
iGateLink: A Gateway Library

for Linking IoT, Edge, Fog, and Cloud

Computing Environments

Riccardo Mancini, Shreshth Tuli, Tommaso Cucinotta, and Rajkumar Buyya

Abstract In recent years, the Internet of Things (IoT) has been growing in popular-

ity, along with the increasingly important role played by IoT gateways, mediating the

interactions among aplethora of heterogeneous IoTdevices and cloud services. In this

paper, we present iGateLink, an open-source Android library easing the development

of Android applications acting as a gateway between IoT devices and edge/fog/cloud

computing environments. Thanks to its pluggable design,modules providing connec-

tivity with a number of devices acting as data sources or fog/cloud frameworks can

be easily reused for different applications. Using iGateLink in two case studies repli-

cating previous works in the healthcare and image processing domains, the library

proved to be effective in adapting to different scenarios and speeding up development

of gateway applications, as compared to the use of conventional methods.

Keywords Internet of Things · Gateway applications · Edge computing · Fog

computing · Cloud computing

1 Introduction

Recently, the Internet of Things (IoT) has gained significant popularity among both

industry and academia, constituting a fundamental technology for creating novel

computing environments like smart cities and smart healthcare applications, which

pose higher requirements on the capabilities of modern computing infrastructures [1,

2]. Cloud computing allowed offloading complex and heavyweight computations,

R. Mancini · S. Tuli (B) · R. Buyya

Cloud Computing and Distributed Systems (CLOUDS) Lab, School of Computing and

Information System, The University of Melbourne, Melbourne, Australia

e-mail: shreshthtuli@gmail.com

R. Mancini · T. Cucinotta

Scuola Superiore Sant’Anna, Pisa, Italy

S. Tuli

Department of Computer Science and Engineering, Indian Institute of Technology, Delhi, India

© Springer Nature Singapore Pte Ltd. 2021

D. Mishra et al. (eds.), Intelligent and Cloud Computing,

Smart Innovation, Systems and Technologies 194,

https://doi.org/10.1007/978-981-15-5971-6_2

11



12 R. Mancini et al.

Fig. 1 Example scenario in

which one or more IoT

devices communicate to the

cloud/fog through a gateway

device

including big-data processing pipelines, to remote data centers [1]. However, the

exponential growth of connected IoT devices and the forecast in the produced data

volumes for the upcoming years [3] pushed industry and academia to look into opti-

mized solutions, where virtual machines are dropped in favor of more lightweight

containers [4] and, more importantly, decentralized solutions are employed, where

computing happens at the edge of the network, giving rise to the fog computing

paradigm. This leads to reduced latency, deployment costs, and improved robust-

ness [5], so in recent years many fog/cloud frameworks have been proposed lever-

aging computing resources both at the edge of the network and in cloud data centers

[6, 7].

In nowadays IoT and fog computing frameworks, a crucial component is the

gateway device which enables communication of users, sensors, and actuators with

edge devices and cloud resources [8]. Gateway devices could be small embedded

computers, smart routers, or even smartphones. In IoT, the number of sensors and

actuators has increased tremendously in the last fewyears [9, 10], including advanced

gateway devices that emerged in recent fog environments [11]. Even though fog

computing frameworks greatly simplify engineering gateway functionality, they do

not focus on making generic gateway interfaces for seamless integration with diverse

applications, user needs, and computation models.

Contributions. This paper presents the design and implementation of iGateLink, an

open-source modular fog–cloud gateway library easing the development of applica-

tions running onAndroid-based IoT gateway devices. It provides common core func-

tionalities, so as to let developers focus on the application-specific code, for example,

implementing communications with specific sensors or protocols to exchange data

with specific fog or cloud systems. iGateLink is specific to the mentioned IoT-fog

use case but generic enough in order to allow simple extensions to be used in dif-

ferent IoT-fog integrated environments as shown in Fig. 1. It is also easy to use

through a simple API and supports integration of different frameworks within the

same application, including the possibility to run the required execution locally.

iGateLink has been applied to two use cases, one dealing with an oximeter-based

healthcare application for patients with heart diseases, and the other one for low

response time object detection in camera images. The presented framework proved

to be effective for reducing development complexity and time, when comparing with

existing practices in coding IoT gateway applications.



iGateLink: A Gateway Library for Linking IoT … 13

2 Related Work

Due to the vast heterogeneity in the Internet of Things, the importance of the IoT

gateway in enabling the IoT has been acknowledged by several works [12–14].

Some authors propose IoT gateways to act only as routers, e.g., encapsulating raw

data coming from Bluetooth devices in IPv6 packets to be sent to the cloud [15].

However, in order to enable more complex scenarios, offload computations, and/or

save network bandwidth, IoT gateways need to become “smart” by pre-processing

incoming data from the sensors [16]. In this context, the use of smartphones as

IoT gateways has been proposed [17, 18]; however, those works do not take into

consideration the most recent fog and edge computing paradigms.

Regarding efforts to integrate the IoT with fog and edge computing, Aazam

et al. [8] proposed a smart gateway-based communication that utilizes data trimming

and pre-processing, along with fog computing in order to help lessen the burden

on the cloud. Furthermore, Gia et al. [19] developed a Smart IoT gateway for a

smart healthcare use case. Finally, Tuli et al. [6] developed FogBus an integration

framework for IoT and fog/cloud. However, their work does not provide a generic

application able to integrate IoT and fog/cloud frameworks, building their application

from the ground up, tailored to their specific use case.

Finally, it is worthwhile to note that none of the previously mentioned works

focuses on the design and implementation of the software that is required to run in

the IoT gateway, especially in the case of an Android device, in order to make it

generic and adaptable to many different scenarios, as this paper does.

3 System Model and Architecture

The principles discussed in Sect. 1 have been addressed by using a modular design,

with a generic core on which different modules can be loaded.

A variation of the publish/subscribe paradigm [20] has been used, where the

components collecting data from sensors and the ones sending it to the fog/cloud

are the publishers and are called Providers, while the subscribers are the auxiliary

components that manage the execution of the publishers or UI components that

show incoming data to the user. The publish/subscribe paradigm is realized through

an intermediate component that stores the incoming data from the Providers, called

Store, and notifies the subscribers, called Triggers, using the observer design pattern.

A Store can also be thought of as the topic to which the Provider publishes data,

while the Triggers are its subscribers.

In the considered scenario, a Provider may be started either as a result of a user

interaction (e.g., a button click) or as a consequence of external event (e.g., incoming

Bluetooth data). It can also be started with some input data or with no data at all.

The proposed model does not assume any of the aforementioned cases, employing a

generic design, able to adapt many different scenarios. While the input of a Provider



14 R. Mancini et al.

can vary, the result is always data that needs to be stored in a Store. Whenever

a Provider stores new data to a Store, all Triggers associated with the Store are

executed. The most common use of a Trigger is to start another Provider but it could

also be used, for example, to update the UI.

These design choices enabled (1) modularity, since Providers and Triggers can

be independently and easily plugged and unplugged; (2) flexibility, since this model

enables even more complicated use cases than the one mentioned above; and (3) ease

of use, thanks to code reusability.

Furthermore, several Providers providing the same data (i.e., publishing to the

same Store) can be active simultaneously, for example, Providers for different

fog/cloud frameworks and/or local execution. In this case, it is useful to define a

new component, the Chooser, whose function is to select a specific Provider among

a list of equivalent ones in order to produce data. By doing so, it is possible to, for

example, use another Provider when one is busy or to fallback to another Provider

if one fails.

3.1 Implementation Details

Based on the model described above, we have implemented the iGateLink library

for Android devices. The library is open-source and available at https://github.com/

Cloudslab/iGateLink. From a high-level point of view (Fig. 2), the library is com-

posed of a platform-independent core written in Java, an Android-specific module

which extends the core to be efficiently used in Android and several extension mod-

ules that provide complimentary functionalities.

Core. The core of the library is composed of the following classes: ExecutionMan-

ager, Data, Store, Provider, Chooser, and Trigger. Refer to Fig. 3 for a conceptual

overview of their interactions. The ExecutionManager class coordinates the other

components and provides an API for managing them. The Data class is not properly

a component but is the base class that every data inside this library must extend. It is

characterized by anid and a request_id: the formermust be unique between data

of the same Store; the latter is useful for tracking data belonging to the same request.

The Store class stores Data elements and provides two operations: retrieve for

Fig. 2 High-level overview

of the library software

components

Core

Android-specific modules

Extension modules
(bluetooth, camera, aneka,

fogbus, ...)

User Application



iGateLink: A Gateway Library for Linking IoT … 15

Fig. 3 Simplified UML

class diagram of the core

components

Store

Execution
Manager

ProviderTrigger Chooser

p
u

b
lis

h
e

s
 t

o

starts chooses

1..*

1

1

1

0..*

1

1..*

1..*

ru
n

s
 

1

0..*

calls

retrieving previously stored Data and store for storing new data. Every Store is

uniquely identified by a key. There can be multiple Stores for the same Data type.

Furthermore, a Store can have one or more Triggers associated with it that are called

whenever new data is stored. For example, a common use for a Trigger is starting a

Provider with the recently stored Data from another Provider. The Provider class

takes some Data in input and produces some other Data in output. Every Provider

is uniquely identified by a key. There can be multiple Providers for the same Store

but a Provider can only use one Store at a time. A Provider can be started by call-

ing its execute method either through ExecutionManager’s runProvider or

produceData. In the latter case, the user specifies only which Data it wants to be

produced (by means of a Store key) and a suitable Provider will be executed. In case

there are two or more Providers for the same Store, a Chooser will be used.

Android-specific modules. When developing such an application on Android, a com-

mon problem is that using worker threads for time-consuming tasks that need to

execute in the background still lets the Android runtime kill the app as needed, if not

properly managed. This is addressed by providing the AsyncProvider class, which

makes use of the AsyncTask class.1 Furthermore, the ExecutionManager is hosted

within an Android Service, which, if configured correctly as a foreground service,

prevents it from being killed by the Android runtime.

4 Case Studies

In order to test the library and demonstrate its applicability to real applications,

two case studies have been developed. They both reproduce existing works, namely,

FogBus [6] and EdgeLens [7]. The first application connects to a Bluetooth oximeter

to collect and analyze its data. The second application takes a photo and sends it to

the fog or cloud for object detection.

In the original works, both applications have been developed using MIT App

Inventor, which eases and speeds up the development but provides only a very sim-

ple API that cannot be adapted to more complicated use cases. Furthermore, every

1It provides a simple API for scheduling a new task and executing a custom function on the main

thread before and after the execution.



16 R. Mancini et al.

Fig. 4 Oximeter demo app:

on the left, configuration

screen; on the right, live data

and analysis results screen

application needs to be built from the ground up even though many components

may be in common, especially when using the same input method or framework. By

developing the applications using iGateLink, both modularity and fast development

can be achieved.

Oximeter-based healthcare application The bluetoothdemo application can be used

to detect hypopnea in a patient by collecting data from an oximeter. The application

consists of four screens: (1) the configuration screen (left picture in Fig. 4); (2) the

Bluetooth device pairing screen; (3) the Bluetooth device selection screen through

which the user chooses the device whose data to show; and (4) the data and analysis

result screen (right picture in Fig. 4).

Data is collected in real time from the oximeter using Bluetooth LE. In order to do

that, the Bluetooth module has been developed which provides an implementation

of the Provider which registers to the GATT characteristics in order to receive push

notifications from the Bluetooth device. Raw data received from the oximeter is then

converted to a Data object and stored.

The user can then upload the data to FogBus [6] by tapping the “Analyze” but-

ton in order to get the analysis results. Data is sent using an HTTP request to the

FogBus master node which forwards the request to a worker node (or the cloud)

and then returns the result to the application. This simplifies the development of the

application, since only one HTTP request is required.

Object detection applicationThe camerademo application can be used to take a photo

and run an object detection algorithm on it, namely, Yolo [21]. The user interface is

very simple, with just a screen showing the camera preview and a button (Fig. 5).

When the button is clicked, the photo is taken and sent to the fog/cloud for object

detection. When the execution is terminated, the resulting image is downloaded and

shown to the user.

In order to integrate Android camera APIs with iGateLink, the camera module

has been developed, which provides an implementation of a Provider, namely, Cam-

eraProvider, that takes a photo when its executemethod is called. When the photo is



iGateLink: A Gateway Library for Linking IoT … 17

Fig. 5 Object detection

demo app: on the left,

preview screen; on the right,

result screen

stored, two providers are executed: BitmapProvider that converts the photo from an

array of bytes to a Bitmap object so that it can be plug in an ImageView and shown

to the user, and one of EdgeLensProvider or AnekaProvider that executes the object

detection on either EdgeLens [7] or Aneka [22]. The result of the object detection

is, again, an array of bytes so it goes through another BitmapProvider before being

shown to the user.

The EdgeLensProvider is responsible for uploading the image to the EdgeLens

framework [7] and downloading the result once the execution is completed.EdgeLens

has a similar architecture to FogBus but, differently from it, communication between

client andworker is direct, insteadof beingproxiedby themaster. TheusualEdgeLens

workflow is (1) query the master to get the designated worker, (2) upload the image

to the worker, (3) start execution, and (4) download the result when the execution is

terminated.

The AnekaProvider is responsible for execution in Aneka [22] through its REST

APIs for task submission. The image is first uploaded to an FTP server (which could

be hosted by the master node itself), then the object detection task is submitted to

Aneka, whose master node chooses a worker node to submit the request to. The

worker downloads the image from the FTP server, runs the object detection on it,

and uploads the resulting image back to the FTP server. In the meanwhile, the client

repeatedly polls themaster node in a loop, waiting for the submitted task to complete.

When it does, the client finally downloads the result which is displayed to the user.

5 Conclusions and Future Work

In this paper, we presented a new Android library, iGateLink, which enables devel-

opers to easily write new Android applications linking IoT, edge, fog, and cloud

computing environments, as it comes with a set of highly reusable modules for com-

mon IoT scenarios.



18 R. Mancini et al.

We demonstrated, bymeans of two use cases, that the library can adapt to different

applications and is easy to use, increasing the engineering simplicity of application

deployments and making such systems robust and easy to maintain.

As part of future work, more modules could be added to the library to cover

the most common use cases, for example, the current version of the library does

not include any module providing support for Bluetooth devices (currently only

Bluetooth low energy is supported), built-in sensors (for example, accelerometer,

gyroscope, magnetometer, luminosity), touch events, and audio recording. Further-

more, more fog/cloud frameworks could be integrated within the library, making it

like plug-and-play software for end users.

Finally, while this paper focuses on the advantages, the library brings in terms of

development time, a performance evaluation, and a comparisonwith existing systems

could be carried out in the future.

References

1. Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applications and issues. In: Pro-

ceedings of the 2015 Workshop on Mobile Big Data, pp. 37–42. ACM (2015)

2. Gill, S.S., Tuli, S., Xu, M., Singh, I., Singh, K.V., Lindsay, D., Tuli, S., Smirnova, D., Singh,

M., Jain, U., et al.: Transformative effects of IoT, blockchain and artificial intelligence on cloud

computing: evolution, vision, trends and open challenges. Internet Things 100118 (2019)

3. Ericsson Mobility Report (2019). https://www.ericsson.com/en/mobility-report

4. Cucinotta, T., Abeni, L., Marinoni, M., Balsini, A., Vitucci, C.: Reducing temporal interference

in private clouds through real-time containers. In: 2019 IEEE International Conference on Edge

Computing (EDGE), pp. 124–131 (2019)

5. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of

things. In: Proceedings of the First Edition of theMCCWorkshop onMobile CloudComputing,

pp. 13–16. ACM (2012)

6. Tuli, S., Mahmud, R., Tuli, S., Buyya, R.: FogBus: A blockchain-based lightweight framework

for edge and fog computing. J. Syst. Softw. 154, 22–36 (2019)

7. Tuli, S., Basumatary, N., Buyya, R.: EdgeLens: Deep learning based object detection in inte-

grated IoT , fog and cloud computing environments. In: 4th IEEE International Conference on

Information Systems and Computer Networks (2019)

8. Aazam, M., Huh, E.N.: Fog computing and smart gateway based communication for cloud of

things. In: 2014 International Conference on Future Internet of Things and Cloud, pp. 464–470.

IEEE (2014)

9. Singh, D., Tripathi, G., Jara, A.J.: A survey of internet-of-things: Future vision, architecture,

challenges and services. In: 2014 IEEE World Forum on Internet of Things (WF-IoT), pp.

287–292. IEEE (2014)

10. Lee, I., Lee, K.: The internet of things (iot): Applications, investments, and challenges for

enterprises. Bus. Horizons 58(4), 431–440 (2015)

11. Whiteaker, J., Schneider, F., Teixeira, R., Diot, C., Soule, A., Picconi, F., May, M.: Expanding

home services with advanced gateways. ACM SIGCOMM Comput. Commun. Rev. 42(5),

37–43 (2012)

12. Chen, H., Jia, X., Li, H.: A brief introduction to iot gateway. In: IET International Conference

on Communication Technology and Application, pp. 610–613 (2011)

13. Datta, S.K., Bonnet, C., Nikaein, N.: An iot gateway centric architecture to provide novel m2m

services. In: 2014 IEEE World Forum on Internet of Things (WF-IoT), pp. 514–519. IEEE

(2014)



iGateLink: A Gateway Library for Linking IoT … 19

14. Kang, B., Kim, D., Choo, H.: Internet of everything: a large-scale autonomic iot gateway. IEEE

Trans. Multi-Scale Comput. Syst. 3(3), 206–214 (2017)

15. Zachariah, T., Klugman, N., Campbell, B., Adkins, J., Jackson, N., Dutta, P.: The internet of

things has a gateway problem. In: Proceedings of the 16th International Workshop on Mobile

Computing Systems and Applications, pp. 27–32. ACM (2015)

16. Saxena, N., Roy, A., Sahu, B.J., Kim, H.: Efficient iot gateway over 5g wireless: a new design

with prototype and implementation results. IEEE Commun. Mag. 55(2), 97–105 (2017)

17. Kamilaris, A., Pitsillides, A.: Mobile phone computing and the internet of things: a survey.

IEEE Internet Things J. 3(6), 885–898 (2016)

18. Aloi, G., Caliciuri, G., Fortino, G., Gravina, R., Pace, P., Russo, W., Savaglio, C.: A mobile

multi-technology gateway to enable iot interoperability. In: 2016 IEEE First International Con-

ference on Internet-of-Things Design and Implementation (IoTDI), pp. 259–264. IEEE (2016)

19. Gia, T.N., Jiang, M., Rahmani, A.M., Westerlund, T., Liljeberg, P., Tenhunen, H.: Fog

computing in healthcare internet of things: a case study on ecg feature extraction. In:

CIT/IUCC/DASC/PICom 2015, pp. 356–363. IEEE (2015)

20. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of pub-

lish/subscribe. ACM Comput. Surv. (CSUR) 35(2), 114–131 (2003)

21. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time

object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 779–788 (2016)

22. Vecchiola, C., Chu, X., Buyya, R.: Aneka: a software platform for .net-based cloud computing.

High Speed Large Scale Sci Comput 18, 267–295 (2009)


