.html
[26] A Comprehensive Bibliography of Distributed Shared Memory,

http://dsmbiblio.cs.umanitoba.ca/WEB
[27] Distributed Shared Memory (DSM), http://www.cs.umd.edu/~keleher/dsm.html
[28] A. Barak, and O. La’adan, “The MOSIX multicomputer operating system for high performance

cluster computing,” Future Generation Computer Systems, vol. 13, no. 4-5, Mar. 1998, pp. 361-372.
[29] Y. A. Khalidi, J. M. Bernabeu, V. Matena, K. Shirriff, and M. Thadani, “Solaris MC: A Multi-

Computer OS,” Sun Microsystems Technical Report TR-95-48, Nov. 1995.
[30] SCO Unixware, http://www.thescogroup.com/products/unixware713
[31] B. Walker, and D. Steel, “Implementing a Full Single System Image UnixWare Cluster: Middleware

vs. Underware,” Proc. International Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA99), Las Vegas, USA, Jun. 1999, pp. 2767-2773.

[32] D. P. Ghormley, D. Petrou, S. H. Rodrigues, A. M. Vahdat, and T. E. Anderson, “GLUnix: A Global
Layer Unix for a Network of Workstations,” Software: Practice and Experience, vol. 28 no. 9, Jul.
1998, pp. 929-961.

[33] V. S. Sunderam, “PVM: A framework for parallel distributed computing,” Concurrency: Practice
and Experience, vol. 2, no. 4, Dec. 1990, pp. 315-339.

[34] University of Wisconsin-Madison, Condor Version 6.6.2 Manual, Mar. 2004.
[35] IBM, LoadLeveler for AIX 5L V3.2 Using and Administering, SA22-7881-01, Oct. 2003.
[36] Platform Computing, LSF V4.1 Administrator’s Guide, 2001.
[37] Altair Grid Technologies, OpenPBS Release 2.3 Administrator Guide, Aug. 2000.
[38] Sun Microsystems, Sun ONE Grid Engine, Administration and User’s Guide, Oct. 2002.
[39] J. Sherwani, N. Ali, N. Lotia, Z. Hayat, and R. Buyya, “Libra: A Computational Economy based Job

Scheduling System for Clusters”, Software: Practice and Experience, vol. 34, no. 6, May 2004, pp.
573-590.

[40] R. Buyya, “PARMON: a portable and scalable monitoring system for clusters,” Software: Practice
and Experience, vol. 30, no. 7, Jun. 2000, pp. 723-739.

[41] W. Zhang, “Linux Virtual Server for Scalable Network Services,” Linux Symposium, Ottawa,
Canada, 2000.

[42] E. Gallopoulos, E. Houstis, and J. R. Rice, “Computer as thinker/doer: problem-solving
environments for computational science,” IEEE Computational Science and Engineering, vol. 1, no.
2, summer 1994, pp. 11-23.

[43] Linux Online, http://www.linux.org
[44] IBM AIX: UNIX Operating System, http://www.ibm.com/servers/aix
[45] SGI IRIX, http://www.sgi.com
[46] HP/Compaq Tru64, http://www.tru64unix.compaq.com
[47] Microsoft Windows 2000, http://www.microsoft.com/windows2000
[48] I. Foster, and C. Kesselman (eds.), The Grid: Blueprint for a New Computing Infrastructure, Morgan

Kauffman Publishers, 1999.
[49] I. Foster, and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit,” International

Journal Supercomputer Applications, vol. 11, no. 2, 1997, pp.115-128.
[50] R. Evard, N. Desai, J. Navarro, and D. Nurmi, “Clusters as large-scale development facilities,” Proc.

2002 IEEE International Conference on Cluster Computing (Cluster 2002), Chicago, USA, Sep.
2002.

[51] N. Pundit, “CPlant: The Largest Linux Cluster,” Newsletter of IEEE Task Force on Cluster
Computing, vol. 4, no. 1, Fall 2002.

 24

[52] M. Flynn, “Some computer organizations and their effectiveness,” IEEE Transactions on Computers,
vol. C-21, no. 9, Sep. 1972, pp. 948-960.

[53] S. Ghandeharizadeh, and F. Sommers, “Parallel Databases and Decision Support Systems,”
Handbook of Data Mining and Knowledge Discovery, W. Klosgen, and J. Zytkow (eds.), Oxford
University Press, 2001.

[54] T. Nash, “Cluster Computing at FermiLab,” presentation to IEEE SSS, Aug. 1992.
[55] G. Papadopoulos, and F. Arbab, “Coordination models and languages,” Centrum voor Wiskunde en

Informatica Technical Report SEN-R9834, Dec. 1998.
[56] N. Carriero, and D. Gelernter, How to Write Parallel Programs: A First Course, MIT Press, 1990.
[57] K. Li, and P. Hudak, “Memory Coherence in Shared Virtual Memory Systems,” Proc. 5th Annual

ACM Symposium on Principles of Distributed Computing, Calgary, Canada, 1986, pp. 229-239.
[58] J. Waldo, et al., The Jini Specifications, 2nd Edition, Addison-Wesley, 2001.
[59] B. Carpenter, V. Getov, G. Judd, T. Skjellum, and G. Fox, “MPI For Java: Position Document and

Draft API Specification,” Java Grande Forum Technical Report JGF-TR-03, Nov. 1998.
[60] A. Skjellum, N. E. Doss, and P. V. Bangalore, “Writing Libraries in MPI,” Proc. Scalable Parallel

Libraries Conference, Mississippi State, USA, Oct. 1993, pp. 166-173.
[61] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A High-Performance, Portable Implementation of

the MPI Message Passing Interface Standard,” Parallel Computing, vol. 22, no. 6, Sep. 1996, pp.
789-828.

[62] I. Foster, and N. Karonis, “A Grid-Enabled MPI: Message Passing in Heterogeneous Distributed
Computing Systems,” Proc. 1998 IEEE/ACM Supercomputing Conference (SC98), Orlando, USA,
Nov. 1998.

[63] JavaGroups, http://www.jgroups.org/javagroupsnew/docs
[64] JBoss, http://www.jboss.org
[65] G. Fagg, and J. Dongarra, “PVMPI: An Integration of the PVM and MPI Systems,” Calculateurs

Parallèles, vol. 8, no. 2, 1996, pp. 151-166.
[66] D. Abramson, R. Sosic, J. Giddy, and B. Hall, “Nimrod: A Tool for Performing Parametised

Simulations Using Distributed Workstations,” Proc. 4th IEEE Symposium on High Performance
Distributed Computing (HPDC95), Pentagon City, USA, Aug. 1995, pp. 112-121.

[67] National Coordination Office for Informational Technology Research and Development, “Grand
Challenge Applications,” High Performance Computing and Communications: Foundation for
America's Information Future, http://www.nitrd.gov/pubs/blue96/section.2.6.0.html

[68] L. A. Barroso, J. Dean, and U. Holzle, “Web search for a planet: The Google cluster architecture,”
IEEE Micro, vol. 23, no. 2, Mar.-Apr. 2003, pp. 22-28.

[69] T. Uetani, B. Guler, and K. Sepehrnoori, “Parallel Reservoir Simulation on High Performance
Clusters,” Proc. 6th World Multi-Conf. on Systemics, Cybernetics and Informatics (SCI2002), vol. V,
Jul. 2002.

[70] Portable Extensible Toolkit for Scientific Computation (PETSc), http://www-unix.mcs.anl.gov/petsc
[71] M. Taiji, T. Narumi, Y. Ohno, N. Futatsugi, A. Suenaga, N. Takada, and A. Konagaya, “Protein

Explorer: A Petaflops Special-Purpose Computer System for Molecular Dynamics Simulations,”
Proc. 2003 ACM/IEEE Supercomputing Conference (SC2003), Phoenix, USA, Nov. 2003.

[72] V. Akcelik, J. Bielak, G. Biros, I. Epanomeritakis, A. Fernandez, O. Ghattas, E. J. Kim, J. Lopez, D.
O'Hallaron, T. Tu, and J. Urbanic, “High Resolution Forward and Inverse Earthquake Modeling on
Terascale Computers,” Proc. 2003 ACM/IEEE Supercomputing Conference (SC2003), Phoenix,
USA, Nov. 2003.

[73] C. Gribble, X. Cavin, M. Hartner, and C. Hansen, “Cluster-based Interactive Volume Rendering
with Simian,” University of Utah School of Computing Technical Report UUCS-03-017, Sep. 2003.

[74] OpenGL, http://www.opengl.org
[75] IEEE Task Force on Cluster Computing, http://www.ieeetfcc.org
[76] ClusterXY - IEEE Intl. Conference on Cluster Computing, http://www.clustercomp.org
[77] CCGridXY - IEEE Intl. Symposium on Cluster Computing and the Grid, http://www.ccgrid.org

