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Abstract—Today’s quantum computers are primarily accessi-
ble through the cloud and are expected to be deployed in edge
networks in the near future. With the rapid advancement and
proliferation of quantum computing research worldwide, there
has been a considerable increase in demand for using cloud-based
quantum computation resources. This demand has highlighted
the need for designing efficient and adaptable resource man-
agement strategies and service models for quantum computing.
However, the limited quantity, quality, and accessibility of quan-
tum resources pose significant challenges to practical research
in quantum software and systems. To address these challenges,
we propose iQuantum, a first-of-its-kind simulation toolkit that
can model quantum computing environments for prototyping and
evaluating system design and scheduling algorithms. This paper
presents the quantum computing system model, architectural
design, proof-of-concept implementation, potential use cases,
and future development of iQuantum. Our proposed iQuantum
simulator is anticipated to boost research in quantum software
and systems, particularly in the creation and evaluation of
policies and algorithms for resource management, job scheduling,
and hybrid quantum-classical task orchestration in quantum
computing environments integrating edge and cloud resources.

Index Terms—quantum computing, quantum cloud modeling,
simulation, hybrid quantum computing, quantum job scheduling

I. INTRODUCTION

Quantum computing is an emerging field with tremendous
potential to solve computationally intractable problems that
can take years to solve with classical supercomputers [1].
Its applications are expected to revolutionize many fields,
including drug discovery [2], finance [3], optimization [4],
and machine learning [5]. However, quantum computing tech-
nologies are still under development, and there are numerous
challenges in realizing its potential to bring advantages to
industry and the practical world [6]. Furthermore, one of
the primary challenges of quantum computing is its difficulty
in operation, requiring extreme environmental conditions [7],
specialized expertise, and massive investments in hardware.

Fortunately, the emergence and development of the cloud-
based quantum computing (or quantum cloud) model provide
a viable solution to make quantum computing accessible to
the general public [8]. Quantum cloud is the intersection of
quantum computing and cloud computing, allowing access
to quantum computation resources over the cloud without
significant upfront investment in quantum hardware [9]. Many
giant cloud providers, such as Microsoft Azure Quantum, IBM

Quantum, and Amazon Braket, have started offering quantum
computing services. In light of this quantum service paradigm
shift, we can anticipate significant progress in the field of
quantum software engineering in the near future.

As the demand for quantum computing services has risen
rapidly, efficient cloud systems and resource management
strategies are becoming increasingly necessary for optimal
quantum resource utilization [10]. While physical quantum
hardware can be accessed through the cloud, its high cost and
limited availability pose challenges for large-scale evaluation
of resource management strategies and can lead to insufficient
experimental validation. Therefore, developing a simulation
framework to model hybrid quantum computing environments
is crucial to support research in cloud-based quantum software
and systems. However, existing quantum simulators primarily
focus on simulating the physical operation of the quantum
system (quantum operation) rather than modeling quantum
systems and services in quantum computing environments.
As a result, research in system design and resource man-
agement for quantum cloud computing remains challenging.
Without quantum computing simulation and modeling tools,
researchers will find evaluating their system design or job
scheduling algorithms difficult or even unattainable in a
realistic quantum computing environment. Besides, without
the standard simulator, it can be complicated to reproduce
experimental results or compare the performance of different
algorithms or applications consistently and meaningfully.

To address these challenges, we propose iQuantum, a sim-
ulation framework for modeling quantum computing envi-
ronments and facilitating resource management and system
design. We propose the quantum system model and its re-
source management problems, which foster the development
of a quantum modeling simulator. iQuantum will enable re-
searchers to evaluate and validate their algorithms and applica-
tions in a simulated environment without the need for spending
expensive costs to use real quantum hardware. Besides, it
can empower research and experiment in quantum software
engineering, making it easier to compare results and reproduce
experiments for more rigorous and impactful studies aligned
with the latest advances in quantum computing. This study
aims to address two research questions:

• RQ1. Can we model a quantum system in a cloud-based
environment similar to modeling a classical paradigm?



RQ1 aims to investigate the feasibility of modeling
today’s cloud-based quantum computing environments.
This is the key question we have thoroughly studied
before embarking on the prototyping and implementa-
tion of the simulator. After realizing the possibility of
addressing this question, we continue to identify what
are the key elements of hybrid quantum system and how
to model them. The detailed results of our studies on these
questions are presented in Section III and IV.

• RQ2. Can we use the proposed simulator to model any
use cases in practice?
RQ2 aims to identify potential use cases for the proposed
simulator to consider its usefulness in quantum comput-
ing research. Our investigation to address this question is
outlined in Section IV.

By addressing these research questions, we aim to provide
viable insights into the potential of designing and developing
the proposed simulator for quantum computing environments.
The main contributions and novelty of our work are as follows:

• We derived the conceptual model for quantum computing
environments using the various metrics of today’s quan-
tum computers and quantum job execution on the cloud.
This model provides a theoretical basis for simulating
and analyzing quantum computing systems, which has
not been previously formulated in the literature.

• We proposed the architecture design and proof-of-concept
implementation of core components in iQuantum based
on CloudSim [11], which is a well-known simulator for
classical cloud system modeling.

• We proposed various potential applications of iQuantum
for modeling cloud-based quantum computing environ-
ments, which support research in system design and
resource management, including quantum job scheduling,
qubit mapping, and hybrid quantum-classical task orches-
tration. These applications demonstrate the practical use-
fulness of our proposal for researchers and practitioners
in the field.

The rest of the paper is organized as follows: In Section
II, we introduce the related background of our study, in-
cluding the concept of cloud-based quantum computing, the
QCaaS model, quantum applications, and performance metrics
used to benchmark present quantum computers. In Section
III, we propose the system model of a quantum computing
environment. Then, we suggest the system design and core
implementation of iQuantum to validate the proposed quantum
system model in Section IV. In Section V, we illustrate the use
of iQuantum simulator in creating a model and simulation of
a quantum node and quantum tasks. We discuss potential use
cases and extensions of iQuantum, including job scheduling,
qubit mapping, and modeling hybrid quantum-classical cloud
systems in Section VI. We review other related work in the
literature in Section VII and conclude our study with future
work in Section VIII.

II. BACKGROUND

A. Hybrid Quantum Computing and QCaaS Models

Cloud-based Quantum Computing (quantum cloud) is a
paradigm in which quantum computation is performed on a
quantum backend, such as a quantum computer or quantum
simulator, over the cloud. These backends can be publicly
accessible over the Internet (public quantum cloud) or ex-
clusively accessible within a specific organization using a
privileged network (private quantum cloud). QCC provides a
means for users to execute quantum tasks without needing
to manage their own quantum hardware [9]. Quantum cloud
is currently the only viable way to access today’s quantum
computers, due to the stringent requirements [7] for operating
a quantum system to avoid environmental interactions that can
affect quantum execution. In an ideal scenario, the quantum
cloud can be fully accommodated by a quantum internet [12],
where all quantum data communications are processed through
the quantum-based network without dependence on classical
computers. However, the quantum internet is still in its early
stage of development, with numerous challenges [13]. As a
result, today’s cloud-based quantum computers still rely on
the classical internet and classical computers, which can be
categorized as a hybrid quantum-classical cloud.

Fig. 1. A view of a Hybrid Quantum Computing Model

In the classical realm, edge computing has arisen to extend
cloud computing capabilities to the edge network [14] and en-
able in-situ processing to reduce the network latency for time-
sensitive applications [15]. As quantum computing matures,
we anticipate witnessing the future hybrid quantum paradigm,
in which the quantum computation node can also be placed in
the edge layer, which is closer to the data source and Internet-
of-Things (IoT) devices (see Figure 1). The realization of this
complete paradigm depends on the advances in quantum hard-
ware development and quantum error correction techniques.
As recent years witnessed rapid growth and breakthrough
in quantum hardware, we can begin to prepare the system
prototype, software, and system algorithm for the near future
of hybrid cloud-edge quantum computing [16].



In the current quantum cloud paradigm, Quantum Comput-
ing as a Service (QCaaS) [17] becomes a primary service
model that provides access to quantum computation resources
for executing quantum jobs. Cloud vendors offer this service
model with a pay-per-use pricing model, where users only
need to pay for the actual resources they consume on a per-
time unit or per-task basis. Given those near-term quantum
computers are subject to noise [18], quantum executions must
be run multiple times (or shots) and corrected with error
mitigation techniques to obtain better results. In addition to
this, most variational quantum algorithms, such as Variational
Quantum Eigensolver (VQE), must be executed multiple times
(shots). Thus, the QCaaS model also considers the number of
shots to determine the total cost of execution, and this char-
acteristic should be included in the quantum service model.

B. Quantum Programs and their Execution in the Cloud

A quantum program comprises a sequence of primitive
instructions that can be executed on a quantum computer [19].
There are two types of quantum programs: gate-based quantum
circuits and annealing-based quantum programs [20]. This
study considers the gate-based model, which most quantum
hardware vendors, such as IBM Quantum, Google, IonQ,
and Rigetti, have widely employed. Based on this model, a
quantum circuit is built by performing quantum operations and
measurements on qubits using different quantum gates [21].

As a quantum program cannot be deployed permanently
on a quantum computer for multiple executions [22], the
classical cloud backend is still required in this hybrid system
to receive all user requests. Then, a job orchestrator classifies
these tasks and forwards them to either classical or quantum
computation nodes for execution. We refer to a quantum task
that is sent to a cloud-based quantum computer for execution
as a “qulet”, analogous to a classical task or “cloudlet” [11].
While isolated environments such as virtual machines (VMs)
or containers can be created within classical servers, there
are currently no equivalent techniques for creating quantum
VMs or containers. Therefore, qulets must be sent to execute
directly on quantum computers each time they are compiled
from classical computers.

C. Quantum Computer Performance and Benchmarking

According to Wack et al. [23], three metrics are suggested
for evaluating the performance of quantum computers: the
number of qubits, quantum volume (QV), and circuit layer op-
eration per second (CLOPS). The number of qubits determines
the scale of a quantum system, i.e., the amount of quantum
information that can be processed. In the current era of noisy
intermediate-scale quantum (NISQ) devices [18], the number
of qubits is relatively limited, ranging from tens to several
hundreds of qubits. For example, a recent IBM Quantum Os-
prey system supports 433 qubits1, QuEra’s quantum computer
has 256 qubits2, and IonQ has an 11-fully connected-qubit

1https://spectrum.ieee.org/ibm-quantum-computer-osprey
2https://www.quera.com/aquila

quantum computer3. Apart from the number of qubits, QV and
CLOPS are widely used by quantum hardware vendors, such
as IBM Quantum and Rigetti, to benchmark the performance
of gate-based quantum systems. Quantum volume (QV) is a
metric to measure the quality of qubits of a quantum system.
Cross et al. [24] defined the formula of quantum volume as
VQ = 2min(d,m) where d and m are the depth and width of the
largest square circuit (d = m) that can be precisely executed.
Besides, CLOPS is the most recent proposed metric to measure
the speed of a quantum system by determining how many QV
circuits can be successfully executed per second [23]. CLOPS
is empirically measured by (M ×K × S ×D)/time taken
where M = 100,K = 10, S = 100, D = log2 QV which
stands for the number of templates, number of parameter up-
dates, number of shots, and number of QV layers, respectively.
Similar to FLOPS (floating point operations per second) or
MIPS (million instructions per second) in classical computing,
CLOPS is a potential metric that can be used to estimate the
running time of a quantum job in a specific system.

III. MODELING QUANTUM COMPUTING ENVIRONMENTS

As cloud-based quantum computing is still an emerging
paradigm, there is a lack of standards, models, and method-
ologies that can proficiently effectively optimize resource
management while also dealing with intricate infrastructure
and application challenges. In this section, we propose the first
system model for quantum computing environments based on
the characteristics of the state-of-the-art quantum computing
paradigm. This system model facilitates the design and de-
velopment of iQuantum and research in distributed quantum
systems.

Figure 2 illustrates the overall quantum cloud service model,
including the main components of the quantum cloud com-
puting paradigm. The core components of the quantum cloud
environment can be modeled as follows:

1) Quantum Computation nodes (QC) are physical quan-
tum computers located in a specific quantum data
center and take the key responsibilities for executing
quantum tasks. A quantum node can have single or
multiple Quantum Processing Units (QPU) or quan-
tum chips, which are the fundamental components for
performing quantum operations. Each QPU contains a
set of interconnected qubits with other control mecha-
nisms to manipulate and measure them [25]. A QPU
(Q) can be modeled by a set of properties Qi =
{qw, qv, qs, qg, qt, qe}, where:

• qw is the number of qubits, which indicates the scale
of the quantum system.

• qv is the quantum volume of the system, which
measures the quality of qubits and the system’s
capability to execute a quantum circuit faithfully.

• qs refers to the quantum computation speed of
the system, which is measured by using CLOPS
metric. The higher CLOPS, the faster the system

3https://ionq.com/quantum-systems/harmony



Fig. 2. Overview of the System Model in Hybrid Quantum Computing Environments

can perform quantum computations and the more
complex problems it can tackle.

• qg is the list of the quantum gate sets supported by
the quantum system.

• qt is the qubit topology, which includes a list of
all connections between pairs of qubits within the
quantum chip. The qubit topology describes how
the qubits are arranged and interconnected and is an
important factor of the quantum chip’s capabilities.

• qe indicates the quantum system’s error rates (such
as readout and CNOT gate error). This parameter
can help to demonstrate a complete picture of
NISQ device performance. Indeed, NISQ devices
are characterized by their limited number of qubits
and high error rates, which can particularly affect
the reliability of quantum computations.

Besides, unlike classical computing, quantum computing
does not currently employ virtualization or container-
ization techniques. Instead, quantum computers directly
execute quantum tasks without delegating to any virtual
machines (VMs) or containers that might be allocated
inside. As a result, there is no analogous conceptual
model for VMs or containers in the quantum computing
domain at this time.

2) Quantum Data center (DQC) is a centralized hub that
manages a set of quantum systems which are accessible
through a classical cloud or edge computing system. The
representation of a quantum datacenter is as follows:
DQC = QC1,QC2, ...,QCn, where QCi represent a
quantum computation node in the data center. These
quantum nodes can be either homogeneous or hetero-
geneous based on physical quantum nodes’ character-
istics and underlying technology. Most quantum cloud
providers also provide access to their quantum simula-
tors. However, as they are classical-based resources that
facilitate the testing phase in the NISQ era but not the
production phases for the long term, we do not consider
these simulators in the quantum computing model.

3) Quantum Tasks (or qulet γ) represent units of quantum
computation that can be executed on a quantum com-
putation node. The term qulet is analogous to cloudlet
[11], which refers to a cloud-based task in classical
computing. A qulet is defined by a set of attributes
γi = {γa, γg, γw, γd, γs, γe, γt}, where:

• γa is the submission time of qulet
• γg is quantum gate set in the circuit, jg = Gs∪Gm

where Gs is a list of single-qubit gates and Gm is
a list of multiple-qubit gates.

• γw is the number of qubits (circuit width).
• γd is the number of circuit layers (circuit depth).
• γs is the number of shots (i.e., execution repetition).
• γt is the qubit topology in the circuit.

If the error rates are considered, each quantum task
can be accommodated with the Quality-of-Service (QoS)
metrics, which indicates the acceptable error threshold
for its execution in the NISQ device.

4) Quantum Computation Broker (QBroker) is an inter-
mediary entity between the cloud/edge servers and the
quantum data center. Its primary responsibility is to
schedule qulets to the most appropriate quantum compu-
tation nodes based on the qulets’ properties and resource
availability. This component’s design and implementa-
tion of scheduling policies can be customized accord-
ing to specific needs. By effectively scheduling qulets
with the most suitable quantum computation nodes, the
broker can minimize wait times and maximize resource
utilization, thereby improving the overall performance
and efficiency of quantum computing.

IV. IQUANTUM DESIGN AND IMPLEMENTATION

This section describes the design and proof-of-concept im-
plementation of core components in our iQuantum simulator.

A. Architectural Design of iQuantum

We propose the layered design of iQuantum based on
CloudSim [11], which is the most widely used simulation



framework for system modeling, designing, and evaluating
scheduling algorithms for cloud computing environments. The
extensions to CloudSim for creating the iQuantum simulator
focus on adding quantum features to simulate the hybrid
quantum computing environment (as the system model defined
in Section III). The layered architecture design of iQuantum
is illustrated in Figure 3.

Fig. 3. Layered Design of iQuantum

The User Code layer allows users to define the specific sce-
narios, requirements, application configurations, and schedul-
ing policies for classical and quantum jobs. Given the unique
characteristics of quantum jobs (qulets), which differ signif-
icantly from classical jobs (cloudlets), new algorithms with
specific constraints are needed to place qulets optimally on
suitable quantum nodes. These algorithms should be designed
and implemented in the quantum cloud broker.

The iQuantum simulation layers provide dedicated inter-
faces for modeling and simulating all core components, as
defined in section III, including quantum data centers, quantum
nodes, qulets, cloud services, and other resource allocation
policies. The specific processes of quantum computing, such
as qubit mapping and circuit transpiling, can affect the qulet
execution procedure, and strategies to address these challenges
can be defined in corresponding classes of iQuantum. Since
quantum resources cannot be easily divided into smaller iso-
lated parts, such as virtual machines or containers in classical
computing, different resource allocation strategies must be
designed to distribute resource usage among multiple users.
Furthermore, quantum job execution is expected to incur more
network delay, as intermediate transmissions from the classical
cloud to the quantum data center are required. Therefore,
network delay estimation will be modified to include all
encountered delays.

B. Implementation of iQuantum Core Components
We implement the core components of iQuantum in Java

based on the discrete-event simulation (SimEvent) technique

of CloudSim [11]. Figure 4 shows the overview of the main
class diagram of our initial implementation with respect to
the proposed quantum computing environment model (Section
III). These classes are discussed below:

Fig. 4. Overview of iQuantum Main Class Diagram

1) QDatacenter class models the core infrastructure of a
quantum data center, which consists of a collection of
quantum nodes (QNode) used for the qulet execution. All
configurations of the quantum data center, including the
list of quantum nodes (qNodeList), are defined using
the QDatacenterCharacteristics class.

2) QDatacenterCharacteristic class models the con-
figurations and information of a quantum data center.

3) QBroker class models a broker that handles interactions
between other components and the core simulator.

4) QNode class models a physical gate-based quantum com-
putation instance. It contains single or multiple QPU,
where each QPU has important metrics such as the
number of qubits, quantum volume, CLOPS, gate set,
qubit topology, and a scheduling policy.

5) QubitTopology class models the connectivity among
all qubits of a quantum node or a quantum circuit in
qulets. These topologies can be used to design a qubit
mapping strategy for qulets to be mapped into a quantum
node (discussed in Section VI-B).

6) Qulet class models a quantum task (or quantum circuit)
to be sent to the QBroker for scheduling and execution
in the appropriate QNode, following the scheduling
policy defined in the QuletScheduler class.

7) QuletScheduler is an abstract class implemented by
a QNode instance to model the scheduling policy for
determining the share of quantum computation resources
among multiple qulets. In the initial implementation, we
design the QuletSchedulerSpaceShared provision-
ing policy, which allows only one qulet to run in a
quantum node at a time, and it must finish execution
before scheduling another qulet to the same node. This
policy reflects the current situation of cloud-based quan-
tum computing services. However, other policies, such
as the Time Shared policy, can be implemented in futher
development to allow multiple qulets to share the same
quantum node and execute simultaneously.



V. A SAMPLE SIMULATION USING IQUANTUM

This section presents an explanatory example outlining the
main steps of executing a simulation scenario in iQuantum.
Figure 5 illustrates the simple scenario with two quantum tasks
(qulets) for execution on one quantum node (single QPU with
7 qubits). We model the quantum node using the same metrics
and qubit topology to IBMQ Oslo node4.

Fig. 5. A sample scenario for the simulation (Left: a part of quantum circuit
in each qulet, Right: the qubit topology of the 7-qubit ibmq oslo node)

Step 1. Initialize the core simulation instance using
iquantum.init() function.

Step 2. Create QNode instances: The ibmq oslo quantum
node contains a single QPU with all the metrics as follows:
quantum volume 32, CLOPS 2600, 5 basis gates (CX, ID,
RZ, SX, X), and the qubit topology can be represented as
qtoslo = {(0, 1); (1, 2); (1, 3); (3, 5); (4, 5); (5, 6)}. We models
this QNode in iQuantum as follows (Code 1):

List<int[]> edges_oslo = new ArrayList<>();
edges_oslo.add(new int[]{0, 1});
edges_oslo.add(new int[]{1, 2});
... [truncated]
edges_oslo.add(new int[]{5, 6});
QubitTopology osloTpl = new QubitTopology(7,

↪→ edges_oslo);
ArrayList<String> gateSet = new ArrayList<>(

↪→ Arrays.asList("CX","ID","RZ","SX","X"));
QNode qNodeOslo = new QNode(7,32,2600, gateSet,

↪→ osloTpl, new QuletSchedulerSpaceShared());

Code 1. Sample code for modeling a QNode (ibmq oslo)

Step 3: Create a QDatacenter and add QNode in-
stances to that QDatacenter. qNodeList and other in-
formation of the quantum datacenter are encapsulated in a
QDatacenterCharacteristics object.

qNodeList = new ArrayList<QNode>();
qNodeList.add(qNodeOslo);
QDatacenterCharacteristics characteristics = new

↪→ QDatacenterCharacteristics(qNodeList,
↪→ timeZone, costPerSec);

QDatacenter qDatacenter = new QDatacenter("
↪→ QDatacenter", characteristics);

Code 2. Sample code for modeling a single-node QDatacenter

Step 4: Create a QBroker instance and define a list of
qulets to be executed (quletList). The qubit connectivity

4https://quantum-computing.ibm.com/services/resources

in the quantum circuits of qulet 1 and qulet 2 are γt
1 =

{(0, 1); (1, 2); (1, 3)} and γt
2 = {(0, 1); (1, 2)}, respectively.

Both qulets employed 3 basic gates (CX, RZ, X), which is
fully supported by the quantum node. Qulet 1 comprises 100
circuit layers and will be executed 4000 shots while these
metrics for qulet 2 are 50 layers and 1000 shots. The QBroker
and these qulets can be defined as follows:
QBroker qBroker = new QBroker("QBroker");
List<int[]> ql1Edges = new ArrayList<>();
ql1Edges.add(new int[]{0, 1});
ql1Edges.add(new int[]{1, 2});
... [truncated]
QubitTopology ql2Topology = new QubitTopology(3,

↪→ ql2Edges);
ArrayList<String> qlGates = new ArrayList<>(

↪→ Arrays.asList("CX", "RZ", "X"));
Qulet qulet1 = new Qulet(0, 5, 100, 4000, qlGates

↪→ , ql1Topology);
Qulet qulet2 = new Qulet(1, 3, 50, 1000, qlGates,

↪→ ql2Topology);

Code 3. Sample code for modeling a QBroker and a Qulet

Step 4: Design and implement the customized
qulet scheduling policy. We implemented a simple
QuletSchedulerSpaceShare with First Come First Serve
(FCFS) scheduling policy by extending the QuletScheduler

class. In the initial implementation, we estimated the
approximate completion time (tq) of a qulet inside a quantum

node by implementing the following equation: tq =
γd

qs
× γs

where γd is the number of circuit layers in the qulet, qs is the
CLOPS of the quantum node, and γs is the number of shots
that qulet need to be executed. However, we acknowledge that
other factors, such as transmission time, classical runtime,
and queuing time, may also play a role in determining the
scheduling policy. We plan to consider these factors and
constraints in our future work on job scheduling (discussed
in Section VI-A).

Step 5: Submit quletList to qBroker and start the
simulation. Once all the simulation tasks are complete, stop the
simulation and print out the final result. The simulator shows
all events (with timestamps) happening during the simulation.
0.0: QBroker: Cloud Resource List received with 1

↪→ resource(s)
0.01: QBroker : Started scheduling all Qulets to

↪→ QDatacenter
0.01: QBroker: Sending Qulet 0 to QNode #0
0.01: QBroker: Sending Qulet 1 to QNode #0
153.86: QBroker: Qulet 0 result received
173.09: QBroker: Qulet 1 result received
173.09: QBroker: All Qulets executed. Finishing

Sample events in the simulation

As shown in the simulation results, two qulets are submitted to
the QNode at timestamp t = 0.01s (minimum interval between
2 events). The execution time of qulet 1 and qulet 2 in the
QNode are 153.85s and 19.23s, respectively. According to
the Space Share scheduling policy, qulet 2 is executed after
qulet 1 finish its execution. Therefore, the total execution time
of all qulets is 153.85 + 19.23 = 173.08s. More complex
scenario with advanced scheduling policies and qubit mapping



techniques (discussed in Section VI-B) can be implemented
to allow concurrent execution of multiple qulets, optimize the
total execution time and the resource utilization.

VI. POTENTIAL USE CASES AND EXTENSIONS

This section outlines potential applications and further ex-
tensions of iQuantum in modeling different quantum com-
puting research problems, including quantum job scheduling,
qubit mapping, and hybrid quantum-classical system.

A. Model and Design Quantum Job Scheduling Algorithms

Job scheduling (or task placement) is a critical aspect of
distributed system research, including quantum computing,
as it helps optimize resource utilization and minimize total
job completion time. In a cloud-based quantum system, the
responsibility of quantum job scheduling lies with the QBro-
ker, which is tasked with finding the most suitable quantum
system to execute a given qulet. To facilitate quantum job
scheduling design, users can leverage iQuantum to gener-
ate cloud workloads and design and evaluate adaptable job
scheduling algorithms for quantum cloud environments. By
utilizing iQuantum, researchers can simulate various quantum
computing scenarios and evaluate the effectiveness of different
job scheduling strategies, helping to improve the performance
and efficiency of the quantum computing system.

Fig. 6. Sample qulet scheduling logic with multiple constraints

A placement configuration of job γi ∈ Γ can be define as
σi = {γi, qck} where qk ∈ QC and 1 ≤ k ≤ |QC| is the
quantum computation node index. Several constraints must
be considered when designing quantum job scheduling for
specific situations. For example, requirements to place qulet
γi to a target quantum computer qT as follows (see Figure 6):

1) The total number of qubits of qT must be greater or
equal to the number of the required qubits to execute
qulet γi: qwT ≥ γw

i . This requirement must be satisfied
when selecting a quantum computation node to execute
a qulet. If the backend does not meet this requirement,
the qulet must either be rescheduled to another quantum
computation node or divided into multiple smaller cir-
cuits using techniques such as circuit cutting [26] to fit
the capacity of the targeted quantum system.

2) To execute qulet γi on quantum computation node qT , all
gates used in γi must be supported by qT , i.e., γg

i ∈ qgT .
If an unsupported gate is detected, it must be decom-
posed into multiple native gates of the target machine
(using circuit transpilation technique [27]). However,
this approach may increase the cost of execution since
the processing time may be longer.

3) The qubit connectivity in the circuit of γi must be
a subset of the qubit topology of the target quantum
system qT , i.e., γt

i ⊂ qtT . If the connectivity does
not meet this requirement, the input circuit must be
transpiled and swapped to match the qubit order of the
target quantum system. This process is known as qubit
mapping and is described in more detail in Section VI-B.

4) Other quality of service (QoS) constraints must also be
considered. For example, the estimated execution time
ti of qulet γi must be less than or equal to the expected
completion time declared by users, i.e., tγi

≤ γe
i .

Another constraint is to ensure that the quantum volume
of the target quantum system qT is large enough to
execute the qulet faithfully and accurately.

To estimate the total execution time tγi
of a quantum job

γi, multiple factors need to be assessed (as shown in Figure
2): tγi = tnγi

+ tcγi
+ tsγi

+ twγi
+ tqγi

, where tn is transmission
times (or network delay), tc is classical runtime to compile the
quantum circuit, ts is scheduling time (including transpilation
time if necessary), tw is the queuing time at the targeted
quantum system, and tq is the actual quantum execution time
inside the quantum system.

The key objective of quantum job scheduling is to minimize
the total execution time of all incoming jobs while optimizing
the resource utilization of the whole system. As quantum com-
puting is an emerging paradigm, job scheduling and resource
allocation remain active research areas. Several studies have
proposed strategies to tackle this issue. For example, Ravi
et al. [28] proposed a statistical-based strategy by analyzing
quantum job data over two years. Ngoenriang et al. [29] and
Kaewpuang et al. [30] proposed stochastic resource allocation
for distributed quantum computing under multiple uncertain-
ties of circuit characteristics. Commercial platforms such as
IBM Quantum currently use a fair-share algorithm to ensure
fairness in using quantum resources for the general public5.
As the quantum computing model becomes more well-defined
and supported by simulators such as iQuantum, we anticipate a
proliferation of new research endeavors focused on designing

5https://quantum-computing.ibm.com/lab/docs/iql/manage/systems/queue/



algorithms for job scheduling and resource allocation for
quantum computing.

B. Model and Design Qubit Mapping Strategies

Qubit mapping (or quantum circuit mapping) is a mecha-
nism that ensures the compatibility of quantum circuits with
the target quantum computer [31]. As discussed earlier, this
mechanism also plays an important role in quantum job
scheduling. Each gate-based quantum computer can have a
different qubit topology, which refers to the connectivity of
all qubits due to different system designs and technologies
used. For example, IBM Quantum Eagle chips have 127
partially connected qubits, while IonQ’s quantum computer
has 11 fully-connected qubits [32] (see Figure 7). A quantum
circuit can only be executed if its qubit connectivity can be
mapped to the qubit topology of the targeted quantum chip
and if the target quantum system supports all single-qubit and
multi-qubit gates in the circuit. Otherwise, circuit transpilation
techniques can be used to transform the given circuit to
match the qubit topology and gate set supported by the target
quantum device [33]. Although qubit mapping becomes a
challenging task when the number of qubits increases, it is an
essential approach for optimizing the utilization of quantum
cloud resources and enabling the concurrent processing of
multiple quantum circuits in today’s noisy quantum systems.

Fig. 7. Qubit Topology of (a) 127-qubit IBM Quantum Eagle
(ibm washington) and (b) 11-qubit IonQ’s quantum computer [32].

We plan to expand the capabilities of iQuantum by enabling
users to design and experiment with the circuit mapping tech-
nique. With this feature, users can explore various mapping
strategies and evaluate their effectiveness in terms of reducing
execution time and improving resource utilization on different
quantum devices. For example, in our sample simulation
scenario (see Figure 5), two qulets can be allocated simul-
taneously to ibmq oslo to maximize the quantum resource
utilization of this node and can reduce the total execution time.
However, when the number of qubits increases and connectiv-
ity among them in both quantum systems and qulets becomes
more complicated, the design of the qubit mapping algorithm
for concurrent qulets becomes more challenging, as shown in
some recent studies, such as [31], [34]. Hence, iQuantum can
serve as the testbed environment for experimenting with new
ideas in qubit mapping techniques.

C. Model Hybrid Quantum-Classical Computing Environ-
ments and Hybrid Task Orchestration Algorithms

Quantum computing is inevitably still in its infancy and
cannot replace classical computing systems completely in the
near future. Instead, quantum computing is expected to be a
complementary technique for classical computing, where each
technique will be to execute best-suited tasks to their respec-
tive advantages. Thus, the hybrid quantum-classical computing
system is a potential approach to leverage the capabilities of
both quantum and classical systems in the NISQ era [35]. This
paradigm leverages the strengths of classical computing for
tasks such as data pre-processing and post-processing while
delegating more computationally-intensive tasks to quantum
systems [21]. The outcomes of these quantum computations
can then be combined with classical processing to obtain the
final result. Figure 8 shows an example of hybrid quantum-
classical execution logic.

Fig. 8. An example of Hybrid Quantum-Classical Task Execution Logic

Each hybrid task comprises quantum and classical parts,
which can be decomposed and distributed to different back-
ends for execution. By building iQuantum on top of CloudSim
[11], we can leverage the existing features of CloudSim to
model classical cloud components, such as data centers, hosts,
virtual machines, containers, and cloudlets (classical tasks).
The remaining quantum components can be modeled using
iQuantum features and seamlessly integrated with classical
ones to form a hybrid system. We can design a hybrid task or-
chestration technique for scheduling both cloudlets and qulets
to their respective backend to optimize resource utilization and
total completion time for the whole system. As these cloudlets
and qulets can be either independent or dependent on each
other based on the application design, each task may need to
wait for its dependent task to be complete before performing
final aggregation or post-processing all outputs and generating
the final result. iQuantum is expected to provide a simulation
environment for modeling hybrid quantum-classical systems
and testing new hybrid task orchestration for these systems.



VII. RELATED WORK

Table I summarizes the overall comparison of our proposed
simulator and existing works. As far as we know, no simulator
can be used to model systems and tasks in hybrid quan-
tum computing environments for designing scheduling and
resource orchestration algorithms like our proposed simulator.

TABLE I
A FEATURE COMPARISON OVERVIEW OF RELATED WORKS WITH OURS

Simulation Systems and Tasks Modeling
Simulators Focus Quantum Cloud Fog/Edge
QuNetSim [36] Quantum

Network
E × ×

NetSquid [37] Quantum
Network

E × ×

QuEST [38] Quantum
Operation

E × ×

QXTools [39] Quantum
Operation

E × ×

PAS [40] Quantum
Operation

E × ×

iQuantum
(Our proposal) System

Modeling
S ✓ ✓

✓: Supported; ×: Unsupported; E: Emulation; S: Simulation & Modeling
(Cloud/edge features derived from CloudSim and iFogSim)

In the classical computing domain, CloudSim [11] is a
popular simulator for modeling cloud computing environ-
ments. Similarly, iFogSim [41] is a well-known simulator for
modeling edge and fog computing environments. However,
these simulators do not support modeling quantum computing
environments, as hybrid quantum computing involves the
collaboration of quantum and classical resources. Therefore,
this proposed iQuantum will help overcome the limitations
of current modeling simulators. In fact, integrating iQuantum
features in CloudSim and iFogSim will enable the modeling
and simulation of quantum computing environments with
seamless use of edge and cloud resources (i.e., both classical
and quantum nodes) for real-time IoT applications. Regard-
ing quantum computing environments, several studies have
focused on quantum network protocol simulation. Diadamo
et al. [36] proposed QuNetSim as a framework for simulating
different quantum network protocols, such as quantum key
distribution and quantum routing. As QuNetSim relies on other
qubit simulators (such as SimulaQron [42], ProjectQ [43],
and QuTiP [44]), its main objective is to develop quantum
network protocol simulation rather than distributed quantum
modeling. Similarly, NetSquid [37] is a discrete-event-based
network simulator for modeling and simulating quantum net-
work protocols. Jones et al. proposed QuEST [38] as another
open-source software for simulating the behavior of quantum
systems with high performance. QXTools [39] is another Julia-
based framework for simulating distributed quantum circuits
using the tensor networking approach. Also, Bian et al. [40]
proposed PAS as a lightweight quantum simulator that works
like other qubit simulators. For clarification, we categorized

these tools as Emulation frameworks as they support emulating
the physical operation and functionality of actual quantum
devices, while our framework focuses on modeling and simu-
lation of quantum computing environments using the discrete-
event simulation technique. Therefore, our new approach for
the iQuantum simulator can empower researchers to conduct
performance evaluation experiments of system design and
resource management algorithms for quantum computing.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed iQuantum as a first-of-its-kind
simulator for modeling and simulation of quantum computing
environments. We introduced the system model of key ele-
ments in quantum computing systems, including quantum data
centers, quantum computation nodes, qulets, and quantum bro-
kers. We also presented the proof-of-concept implementation
and a simulation example to validate the proposed simulator.
Furthermore, we discussed potential use cases and further
development of iQuantum in terms of supporting research
in algorithm development for quantum job scheduling, qubit
mapping, and modeling hybrid quantum environments.

As quantum computing evolves, well-known service models
and system algorithms are expected to become popular. We
will improve our simulator to support these advances in
quantum computing. For example, we will allow modeling
multiple QPUs in each quantum node. Other characteristics of
near-term quantum devices, such as noises, error correction,
quantum network communications, and the pricing model,
will also be addresse in the future development of iQuantum.

Software availability: The iQuantum software with
the source code can be accessed from our website
(clouds.cis.unimelb.edu.au/iquantum). Sample programs
and tutorials illustrating the use of iQuantum are also
available on the project website.
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