
Progressive Search Algorithm for Service Discovery
in an IoT Ecosystem

Santosh Pattar∗, Dwaraka S Kulkarni∗, Darshil Vala∗, Rajkumar Buyya†, Venugopal K R‡,
S S Iyengar§ and L M Patnaik¶

∗ IoT Lab, University Visvesvaraya College of Engineering, Bengaluru, India.
† University of Melbourne, Melbourne, Australia.

‡ Bangalore University, Bengaluru, India.
§ Florida International University, Miami, USA.

¶ National Institute of Advanced Studies, Bengaluru, India.

e-mail: santoshpattar01@gmail.com

Abstract—With the advent of the Internet of Things (IoT) a
plethora of applications are being offered across several domains
of the society, industry, environment, etc. to ease monitoring,
configuration, and other such tasks. Smart services are the
fundamental components of such an application that are actuated
by an IoT resource. An emerging challenge in an IoT ecosystem
is the seamless delivery of the smart services to the users based
on their preferences and characteristic behaviors. In this paper,
we propose a Progressive Search Algorithm (ProSA) that maps
the user’s requirements to the attributes of the IoT resources and
smart services and thereby provide personalized search results.
We have categorized the user requirements into essential and
optional requirements that are further mapped to the intrinsic
and extrinsic properties of the smart services. Using these
mapping two search schemes viz. Primitive Search Strategy (PSS)
and Elaborate Search Strategy (ESS) are proposed that makes
use of semantic and proximity measures to fine-tune the search
results. We conducted empirical studies based on a Smart Airport
ecosystem and compared them with the existing approach in the
literature to establish the practicability of the proposed search
algorithm.

Index Terms—Context aware, progressive search, semantic
matching, service discovery, smart airport

I. INTRODUCTION

The Internet of Things (IoT) is an ecosystem of components

viz., sensors, actuators, communication devices and processors

that are tightly coupled with each other to orchestrate a

coordinated solution for a given task. Through this paradigm

of networked objects, a wide variety of applications are being

developed across many sectors to provide monitoring, surveil-

lance, management, security, and other such functionalities [1].

In an IoT environment, a physical object is embedded with the

above-mentioned components to offer certain services that are

utilized to create such applications. With the penetration of the

IoT, every connected physical object is capable of interacting

with the other objects to share and consume the services to

achieve a common goal. Given this nature of the network,

there will be billions of objects that operate in a complex

environment. Also, a single object or a service will not suffix

the requirements to solve the given complex task [2].

To facilitate easy coordination among the objects, there is a

need for a mechanism that enables them to look for each other.

Search techniques are thus paramount in an IoT application to

ease the mash-up of services and achieve the desired results.

It is important to note here that the user of an IoT application

is also a part of the ecosystem and generally his/her demands

are to be met through the use of services. Thus, there is a

need for an user-centric, situational aware discovery technique

for an IoT environment [3], [4]. In the earlier works, the

service discovery issue in IoT was addressed through the

use of semantic knowledge to find similarities among the

services [5], [6], context-based service ranking model [7],

social networks [8], [9] etc. The noticeable drawbacks of these

approaches are the scalability, query response and processing

time, requirement of enormous storage space, and the difficulty

in semantic knowledge gathering. Also, these works do not

focus on providing enhanced personalized search results to

the user.

In this paper, we address the problem of service discovery

from the users perspectives by considering his/her needs (i.e.,
situation) and develop a progressive search mechanism to

efficiently and effectively list the relevant services from the

large pool of available services provided by the physical

objects. User requirements are categorized into essential and

optional requirements where essential requirements are to be

met mandatorily while the optional requirements are to be

fulfilled in the best possible way. Further, these requirements

are mapped to the attributes of the IoT devices and the services

to construct a similarity model. Based on the similarity model,

primitive and elaborate search strategies are proposed to

reduce the size of the search space for a given user query. The

former strategy makes use of the essential requirements while

the latter operates on the optional requirements to address

the user demands. The main contributions of this paper are

summarized as follows:

• A progressive search scheme is proposed that filters out

the services according to the users demand by effectively

reducing the size of the search space, thereby improvising

the query response time.

• A similarity model for progressive search scheme is

designed based on the requirements of the user to select

1041

2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData)

978-1-7281-2980-8/19/$31.00 ©2019 IEEE
DOI 10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00180

and rank the services. In the primitive search strategy,

a semantic-based similarity metric is developed through

encoding of ontological concepts to effectively reduce the

computational time. For the elaborate search strategy, a

multi-dimensional extrinsic similarity score is proposed

to fine tune and obtain the personalized search results.

The rest of the paper is organized as follows. In the next

section, we provide a review of related works for the IoT

service discovery. Section III presents the proposed model

for the service discovery. The progressive search scheme

along with the similarity calculation methods are discussed

in Section IV. In Section V, we evaluate and compare the

performance of the proposed progressive search scheme along

with the related works. Finally, concluding remarks are given

in Section VI.

II. LITERATURE SURVEY

In this section, we present the recent research works on

service discovery in an IoT ecosystem. For each work, the

potential benefits and shortcomings are discussed from the

different aspects.

Hussein et al., [10] presented a service discovery model that

is based on the intellectual analysis of social conditions and

users circumstantial demands in an IoT environment. Through

the use of objective and subjective context-based properties,

user’s situation is identified and a list of relevant services

is provided. Although when compared to a location-based

approach, the proposed scheme returns enhanced set of results

and it introduces a computational overhead to calculate the

similarity index on the resource-constrained IoT devices. Ma

et al., [11] devised a search strategy based on an incremental

approach for service discovery in an IoT ecosystem. Three

different search schemes in diverse spaces namely feature,

spatiotemporal and security are proposed. Based on the assess-

ment of case studies, it is noticeable that the proposed search

technique performs better in terms of query response time

and accuracy. However, the approach does not deal with the

scalability issue of data collection, integration and distribution

between the users and IoT devices.

Perera et al., [7] developed a sensor selection and ranking

model based on the context properties of the IoT devices.

By utilizing the user requirements, candidate search results

are ranked through a weighted index and heuristic filtering.

The advantage of the proposed model is that it helps in

minimizing the energy consumption of the sensor network

where the search space need not be reconstructed due to

the use of distributed processing approach. The shortcomings

includes, it demands for a large amount of storage space and

also the query execution time is expeditious with an increase

in the number of sensors. Cheng et al., [12] proposed an

approach to coordinate the interrelated services in an IoT

environment based on the situation of the service utilization.

To identify the services that are false positive to a given

situation, an event-driven action detection algorithm is devised

that makes use of mismatch rules. Proposed scheme addresses

the heterogeneity and interoperability challenges through the

reusability of services. However, the system is not scalable to

a large number of services as the processing time to detect

and coordinate among the services is intolerable for real-time

applications.

Quevedo et al., [13] demonstrated a service discovery mech-

anism using information-centric network through a forwarding

pipeline local network framework. Two types of environments

within the network viz. restricted and unrestricted are con-

sidered to evaluate the service registration and de-registration

schemes. Owing to the use of forwarding pipeline architecture,

the time taken in both the networks for service composition

is the same. But, the authors fail to incorporate appropriate

service delivery scheme to guarantee the effective search

results. Corbellini et al., [14] implemented a technique to

detect the services demanded by the users in an IoT ecosystem

based on the association between them. The determined ser-

vices are assembled into various clusters to facilitate service

discovery within a short duration of time in comparison with

the content-based approach. As only one cluster is nominated

to each service, this methodology does not deal with the

overlapping of services in the similarity calculation. Fang et
al., [15] conceptualized a system model for “big search” in

an IoT ecosystem to develop strategies for service discovery

and composition. Search parameters such as temporal, spatial,

sentimental etc. are taken into account to improvise the search

results.

From the above review, it is evident that several IoT service

discovery schemes are efficient in terms of query resolution but

they do not consider the user’s preferences to obtain the per-

sonalized search results and are susceptible to the scalability

issue of an IoT network. Here, semantic similarity and Quality

of Service (QoS) parameters can be utilized to effectively

list the user preferred services. In the following paragraphs,

we discuss some of the research works that consider these

techniques.

Zhao et al., [5] designed a semantic model based on

multiple dimensions to find the degree of similarity between

the available services in an IoT environment. Through this

score, similar services are clustered into groups. Then, an

algorithm to determine and substitute the non-existent services

with user-intended services are subjected to the clusters. This

approach considers both the structure and semantic description

of the services that reduces the computation time for similarity

score measurement. The disadvantage of the proposed scheme

is the use of multi-level parametric based score that consumes

more energy when compared to light-weight schemes based

on single-level methods. Han and Crespi [6] presented an

architecture that facilitates service provision based on the

semantic annotations of smart things. A setup procedure to

incorporate IoT application onto the web-based on ontological

similarity is introduced. With the use of a weighted priority

scheduling algorithm, the proposed system effectively handles

concurrent queries. However, due to the use of three levels

of authorization, there is an overhead in computation and this

increases with an increase in the number of services.

Ko et al., [16] formulated a service discovery mechanism for

1042

an IoT environment based on ubiquitous computing paradigm

to provide recommendations to the users based on the social,

behavioral and temporal aspects. It filters out the services

based on the above aspects and on their availability in the

environment. The obtained services are then integrated and

finally allocated to the users for productive use of resources

that adhere to QoS requirements. The merit of this approach

is its scalability in terms of the number of services whereas

the demerit is the manual effort needed to deal with the

ontological operations that are defined in the model. Sasirekha

et al., [17] proposed a multi-layered architecture to discover

the appropriate services available in the environment based on

the contextual knowledge of the user requests. The developed

solution suggests the relevant services to the user with the

help of Web Ontology Language (OWL) file. The disadvantage

is that it is essential to register the node earlier to gain

the semantic information of the sensed data from the node.

Li et al., [18] put forth a mechanism for service discovery

based on the semantics considering QoS requirements and

context conditions. The characteristics of this scheme are

localized optimization and scalable for a large number of IoT

resources. A social-recommendation based model is used to

determine the trustworthy services that are further organized.

These techniques help in the enhancement of completeness

and security of the discovery mechanism. But, there is an

overhead of gathering feedbacks from the users to discover

the trustworthy services.

As discussed above, semantic and QoS based similar-

ity scores provide an effective solution in the retrieval of

user-centric results and thus enhance query resolution and

attain effective personalized search results. However, these

approaches incur computational burden and are not suitable

for the dynamic and large-scale size of an IoT application.

In this article, we aim to overcome the above problems by

proposing a novel Progressive Search Algorithm (ProSA) to

efficiently reduce the search space and thereby decrease the

computational complexity and give effective search results to

meet the personalized experience in an IoT ecosystem.

III. SYSTEM MODEL

This section outlines the proposed progressive search

scheme. We describe an application scenario to best explain

the usability of the proposed service discovery scheme based

on a smart airport application domain of the IoT. In subsequent

subsection, we discuss the ontological model and service

similarity model that support the progressive search scheme.

A. Application Scenario

Airports are one of the thriving business enterprises in

todays urbanized cities where a large number of passengers

embark and disembark the flights. Several stakeholders like

travelers, visitors, security guards, receptionists, flight atten-

dants, etc., with various kinds of requirements are present

here. To increase non-aviation revenue airports have to ensure

enhanced customer experience. To this end, there is a need

for a service discovery mechanism that provides personalized

user results. Several design objectives are to be met to develop

such a search system. A lightweight computational model

ensures seamless delivery of services, while the scalability

of the system is not to be compromised. Also, based on the

personal preferences and context the search results are to be

fine-tuned.

B. Overall Flow

The execution flow of the proposed service discovery

scheme is logically divided into three phases as shown in

Fig. 1. Initially, from the user query, essential and optional

requirements are extracted. Essential requirements are the

services that the user has demanded and they are to be

met compulsorily while optional requirements are inherent

preferences of the user that are to be resolved in an optimal

way. Next, the essential requirements are used to extract a

matching set of services through the PSS. It makes use of the

ontology-based similarity model to select only the requested

services [19]. This step drastically reduces the size of search

space. Further, the filtered set of services are then subjected to

ESS where the optional requirements of the user are matched

with the service through a proximity-based multi-dimensional

extrinsic similarity score. Finally, based on the extrinsic scores

the services are ranked and returned to the user. To support

PSS, an ontological model and an encoding scheme are

designed. Through them, the computational time for similarity

calculation is drastically reduced. They are discussed in the

following subsections.

C. Ontology Model

We have designed an ontological model (with namespace

as smart airport services: as) to conceptualize the user re-

quirements and properties of the IoT ecosystem as depicted in

S

Available

Services

Semantic based similarity measure

Primitive Search Strategy

Essential

Requirements

Essential Requirements

based Filtered Services

Optional

Requirements

Multi-dimensional extrinsic similarity

measure

Elaborate Search Strategy Optional Requirements

based Filtered Services
Matching Set

of Services

Result

Fig. 1. Overall Execution Flow of the Progressive Search Algorithm

1043

Fig. 2. The model consists of three main concepts of service

discovery viz. User, Device, Service and other supporting con-

cepts namely Query, Context Properties, Intrinsic and Extrinsic

properties, Essential and Optional Requirements. Meaningful

relationships have been established between the concepts (e.g.
User requests for Service, Device offers Service etc.) to aid

in semantic matching and query resolution. Context Properties

class is included to cover the different attributes of the main

concepts. Two types of context properties namely intrinsic and

extrinsic are utilized to provide the personalized results for

the users. Intrinsic properties depict the environmental facets

of the users such as time, region, temperature, etc. Whereas

the personal and communal aspects like individual prefer-

ences, trustworthy services, etc., are rendered as the extrinsic

properties. To focus on the constraints of the query, essential

and optional requirements classes are modeled. Device class

comprises of all the devices available in an IoT ecosystem

while Service class comprises of the numerous services offered

by the different devices.

Fig. 2. Smart Airport Services Ontology Model

D. Service Similarity Model

The services demanded by the user are obtained based

on the similarity scores computed between the available set

of services and the requested ones. PSS makes use of the

signature of ontological concepts to calculate the similarity

score i.e., semantic similarity. It improvises the searching,

indexing and ranking operations for a large and diverse dataset.

It’s a function of the distance between the terms in a graph

corresponding to the hierarchical structure of the underlying

ontology.

ESS utilizes the proximity similarity score based on the

extrinsic properties. It’s calculation deals with the socio-

economic, spatio-temporal, QoS and personal context prop-

erties. By the application of PSS and ESS in a progressive

manner, the computation time necessary for matching the

services is adequately decreased. It is evident that the set

of services for matching is reduced when compared to the

available set.

IV. PROGRESSIVE SEARCH ALGORITHM

In this section, we describe the progressive search scheme

for service discovery in an IoT ecosystem. Algorithm 1 lists

our proposed ProSA. It consists of two search strategies PSS

(from lines 3 to 18) and ESS (from lines 19 to 46). In the

following subsections, we discuss both the search strategies.

A. Primitive Search based on Essential Requirements

Essential requirements from the user query are utilized by

the primitive search strategy to reduce the search space and

obtain the services according to the user demands. We develop

a signature-based semantic similarity score by leveraging the

ontological model discussed in Section III-C. Furthermore, a

prime number based encoding scheme is implemented that

assigns a unique number (or signature value) to each of the

concepts in the ontology [20]. With the help of these unique

codes, the similarity between the concepts is computed through

numeric operations and thus there is a drastic reduction in the

computation time.

Given two services, a requested service (R) and a solution

service (S), we define the following types of the match

between them.

i) Perfect Match (R ≡ S): If the signature values of R and

S are the same, then it is a perfect match. Here, user

requirements are fulfilled completely.

ii) Partial Match: In this type of match, the user requirements

are met partially. We consider the following sub-types of

the partial match:

a) Plug-in Match (R ⊃ S): If the signature value of R is

greater than that of S, then it is a plug-in match i.e.,
the solution provided is the parent of the requested

one.

b) Subsume Match (R ⊂ S): When the signature value

of S is greater than that of R, then it is a subsume

match i.e., the solution provided is the child of the

requested one.

c) Satisfactory Match (R∩S): When the signature value

of S is a multiple of R’s value, then it is a satisfactory

match i.e., the solution is a combination of multiple

services that supersedes the requested service.

iii) Irrelevant Match (R �= S): If the signature value of S is

different from that of R, then its an irrelevant match i.e.,
user requirements are not met here.

Given a user request, we extract the ontological concepts

in it to the set R and compare it with a service S from the

available service set using the below formula (p is the number

of concepts matching between R and S).

sim(R,S) =

{∑p
i=1

Csim(R,S)
p , p > 0

0, p = 0
(1)

The semantic similarity between two ontological concepts

ci and cj is calculated using the equation 2.

1044

Algorithm 1 Progressive Search

Input : User Requirements Set, Ur;

Set of Available Services, S;
Output: Matching Set of Services, Rs;

1: Ue ← Extract Essential-Requirements(Ur)

2: Uo ← Extract Optional-Requirements(Ur)

3: Se ← ∅

4: for each ui ∈ Ue do
5: C ← Map-Requirements(ui)

6: for each cj ∈ C do
7: for each sk ∈ S do
8: v ← calculate similarity between cj and sk using

Eq. 1

9: if v == 1 then # perfect match

10: Se ← sk ∪ Se

11: else if v > θ then # partial match

12: Se ← sk ∪ Se

13: else # irrelevant
14: continue

15: end if
16: end for
17: end for
18: end for
19: for each ui ∈ Uo do
20: wui ← Extract Weight(ui)

21: end for
22: sort Uo based on Wu in descending order

23: for each ui ∈ Uo do
24: i← Extract Ideal Value(ui)

25: lb, ub← Extract Bounds(ui)

26: C ← Map-Requirements(ui)

27: for each cj ∈ C do
28: for each sk ∈ Se do
29: d← Extract Extrinsic Property(sk)

30: if d == i then # desired match
31: Rs ← sk ∪Rs

32: add 1 as weight of sk to Ws

33: end if
34: if d � lb and d � ub then
35: v ← calculate similarity between cj and d using

Eq. 3

36: if v > θ then # favourable match
37: Rs ← sk ∪Rs

38: add v as weight of sk to Ws

39: else # irrelevant
40: continue

41: end if
42: end if
43: end for
44: end for
45: end for
46: sort Rs based on Ws in descending order

Csim(ci, cj) =

⎧⎪⎨
⎪⎩
1, if perfectmatch

0, if irrelevant
ζ

|height(ci)−height(cj)| , otherwise

(2)

where ζ is the balancing factor that controls the contribution

of the number of levels between the given concepts to the

similarity score.

In Algorithm 1, PSS is defined from line 3 to 18. It

takes essential user requirements set (Ue) and the set of

available services (S) as inputs. For each user requirement,

the ontological concepts (classes, instances, data and object

properties) related to it are retrieved (through the “Map-

Requirements” function). These concepts are then compared

with the available services from the IoT ecosystem using

equation 1. Based on the similarity score, the concepts are

categorized into one of the matches as defined above and

added to the filtered service list. A threshold parameter (θ) here

controls the addition of services to the filtered set and its value

is pivotal to obtain the effective search results. As a higher

value drastically eliminates potential services that fail to match

the perfect semantic definitions of the user requirement while

a lower value will degrade the quality of the filter service set

by including irrelevant partially matched services. We set the

value for the threshold parameter at 0.7 for our experimental

studies.

B. Elaborate Search based on Optional Requirements

As the optional requirements qualify the extrinsic properties

of the user, thus they are effective parameters to retrieve the

personalized search results. ESS makes use of these features

to fine tune the search results. A proximity-based multi-

dimensional similarity score (Proxsim) is devised based on

the extrinsic properties of the user and services to improvise

the search results. Equation 3 is used to calculate this score

between the user requirement R and a service S.

Proxsim =α ∗ SpatioTemporalsim(R,S) +

β ∗ SocioEconomicsim(R,S) +

γ ∗ QoSsim(R,S) +

δ ∗ Personalsim(R,S)

(3)

where α, β, γ and δ are the weighting parameters for

respective proximity measures. These are captured from the

user interface.

Based on the extrinsic properties, we categorized four

types of proximity requirements. Attributes like location,

travel timing come under the SpatioTemporal category. The

SocioEconomic category consists of attributes such as cost,

frequency, class preference. Properties like user satisfaction

rating, availability, accuracy, sensitivity are classified into

1045

the QoS category. The personal category includes attributes

namely airlines preference, work type, inquiry area preference.

Euclidean and Jaccard distances are employed to calculate

the proximity similarity measure by the above-mentioned

categories based on their types of attributes (as shown in Table

I).

TABLE I
TYPE OF SIMILARITY METHODS

EMPLOYED TO CALCULATE PROXIMITY SCORES

Proximity
Measure

Extrinsic Properties
Similarity
Method

SpatioTemporal
Spatial (location, physical dis-
tance, etc.)

Euclidean distance

Temporal (travel time, flight
duration etc.)

Euclidean distance

SocioEconomic
Social (community, frequency,
class preference, etc.)

Jaccard distance

Economical (cost, discounts,
royalty points, etc.)

Euclidean distance

QoS User satisfaction rating, avail-
ability, accuracy, etc.

Euclidean distance

Personal Preference, work type, etc. Jaccard distance

In Algorithm 1, ESS is defined from line 19 to 46. Here,

the optional requirements of the user query (Uo) and essential

requirements based filtered service set Se are taken as inputs.

From the user query, for each optional requirement, the ideal

value along with permissible upper and lower bounds are

retrieved. Further, the optional requirements are mapped to

the ontological concepts. Then, extrinsic properties for each

service in Se set are extracted and compared with the user

sought values (i). If they are equal, then we define such a

match as “Desired Match” and add it the result set (Rs) by

assigning the highest weight to the matched service. Other-

wise, the bounds (upper bound, ub and lower bound, lb) are

taken into consideration and if the extrinsic value of the service

falls within this limit, then the proximity similarity between

them is calculated using equation 3. Here, we again make use

of the threshold parameter (θ) to determine the best possible

match. Such a match is known as “Favourable Match” and

the proximity similarity score is added as it’s weight. Finally,

we define “Irrelevant Match” for the services with extrinsic

properties that do not fit within the specified bounds and are

discarded. The result set is then sorted based on the weights

of the services and returned to the user.

V. EXPERIMENTS AND RESULTS

This section describes the implementation details along

with the experiments conducted to measure and evaluate the

performance of the proposed progressive search algorithm.

A. Implementation Details

We have developed a prototype search system, called

”ProSA Search Tool” for the proposed model using Java lan-

guage. Fig. 3 depicts the user interface of the prototype system.

Through this interface, the user specifies his/her requirements.

Essential requirements are to be given as keywords while for

the optional requirements, there are checkboxes, sliders, and

textboxes to select, assign weights and bounds. The ontology

model proposed in Section III-C is designed through Protégé

toolkit (Version 5.3.0) [21] and further managed through

Apache Jena Framework (Version 3.9.0) [22] and SPARQL

[23]. Also, Apache’s Commons Mathematics [24] and Text

[25] libraries are used for determining the semantic and prox-

imity similarity scores. To conduct the various experiments,

we used a real and synthetic dataset to populate the ontology

(as at present no single source provides the real-time IoT

dataset for the smart airports). Services and their properties for

the airport were collected from [26] while random values are

generated for the users and devices. To evaluate and measure

the performance of the proposed search system, we used a

computer with Intel(R) Core i5-4200M 2.50GHz processor and

8GB RAM.

Fig. 3. ProSA Search Tool

1046

 0

 2

 4

 6

 8

 10

 0 2000 4000 6000 8000 10000

Ti
m

e
ta

ke
n

fo
r

se
rv

ic
e

m
at

ch
 (i

n
se

c)

Number of services

Perfect Match
Irrelevant Match

Partial Match

(a) Query Processing Time for Different Signature-based Semantic Matches

 0

 2

 4

 6

 8

 10

 0 2000 4000 6000 8000 10000

Ti
m

e
ta

ke
n

fo
r

se
rv

ic
e

m
at

ch
 (i

n
se

c)

Number of services

Encoding based Semantic Matching
Ontology based Inference Matching [19]

(b) Comparison of Query Processing Time

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

5 10 15 20 25

Pr
ec

isi
on

Number of services

Hussein et al. [10]
Proposed Approach (ProSA)

(c) Precision Ratio Comparison with Varying Number of Available Services

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

5 10 15 20 25

Re
ca

ll

Number of services

Hussein et al. [10]
Proposed Approach (ProSA)

(d) Recall Ratio Comparison with Varying Number of Available Services

Fig. 4. Experimental results of ProSA. Processing time, precision and recall ratios are measured with varying size of available services to determine the
efficiency and effectiveness of the proposed work.

B. Experimental Setup

To appreciate the practicability of the proposed service

discovery scheme, we conducted several experiments. We have

considered three queries for testing i.e., Query 1 - Find a coffee

vending machine that offers a particular type of beverage,

Query 2 - Find the less-crowded waiting lounge near me, and

a generic query, Query 3 - List the services that will ease

my transit at the airport today. These queries are run on the

ProSA search tool and we report the mean of 10 executions.

The effectiveness of the search system is measured by two

evaluation parameters namely recall and precision. They are

calculated as follows:

Recall =
Nase

Tas

Precision =
Nase

Tse

where Nase is the number of appropriate services extracted,

Tas is the total number of appropriate services available in the

repository and Tse is the total number of services extracted

from the repository.

These two measures are the performance evaluators of the

service discovery approach. Precision is the division of the

number of appropriate services extracted over the total number

of appropriate services in the repository whereas recall is the

division of the number of appropriate services extracted over

the total number of extracted services.

C. Results and Performance Evaluation

In the first experiment, we measure the query processing

time for different types of semantic matches (i.e., perfect,

partial and irrelevant) that are proposed in Section IV-A for

a varying number of the available services. Fig. 4a presents

the result for this experiment. Here, it is observed that

comparatively less time is taken for identifying the perfect

match when compared to partial and irrelevant match. Partial

match consumes more time in comparison with irrelevant as it

involves three levels of computation for the plug-in, subsume

and satisfactory matches.

In the second experiment, we evaluate the efficiency of the

ProSA with respect to the computation time. Our proposed

approach utilizes an encoding scheme to facilitate semantic

match, we compare this technique with the ontology-based

1047

inference matching [19] as shown in the Fig. 4b. It is evi-

dent from the comparison that application of the signature-

based semantic scheme in the proposed approach is efficient

than the ontology-based inference matching mechanism. This

is attributed to the fact that similarity computation in our

work involves only algebraic operations owing to the numeric

encoding of the ontological concepts, while the inference

technique involves the time-consuming concept logical cal-

culations.

In the last experiment, we evaluate the effectiveness of

our proposed work. Here, we consider a previous work on

dynamic service discovery proposed by Hussein et al. [10]

for comparison. We populated the ontology with 25 services

for each query and noted the number of relevant and irrelevant

responses. As seen in Figs. 4c and 4d, the precision and recall

ratios of the proposed approach are better when compared to

the existing work. The reason is that our work considers the

extrinsic and intrinsic properties of the services and user to

retrieve relevant search results and thus offers personalized

user experience.

VI. CONCLUSIONS

With the penetration of the IoT, a large number of physical

objects are now getting connected to the Internet. Search

and discovery of the services offered by these objects is of

prominent importance for an IoT application. Thus, numerous

techniques have been proposed in the past to address this

challenge. However, they do not consider user experience

and personalized search results. In this paper, we present

a progressive service discovery mechanism along with its

related search strategies and similarity computation model to

effectively list the user desired services. A proof of concept

prototype, ProSA Search Tool, for the smart airport domain

of the IoT is implemented to demonstrate the applicability of

our proposed approach. The results from experimental studies

demonstrate that the ProSA technique is highly scalable and

consumes less time due to the use of signature-based semantic

matching model. Also, when compared with the previous

work our approach yields effective search results through the

proximity similarity model and thus provides an enhanced user

experience in an IoT ecosystem.

REFERENCES

[1] Y. Fathy, P. Barnaghi, and R. Tafazolli, “Large-Scale Indexing, Discov-
ery, and Ranking for the Internet of Things (IoT),” ACM Computing
Surveys (CSUR), vol. 51, no. 2, pp. 1–52, 2018.

[2] M. Nitti, V. Popescu, and M. Fadda, “Using an IoT Platform for
Trustworthy D2D Communications in a Real Indoor Environment,” IEEE
Transactions on Network and Service Management, vol. 16, no. 1, pp.
234–245, 2019.

[3] G. Shinde and H. Olesen, “A Survey on Service Discovery Mechanism,”
in Proceedings of the Intelligent Computing and Information and Com-
munication Conference, pp. 227–236, 2018.

[4] S. Pattar, R. Buyya, K. R. Venugopal, S. S. Iyengar, and L. M.
Patnaik, “Searching for the IoT Resources: Fundamentals, Requirements,
Comprehensive Review, and Future Directions,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 3, pp. 2101–2132, 2018.

[5] S. Zhao, L. Yu, B. Cheng, and J. Chen, “IoT Service Clustering for
Dynamic Service Matchmaking,” Sensors, vol. 17, no. 8, p. 1727, 2017.

[6] S. N. Han and N. Crespi, “Semantic Service Provisioning for Smart
Objects: Integrating IoT Applications into the Web,” Future Generation
Computer Systems, vol. 76, pp. 180–197, 2017.

[7] C. Perera, A. Zaslavsky, C. H. Liu, M. Compton, P. Christen, and
D. Georgakopoulos, “Sensor Search Techniques for Sensing as a Service
Architecture for the Internet of Things,” IEEE Sensors Journal, vol. 14,
no. 2, pp. 406–420, 2014.

[8] B. Yuan, L. Liu, and N. Antonopoulos, “Efficient Service Discovery in
Decentralized Online Social Networks,” Future Generation Computer
Systems, pp. 73–78, 2017.

[9] M. S. Roopa, S. Pattar, R. Buyya, K. R. Venugopal, S. S. Iyengar,
and L. M. Patnaik, “Social Internet of Things (SIoT): Foundations,
Thrust Areas, Systematic Review and Future Directions,” Computer
Communications, vol. 139, pp. 32–57, 2019.

[10] D. Hussein, S. N. Han, G. M. Lee, N. Crespi, and E. Bertin, “Towards a
Dynamic Discovery of Smart Services in the Social Internet of Things,”
Computers & Electrical Engineering, vol. 58, pp. 429–443, 2017.

[11] H. Ma and W. Liu, “Progressive Search Paradigm for Internet of Things,”
IEEE MultiMedia, vol. 25, pp. 76–86, 2017.

[12] B. Cheng, M. Wang, S. Zhao, Z. Zhai, D. Zhu, and J. Chen,
“Situation-Aware Dynamic Service Coordination in an IoT Environ-
ment,” IEEE/ACM Transactions on Networking, vol. 25, no. 4, pp. 2082–
2095, 2017.

[13] J. Quevedo, C. Guimarães, R. Ferreira, D. Corujo, and R. L. Aguiar,
“ICN as Network Infrastructure for Multi-Sensory Devices: Local Do-
main Service Discovery for ICN-based IoT Environments,” Wireless
Personal Communications, vol. 95, no. 1, pp. 7–26, 2017.

[14] A. Corbellini, D. Godoy, C. Mateos, A. Zunino, and I. Lizarralde,
“Mining Social Web Service Repositories for Social Relationships to Aid
Service Discovery,” in Proceedings of the 14th International Conference
on Mining Software Repositories, pp. 75–79, 2017.

[15] B. Fang, Y. Jia, X. Li, A. Li, and X. Wu, “Big Search in Cyberspace,”
IEEE Transactions on Knowledge and Data Engineering, vol. 29, no. 9,
pp. 1793–1805, 2017.

[16] I.-Y. Ko, H.-G. Ko, A. J. Molina, and J.-H. Kwon, “SoIoT: Toward
a User-Centric IoT-based Service Framework,” ACM Transactions on
Internet Technology (TOIT), vol. 16, no. 2, pp. 1–21, 2016.

[17] S. Sasirekha, S. Swamynathan, and S. Keerthana, “A Generic Context-
Aware Service Discovery Architecture for IoT Services,” in Proceedings
of the International Conference on Intelligent Information Technologies,
pp. 273–283, 2017.

[18] J. Li, Y. Bai, N. Zaman, and V. C. Leung, “A Decentralized Trustworthy
Context and QoS-Aware Service Discovery Framework for the Internet
of Things,” IEEE Access, vol. 5, pp. 19 154–19 166, 2017.

[19] B. Jia, W. Li, and T. Zhou, “A Centralized Service Discovery Algorithm
via Multi-Stage Semantic Service Matching in Internet of Things,” in
Proceedings of the 2017 IEEE International Conference on Computa-
tional Science and Engineering (CSE) and Embedded and Ubiquitous
Computing (EUC), vol. 1, pp. 422–427, 2017.

[20] D. Preuveneers and Y. Berbers, “Prime Numbers Considered Useful:
Ontology Encoding for Efficient Subsumption Testing,” Techical Report
CW464., Department of Computer Science, Katholieke Universiteit
Leuven, Belgium, 2006.

[21] Protégé Tool. Accessed: Apr 10, 2019. [Online]. Available: https:
//protege.stanford.edu/

[22] Apache Jena. [Online]. Available: https://jena.apache.org/
[23] SPARQL Query Language. Accessed: Apr 10, 2019. [Online].

Available: https://www.w3.org/TR/sparql11-query/
[24] Apache Commons Math. Accessed: Apr 10, 2019. [Online]. Available:

https://commons.apache.org/proper/commons-math/
[25] Apache Commons Text. Accessed: Apr 10, 2019. [Online]. Available:

https://commons.apache.org/proper/commons-text/
[26] Airport Quarterly Passenger Survey Dataset. Accessed: Apr

10, 2019. [Online]. Available: https://catalog.data.gov/dataset/
airport-quarterly-passenger-survey

1048

