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Abstract—Microservice architectures are increasingly used to
modularize IoT applications and deploy them in distributed
and heterogeneous edge computing environments. Over time,
these microservice-based IoT applications are susceptible to
performance anomalies caused by resource hogging (e.g., CPU
or memory), resource contention, etc., which can negatively
impact their Quality of Service and violate their Service Level
Agreements. Existing research on performance anomaly detection
in edge computing environments is limited primarily due to
the absence of publicly available edge performance anomaly
datasets or due to the lack of accessibility of real edge setups
to generate necessary data. To address this gap, we propose
iAnomaly: a full-system emulator equipped with open-source
tools and fully automated dataset generation capabilities to
generate labeled normal and anomaly data based on user-defined
configurations. We also release a performance anomaly dataset
generated using iAnomaly, which captures performance data for
several microservice-based IoT applications with heterogeneous
QoS and resource requirements while introducing a variety of
anomalies. This dataset effectively represents the characteristics
found in real edge environments, and the anomalous data in
the dataset adheres to the required standards of a high-quality
performance anomaly dataset.

Index Terms—Edge computing, Microservices, IoT, Perfor-
mance anomaly detection, Datasets, Emulators

I. INTRODUCTION

Edge-cloud integrated environments consist of devices with
heterogeneous computing, storage, and networking capabili-
ties. Microservice architectures are increasingly used to mod-
ularize IoT applications and deploy them in these distributed
environments to meet the Quality of Service (QoS) require-
ments of each module while optimizing resource usage [1],
[2]. Over time, these microservice-based IoT applications are
susceptible to performance anomalies caused by resource hog-
ging (e.g., CPU or memory) and resource contention, which
can negatively impact their QoS and violate their Service
Level Agreements [3]–[5]. Therefore, it is crucial to conduct
performance anomaly detection on microservice-based IoT
applications in edge computing environments and eventually
mitigate such anomalies.

Currently, there is limited research on performance anomaly
detection in edge computing environments. One of the main
reasons for this is the absence of publicly available edge

performance anomaly datasets, which are crucial for training
and evaluating algorithms proposed in such research. The
few existing studies rely on cloud datasets [6], [7] or data
collected from private edge setups [3], [4], [8] to evaluate their
proposed approaches. The cloud datasets have been collected
from applications (mostly web applications) deployed on cloud
servers. However, these cloud servers lack the heterogeneity
found in edge devices in terms of computing, storage, and
networking capabilities. Additionally, the microservices in
cloud applications do not demonstrate the same diversity
in terms of QoS and resource requirements as those in an
IoT application. As a result, cloud datasets fail to capture
characteristics inherent to real edge environments. On the other
hand, private edge setups have not been publicly released and
lack detailed information, which makes it difficult to replicate
their environments, generate the necessary data, and reproduce
the results of the anomaly detection experiments. It also
hinders research in the field because not everyone has access
to a real edge-cloud deployment for data collection purposes.
Hence, relying on cloud datasets and private edge setups
does not facilitate performance anomaly detection research in
edge computing environments, thus posing a challenge to the
progression of the field. Therefore, there is an opportunity
to create a performance anomaly dataset that reflects the
characteristics of edge computing environments and release
the setup used for dataset generation.

Edge computing emulators are a suitable platform to gener-
ate performance anomaly datasets. They are more representa-
tive of real edge environments when compared to simulators,
and are more easily accessible and cost-effective when com-
pared to real edge deployments. The main aim of existing
edge computing emulators is to create a staging environment
that achieves compute and network realism similar to a real
edge environment and facilitate testing of IoT applications be-
fore deploying them into production [9]–[14]. However, these
general-purpose emulators do not incorporate in their design,
tools and mechanisms required to autonomously and trans-
parently generate large-scale performance anomaly datasets
useful for model training and evaluation. For example, they
lack adequate monitoring tools to collect performance and
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system-level metrics, workload generation tools to generate
and capture normal performance data, and chaos engineering
mechanisms to inject performance anomalies into applications.

This work addresses this gap by presenting the iAnomaly
framework, a performance anomaly-enabled full-system emu-
lator that accurately models an edge computing environment
hosting microservice-based IoT applications. iAnomaly is de-
signed with open-source tools and provides fully automated
dataset generation capabilities to generate labeled normal (data
collected under normal conditions without anomalies) and
anomaly (data collected under anomalous conditions) data
based on user-defined configurations. In addition, we present
a performance anomaly dataset generated using the proposed
framework. The dataset captures performance data for several
microservice-based IoT applications with heterogeneous QoS
and resource requirements across a wide range of domains,
software architectures, service composition patterns, and com-
munication protocols by introducing a variety of client/sensor-
side as well as server-side anomalies. To the best of our
knowledge, this multivariate dataset is the first open-source
edge performance anomaly dataset.

The analysis of the dataset showed that the microservices
within it vary in terms of their QoS and resource usage during
regular operation, thus successfully capturing the characteris-
tics of a real edge dataset. Further analysis confirmed that the
anomalous data in the dataset meets the necessary standards
for a high-quality performance anomaly dataset. This includes
having an anomaly ratio comparable to other standard anomaly
datasets and the dataset’s non-triviality.

The rest of the paper is organized as follows: Section
II reviews the existing related works. Section III presents
the architecture of the iAnomaly toolkit, while section IV
discusses the implementation aspects of iAnomaly. Section V
provides details of the generated performance anomaly dataset
followed by an analysis of the dataset. Section VI concludes
the paper and draws future research directions.

II. RELATED WORK

Out of the existing research studies conducted around per-
formance anomaly detection in edge computing environments,
Becker et al. [3], Soualhia et al. [4], and Skaperas et al. [8]
evaluated their proposed approaches using data collected from
private edge setups. However, the lack of detailed informa-
tion about these private edge setups makes it challenging to
reproduce their environments and generate the necessary data
to replicate the results of their anomaly detection experiments.
Tuli et al. [6] evaluated their proposed approaches using two
publicly available cloud datasets: the Server Machine Dataset
(SMD) collected from a large Internet company [15], and
the Multi-source Distributed System (MSDS) dataset gener-
ated from microservices deployed on a cluster of bare metal
nodes with homogeneous computing, storage, and network
capabilities [16]. As a result, these cloud datasets are unable
to accurately represent the properties inherent to real edge
environments. Tuli et al. also conducted a further evaluation
on three self-created datasets collected from a private edge

setup. However, similar to the rest of the literature, they also
do not provide sufficient details required for reproducing the
data generation environments. Therefore, the reliance on cloud
datasets and private edge setups presents a challenge to the
progression of the field of performance anomaly detection
research in edge computing environments. Additionally, there
is a lack of publicly available normal traces from real edge
environments into which anomalies can be injected to generate
synthetic datasets. We further explore this gap in current
research by creating and releasing a performance anomaly
dataset that reflects the characteristics of edge computing
environments along with the setup used for dataset generation.

There are three options of platforms for generating a per-
formance anomaly dataset. They are simulators, emulators,
and real edge environments. Out of these, emulators employ
real applications deployed on testbed hardware to emulate
real-world infrastructure configurations [14], while simulators
do not support real-world IoT protocols and services [10].
Simulations make a number of simplifications that may not
always hold true, especially with an infrastructure as dynamic
as edge computing [9]. Most simulators lack detailed network
simulation capabilities and focus on specific aspects of edge
modeling, such as service scheduling [14]. Therefore, we
identify emulators as the most suitable platform for generating
data as they provide a higher Degree of Realism (DoR) than
simulators and because they enable the generation of large-
scale data in a cost-effective manner as opposed to real edge
environments.

Existing edge computing emulators can be organized under
two main categories based on the level of virtualization
and abstraction used to model the edge devices. They are
1) full-system emulators and 2) container-based emulators.
In container-based emulators, edge devices are represented
as docker containers, while full-system emulators provide a
higher granularity of emulation by allowing the deployment
of multiple containerized microservices within edge devices
modeled as virtual machines (VMs). Early emulators such as
EmuFog [9], FogBed [10], MockFog [11], and EmuEdge [12]
do not support the microservice-level granularity of IoT appli-
cations. Fogify [13] is the first edge emulator to support the
microservice-level granularity of IoT applications. However,
it is limited to deploying only a single microservice per edge
device due to being a container-based emulator. Extending
such emulators with dataset generation capabilities restricts
data collection to device-level anomalies only. In contrast,
iContinuum [14] is a full-system emulator with support for
microservices deployment. Unlike container-based emulators,
full-system emulators provide a higher level of realism and
also allow the injection of both device-level and microservice-
level anomalies. Consequently, our research aims to bridge the
identified gap by developing a full-system emulator with per-
formance anomaly dataset generation capabilities. A compar-
ison of performance anomaly dataset generation capabilities
in existing edge emulators [9]–[14] along with our proposed
iAnomaly toolkit is shown in Table I.

The main intention of existing emulators is to test IoT
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TABLE I
COMPARISON OF PERFORMANCE ANOMALY DATASET GENERATION CAPABILITIES IN EDGE EMULATORS

Edge emulator/
toolkit

Main objective of work Fault injec-
tion capabili-
ties

Performance
anomaly
dataset
generation
capabilities

Emulation capabilities/ ar-
chitecture

Microservice
support

Applications

EmuFog [9] Testing IoT apps in a staging environment before
deploying into the real edge, Automatic place-
ment of fog nodes.

× × Focused on network emula-
tion

× Not reported

FogBed [10] Creating an environment to conduct resource
management/service orchestration experiments.

× × Focused on network emula-
tion, Container-based emu-
lator

× Healthcare prevention and monitoring
system

MockFog [11] Testing IoT apps in a staging environment before
deploying into the real edge.

× × Full-system emulator × Ambulance cars communicating vital
measures to hospitals

EmuEdge [12] Achieving compute and network realism of a real
edge environment.

× × Full-system emulator × Not reported

Fogify [13] Testing IoT apps in a staging environment before
deploying into the real edge.

✓ × Container-based emulator ✓ Smart transport applications

iContinuum [14] Achieving compute and network realism of a real
edge environment, Intent-based emulation.

✓ × Full-system emulator ✓ Image processing application

iAnomaly
(proposed)

Creating a toolkit to generate performance
anomaly datasets.

✓ ✓ Full-system emulator ✓ Face detection/recognition application,
Industrial machinery predictive main-
tenance application, Location retrieval
application

applications in a staging environment before deploying them
into production. They are designed to achieve the compute and
network realism of an edge environment, and the evaluation
of these studies is also focused on those aspects. Modern
emulators such as Fogify [13] and iContinuum [14] also have
the capability to perform fault injections. However, the main
intention of such fault injection capabilities is not to collect
data for performance anomaly detection model training but
to test the fault tolerance and availability aspects of IoT
applications in the face of faults.

Although both Fogify and iContinuum have implemented
and evaluated fault injection capabilities, neither of them
has specified the tools used to inject anomalies. Since these
emulators only conducted injections of a limited number of
anomaly types, it can be inferred that they likely utilized
basic tools, such as stress-ng, for this purpose. However, such
mechanisms do not allow for the introduction of failures or
disruptions in a controlled manner.

Both Fogify and iContinuum are capable of collecting both
system and application metrics during monitoring. However,
Fogify utilizes an in-house developed monitoring tool for this
purpose, whereas open-source tools are preferred in emulators
to support interoperability and transparency of code. iCon-
tinuum employs sFlow-RT, an open-source tool, to capture
network and host-level metrics such as CPU and memory
usage. It also integrates sFlow agents with Prometheus, another
open-source tool, to collect application metrics. While Fogify
requires explicit instrumentation, i.e. manually embedding
monitoring code within the source code, in order to capture
performance metrics, sFlowRT can only capture application
metrics without explicit instrumentation from IoT applications
that communicate via HTTP protocol. As most IoT appli-
cations deployed in edge computing environments are not
limited to HTTP protocol and use a variety of protocols such
as MQTT, RTSP, etc., it is important to be able to collect
metrics from applications communicating via such non-HTTP
protocols as well.

Fogify has not provided details of its workload genera-

tion tool, while iContinuum uses Locust for workload gen-
eration. However, Locust primarily focuses on generating
HTTP/HTTPS workloads, while it is important to incorporate a
workload generation tool supporting a wide range of protocols,
not just HTTP.

Consequently, it is evident that the current emulators lack
the necessary tools for generating performance anomaly data.
These tools include a monitoring tool for collecting metrics,
a workload generation tool for creating normal performance
data, and a chaos engineering tool for injecting performance
anomalies. Identifying this research gap, our paper aims to
address it by developing a toolkit with an emulator that incor-
porates a set of open-source tools for generating performance
anomaly datasets.

In addition to finding the best open-source tools for gen-
erating performance anomaly datasets and creating a full-
system emulator with performance anomaly dataset generation
capabilities, we also integrate automated dataset generation
features into our proposed iAnomaly toolkit. Moreover, as
shown in Table I, most emulators have released only one IoT
application which they used in their experiments. However, we
generate (and release) an open-source performance anomaly
dataset using iAnomaly by deploying three IoT applications
consisting of microservices with varying QoS and resource
requirements. These applications span a wide range of do-
mains, software architectures, service composition patterns,
and communication protocols.

III. IANOMALY ARCHITECTURE

Figure 1 depicts the architecture of iAnomaly. At the core
of the framework is a full system emulator that comprises
multiple distinct layers with a set of components to build
all the layers from infrastructure to applications. The in-
frastructure layer hosts a diverse array of computing and
networking resources. While the heterogeneity of compute
nodes can be emulated using Virtual Machines (VM) with
different resource capacities in the cloud, a network emulator
is used to construct the network topology (by creating virtual
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Fig. 1. System architecture of iAnomaly

switches and network elements) and simulate the network
within the infrastructure layer. Users can define the appli-
cation structure of the microservice-based IoT applications
through the application layer. The middleware layer of a full-
system emulator manages the deployment and operation of
applications across the emulated infrastructure. Its control
plane consists of a cluster manager/orchestrator that utilizes
containerization and orchestration technologies to manage the
computing cluster and its resources, and a network controller
that uses Software-Defined Networking (SDN) technologies to
manage the network (such as effectively regulating the network
flow while considering resource usage conditions).

In addition to a full system emulator, iAnomaly includes
components to facilitate the data generation and collection
process within its middleware layer. These components consist
of a monitoring module, a workload generation tool, and a tool
for injecting anomalies.

The monitoring module is responsible for gathering system
and application metrics from the deployed microservices. The
collected data will be stored in a database and retrieved
back through queries when creating the dataset. An important
requirement of the monitoring tool is to be able to collect
data from IoT applications communicating not only via HTTP-
based protocols but also via non-HTTP protocols such as
Kafka, MQTT, and RTSP. In addition, it is preferable for
the tool to be capable of collecting application metrics from
programs without the need for explicit instrumentation.

The workload generator is in charge of sending re-
quest/sensor data to the microservices. This tool is used during
normal data generation as well as for introducing client/sensor-

side anomalies such as user surges and spikes. Details of
request workloads, including concurrency and duration, are
specified using test plans. It is important that the workload
generation tool also supports a wide range of protocols, not
just HTTP. When generating data from a specific microservice,
we need at least two instances of workload generators, one
for generating normal workloads, and another for introducing
client/sensor-side anomalies.

The anomaly injection tool is responsible for injecting
server-side anomalies, such as resource hogging and service
failures. MockFog [11], which is one of the early edge
emulators, suggested using chaos engineering tools for in-
jecting anomalies and conducting performance testing. Chaos
engineering tools are designed to test the fault tolerance of
systems by deliberately introducing failures or disruptions in
a controlled manner, making them suitable for inclusion in the
proposed toolkit to inject performance anomalies. Moreover,
by incorporating chaos engineering tools, we can inject a
diverse range of anomalies, unlike with basic tools such as
stress-ng.

Generating a significant amount of normal and anomaly data
by using these data collection tools is a time-consuming and
repetitive task necessitating human intervention. Additionally,
there is a learning curve associated with using the tools,
notably in terms of creating necessary test plans (incorporat-
ing varying parameters representing normal and anomalous
workloads) using the workload generator, designing chaos
engineering configurations, and scripting data collection for
retrieving information from the monitoring tool.

To overcome these challenges, we further extend the
iAnomaly framework with automated dataset generation ca-
pabilities, where users can provide the configurations of the
expected dataset, and the resulting labeled normal and anomaly
data will be stored in a predefined location. As depicted in
Figure 1, users can define the dataset generation configurations
through the application layer. We also introduce a dataset
generation orchestrator to the middleware layer, which inter-
prets the content from the dataset generation configuration
and coordinates with the data generation tools in the toolkit
to generate the normal and anomaly data required for the
performance anomaly dataset. This process will be explained
in detail in the next section.

IV. IANOMALY IMPLEMENTATION

This section describes the implementation details of the
architecture presented in section III. The deployment diagram
of the iAnomaly toolkit is shown in Figure 2. iAnomaly relies
on iContinuum [14] as a full-system emulator to accurately
model edge computing environments hosting microservice-
based IoT applications. iContinuum utilizes Virtual Machines
(VMs) with varying resource specifications to demonstrate
the heterogeneity of edge devices in terms of computing and
storage. Additionally, a VM with higher resource capacities
acts as the master node, hosting only the tools required for
compute orchestration. Acknowledging the critical role of the
master node as the system’s control plane, we ensure that
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Fig. 2. Deployment diagram of the iAnomaly toolkit

microservices are deployed only on VMs other than the master
node. Following the implementation of iContinuum, iAnomaly
uses Mininet1 as the network emulator to construct the network
topology and simulate the bandwidth between edge devices.
The OVS switches that form the Mininet topology are de-
ployed in a separate VM, which is also nondeployable for
microservices.

In line with iContinuum’s control plane implementation,
iAnomaly also uses Kubernetes, specifically K3s2, which is
a lightweight Kubernetes distribution designed for resource-
constrained environments such as edge computing or IoT
devices, as the cluster manager/orchestrator. Additionally,
iAnomaly utilizes Open Network Operating System (ONOS)3

as the network controller, and it manages the OVS switches in
the Mininet topology. The ONOS controller is also deployed
in the VM where the OVS switches are deployed. Figure 2
shows how the Kubernetes orchestrator is deployed in the
master node and forms a multi-node Kubernetes cluster with
the worker nodes. Each worker node is configured with an
OVS bridge featuring two virtual interfaces, tap0, and tap1,
out of which tap1, which is configured as a GRE interface, is
linked to the tap1 port of the corresponding OVS switch. This
ensures that the worker nodes have a bi-directional connection
with the Mininet-created network topology through Generic
Routing Encapsulation (GRE) tunnelling.

The Monitoring Module is realized by using Pixie4, a
lightweight and open-source eBPF(extended Berkeley Packet
Filter)-based monitoring tool specifically designed for Kuber-
netes applications. eBPF-based monitoring tools, which gained
popularity recently, allow sandboxed programs to execute
directly inside the Linux kernel and automatically capture
telemetry data in a non-intrusive manner, i.e., without re-
quiring modifications to user-space applications [17]. It also
supports monitoring a wide variety of protocols, including
HTTP, Kafka, AMQP, and MySQL, making it well-suited for
monitoring edge computing environments. When Pixie is de-

1https://mininet.org/
2https://k3s.io/
3https://opennetworking.org/onos/
4https://docs.px.dev/

Fig. 3. Interactions between the dataset generation orchestrator and other
components

ployed via the toolkit, a Pixie Edge Module (PEM) is deployed
for each worker node. These modules capture monitoring data
from microservices deployments on the worker nodes and
send those to the Pixie Vizier deployed on the Kubernetes
master node, from where they are transferred to the Pixie
cloud. Pixie Vizier acts as Pixie’s central collector and is also
responsible for managing PEMs. When retrieving back the
collected data, data retrieval queries written in Pixie language
(PxL) are executed against the Pixie cloud via a Pixie API
client.

The Workload Generator is implemented by leveraging
Jmeter5 as it supports a wide range of protocols, not just HTTP.
We are using two separate instances of JMeter: one to generate
normal workloads and the other to create client/sensor-side
anomalies. Both instances are deployed outside the Kubernetes
cluster to run the JMeter loads as needed and to avoid
interfering with the master node’s operations.

Chaos Mesh6, an open-source chaos engineering platform
for Kubernetes, is used as the anomaly injection tool and
deployed in the Kubernetes master node. From there, CRD
(Custom Resource Definition) YAMLs are applied to introduce
server-side anomalies into the target deployments. Chaos Mesh
is capable of injecting a multitude of server-side anomalies
such as CPU stress, memory stress, network delay, etc.

The dataset generation orchestrator is deployed in the Ku-
bernetes master node. As illustrated in Figure 3, it acts as
the central component that interprets the content from the
dataset generation configuration/s and coordinates with the
data generation tools in the toolkit to produce the labeled
normal and anomaly data needed for the performance anomaly
dataset. To start the data generation process, the dataset
generation orchestrator reads the configuration file/s to retrieve
the deployment details, normal data collection parameters,
and anomaly injection settings. It then remotely executes
the test plans on Jmeter’s normal data generation instance
using Paramiko’s7 SSH client to initiate normal workload
generation. Once the normal data has been generated for

5https://jmeter.apache.org/
6https://chaos-mesh.org/
7https://docs.paramiko.org/
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the required duration, the orchestrator executes PxL queries
to collect the generated normal data. Simultaneously, while
the normal workload generation process is ongoing, the or-
chestrator proceeds to inject anomalies. Anomalies are in-
jected either through server-side disruptions using Chaos Mesh
or via client/sensor-side anomalies through Jmeter’s anoma-
lous data generation instance. For server-side disruptions,
the dataset generation orchestrator applies the corresponding
chaos YAMLs through the installation of helm charts8. After
the entire anomaly injection period, the orchestrator executes
PxL queries to collect the corresponding anomaly data. Finally,
both normal and anomaly data are funnelled back to the
orchestrator, which integrates and processes the data to create
a comprehensive dataset suitable for training and evaluating
performance anomaly detection models.

Therefore, the realization of the architecture proposed in
section III using the open-source tools discussed earlier, has
made the process of dataset generation easily accessible for
researchers. We have released the source code of the iAnomaly
toolkit, which includes iContinuum as its full-system emulator
together with the chosen open-source data collection tools
and the code for automated dataset generation, in a public
repository9.

V. CASE STUDY: DATASET GENERATION

This section showcases how iAnomaly was used to cre-
ate an open-source labeled dataset consisting of normal and
anomalous data collected for three different IoT applications,
followed by an analysis of the generated performance anomaly
dataset.

A. IoT Applications

The generated dataset records data for three IoT applications
typically deployed in edge environments:

Fig. 4. Face detection/recognition application

a) Face detection/recognition: This application show-
cases the scenario of using computer vision for secure ac-
cess control at a corporate office building. As illustrated in
Figure 4, it comprises four microservices: 1) preprocessor,
2) face detector, 3) face recognizer, and 4) database. Cam-
eras at entry points (e.g., doors, gates) produce an RTSP
stream. The preprocessor microservice reads from this video
stream, performing resizing and grayscale conversion on the
images and carrying out motion detection by thresholding
the difference between consecutive frames. Upon detection
of motion (i.e., when an employee approaches), the frame
is sent to the face detector microservice. This microservice
utilizes a Multi-Task Cascaded Convolutional Neural Network
(MTCNN) to detect bounding boxes and landmark points of

8https://helm.sh/
9https://github.com/Cloudslab/iAnomaly

faces in the frame. Additionally, it conducts face alignment
using affine transformation and supports multi-face alignment
within a single frame. Aligned faces are then input to the face
recognizer microservice. The face recognizer microservice
employs a ResNet-50 model to extract features from the
detected faces and calculates the cosine distance between
these features and the features of the authorized personnel’s
faces to calculate the similarity between detected faces and
faces of authorized personnel. Upon successful recognition,
the timestamp is logged in the database - which is implemented
as another microservice - marking the employee’s entry or exit
from the building.

Fig. 5. Industrial machinery predictive maintenance application

b) Predictive maintenance for industrial machinery:
In this application, IoT sensors that measure temperature,
vibration, and pressure continuously generate multivariate time
series data, which is then written to a Kafka topic. As shown
in Figure 5, an orchestrator microservice subscribes to this
Kafka topic, reads the raw sensor data, and forms time-series
windows, which are sent to the emergency event detector
microservice. Before the windowed data is sent for emergency
event detection, the orchestrator imputes any missing values
by calling the missing data imputer microservice and also
standardizes the data using standard score normalization. The
emergency event detector uses an isolation forest model to
detect whether a window of standardized time series data is
anomalous by detecting patterns that deviate from the norm,
such as overheating, excessive vibration, or mechanical stress.
When an anomaly is detected, alerts are triggered to the
maintenance teams.

Fig. 6. Location retrieval application

c) Location retrieval: This application depicts the sce-
nario of fleet management for logistics or delivery services. It
facilitates tracking the real-time location of delivery vehicles
in a fleet. As shown in Figure 6, when a dispatcher or
a customer requests the location of a specific vehicle, the
request is directed to the location retriever microservice. This
microservice checks its Least Recently Used (LRU) cache, and
if the vehicle’s location was recently queried, it provides the
cached location for quick access. If the location is not in the
cache, the microservice queries the vehicle’s current location,
updates the cache, and returns the most up-to-date information.
In our implementation, the location simulator microservice is
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TABLE II
PROPERTIES OF IOT APPLICATIONS USED TO GENERATE PERFORMANCE ANOMALY DATASET

Application Microservice Type of task performed Software architecture
Service

composition
pattern

QoS properties

Face detection/
recognition application

Preprocessor Computer vision-based Stream processing

Chained

LC, HTp,HCI, BI
Face Detector Computer vision-based Request-response LC, MTp, HCI

Face Recognizer Computer vision-based Request-response LC, LTp, HCI
Database General purpose Request-response LT, LTp

Industrial machinery
predictive maintenance

application

Orchestrator Time-series processing Publish-subscribe
Aggregator

LC, LTp
Emergency event detection Time-series processing Request-response LC, LTp, MCI

Missing data imputation General purpose Request-response LC, LTp, MCI
Location retrieval

application
Location service with

timed cache Simple non-resource-intensive Request-response Passthrough LC, HTp
LC: Latency Critical, LT: Latency Tolerant, HTp: High Throughput, MTp: Moderate Throughput, LTp: Low Throughput, HCI: High Compute Intensive,
MCI: Moderate Compute Intensive, BI: Bandwidth Intensive

used to mock the location of the delivery vehicle by generating
GPS locations in a trajectory.

As shown in Table II, the aforementioned applications
span the properties of a wide range of IoT applications. For
instance, the face detection/recognition application falls under
Computer Vision (CV), the industrial machinery predictive
maintenance application focuses on time-series processing,
and the location retrieval application is a simple, non-resource-
intensive application. Each application relies on different
software architectures, including stream processing, request-
response, and publish-subscribe, which are implemented using
different communication protocols, including HTTP, Kafka,
RTSP, and MySQL. The applications also employ different
service composition patterns, such as chained, aggregator,
and passthrough. Most importantly, the microservices in these
applications have unique QoS and resource requirements.

The iAnomaly repository also contains the Python imple-
mentation for all three IoT applications. In addition, we have
made the Docker images of the microservices accessible to
the public10.

B. Dataset Generation

The applications presented in Section V-A were deployed
in a Kubernetes cluster, where iAnomaly was responsible for
the orchestration and automation of the data generation and
collection process. Specifically, the physical environment con-
sisted of ten VMs with heterogeneous computing and storage
specifications created in the Melbourne Research Cloud11 to
emulate the worker nodes. In particular, two 2vCPU/8G VMs
represented the IoT layer, four 2vCPU/8G VMs represented
Fog level 1, three 4vCPU/16GB VMs represented Fog level
2, and one 8vCPU/32GB VM represented Fog level 3. The
configuration of the emulated network was determined based
on existing related research [18], with the following specifi-
cations: IoT layer → Fog level 1: 5ms/100Gbps, Fog level
1 → Fog level 2: 20ms/10Gbps, Fog level 2 → Fog level 3:
50ms/0.15Gbps, and 2ms bandwidth among nodes at the same
level. The applications were assigned to the worker nodes by

10https://hub.docker.com/repository/docker/dtfernando/ianomaly
11https://dashboard.cloud.unimelb.edu.au/

Fig. 7. Dataset generation configuration YAML file of the location retrieval
application

following the QoS-aware scheduling algorithm proposed by
Pallewatta et al. in their research study [19].

Thereafter, normal and anomaly data were generated from
each application by providing dataset generation configura-
tions specified in the form of YAML files. For example,
the configuration shown in Figure 7 was used to generate
data from the location retrieval application. This configuration
instructs iAnomaly to generate and collect normal performance
data from the location retriever microservice over a duration of
three hours. Additionally, it specifies the injection of five types
of anomalies—CPU hog, memory stress, user surge spike, user
surge step, and network delay—over a total duration of two
hours. Similar configurations were used to collect performance
data from all applications. While five types of anomalies
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Fig. 8. Distribution of records by anomaly type

(two client-side and three server-side) were injected into the
location retrieval application, only a subset of these anomalies
was introduced into the other applications. This selection was
based on the likelihood of each anomaly type occurring in
real-world conditions for the respective applications. Figure 8
depicts the distribution of different types of anomalies across
the dataset. It is also important to note that data for each
application was collected independently to avoid anomalies
caused by colocation.

Pixie’s default granularity of 10 seconds was used when
collecting data. For each application, data was collected
across 12 metrics, covering key aspects of system and
application performance: disk read and write throughput
(total disk read throughput, total disk write throughput),
memory usage (rss, vsize), CPU utilization (cpu usage),
network activity (rx bytes per ns, tx bytes per ns),
latency percentiles (latency p50, latency p90, latency p99),
request throughput (request throughput), and error rate
(errors per ns), collectively providing a comprehensive view
of resource consumption, network efficiency, and service
reliability.

The final dataset comprises a total of 30240 records. Of
these, 19260 records attribute to 54 hours of normal data,
and 10980 records account for 31 hours of anomalous data.
Within this dataset, there are 1512 records labelled as anoma-
lous data points, resulting in an anomaly ratio of 5%. This
ratio is consistent with the anomaly ratio of other standard
anomaly datasets, such as SMD (5.84%) and ASD (4.61%)
[20], indicating that our dataset maintains a realistic anomaly
density—an important characteristic of a high-quality anomaly
dataset [21]. The collected dataset is also made available at the
iAnomaly repository.

C. Analysis of the Generated Dataset

Figure 9 illustrates the colinearity among the metrics in the
generated dataset after excluding errors per ns metric, which
contains all-zero values. The plot shows that inherently related
groups of metrics, such as disk read/write throughputs, as well
as latency percentiles, are highly correlated. In addition, met-
rics such as request throughput and tx bytes per ns, as well
as disk read/write throughputs and rx bytes per ns, exhibit a
strong positive correlation with each other. Outside of these
groups, most other metrics do not show strong correlations
with each other, indicating that each metric serves a unique

Fig. 9. Collinearity among metrics in the generated dataset

Fig. 10. Distribution of normal data across shortlisted metrics

purpose within the dataset. To simplify our analysis, we
select a single metric from each identified group of correlated
metrics to serve as a proxy for the others in the group.
Based on this correlation analysis, we identify cpu usage, rss,
rx bytes per ns, vsize, request throughput, and latency p50
as the subset of metrics with the lowest collinearity. Conse-
quently, we will focus on these metrics for further analysis.

Figure 10 illustrates the distribution of normal data for each
shortlisted metric, focusing on three instances of the location
retriever microservice and one instance of each of the other
microservices. The three instances of the location retriever
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correspond to different deployments in regions with varying
user populations. In the latency p50 subplot, it is evident that
the preprocessor, face detector, and face recognizer microser-
vices experience the highest latency. This increased latency
is attributed to their highly compute-intensive (HCI) nature,
which requires more time to process and respond to individual
requests. In contrast, the other microservices demonstrate
lower latency due to their relatively lower compute intensity.

The second subplot represents the request throughput met-
ric. Here, we can observe that the preprocessor and loca-
tion retriever microservices exhibit high request throughput
(HTp), while the face detector shows moderate throughput
(MTp). The other microservices fall into the low throughput
(LTp) category. These observations confirm the expected QoS
properties of the microservices, as listed in Table II. The
third subplot corresponds to the cpu usage metric. Despite
being HTp, the location retriever microservices result in low
CPU usage since they are not computationally intensive. The
preprocessor microservice shows the highest CPU usage due to
its HCI nature and high request throughput. The face detector
microservice, while also HCI, has moderate throughput and,
therefore, has the second-highest CPU usage. The rest of the
microservices have a low CPU usage due to their LTp nature.

The rx bytes per ns subplot confirms the bandwidth-
intensive (BI) nature of the preprocessor microservice. The
final subplot, which corresponds to the rss metric, indicates
that three computer vision microservices, together with the
anomaly detector and the missing data imputer (which also
utilize machine learning models for processing), have high
rss values, demonstrating significant memory usage. By com-
paring these subplots, we can see that the diversity of the
selected applications allows our collected dataset to effectively
capture the variations in QoS and resource requirements of the
microservices, as expected from an edge dataset.

Figure 11 contains the Probability Density Functions (PDFs)
for the normal and anomalous data distributions of two ran-
domly selected metrics from the datasets of the preprocessor
and face detector microservices. Subfigure 11(a) corresponds
to latency p50 of the preprocessor microservice while figure
11(b) corresponds to cpu usage of the face detector microser-
vice. Both subplots illustrate that the anomalous data overlaps
with the distribution of normal data. This overlap proves that
the anomalies present in our dataset are non-trivial and not
merely outliers. Renjie et al. [21] have identified the presence
of such non-trivial anomalies as a property of a good anomaly
dataset.

Furthermore, Figure 12 visualizes a few selected anomalies
from the dataset. While certain anomalies are easily noticeable
using their respective metrics - for example, user surge anoma-
lies are evident from the increase in the latency p50 metric
(Figure 12(a)), and memory stress is apparent from the rss
metric (Figure 12(b)) - some anomalies, such as CPU stress,
cannot be detected simply by looking at the cpu usage metric
(Figure 12(c)), especially when it occurs in compute-intensive
microservices. During such scenarios, which are non-trivial
to detect, algorithms that are capable of analyzing the higher-

order relationships and behavior of several metrics are required
to make an accurate detection.

Successful collection of the dataset was possible due to
iAnomaly’s use of an optimal set of open-source tools. In
particular, leveraging Pixie as the monitoring tool allowed
it to gather metric data from all three IoT applications,
each using different communication protocols. In contrast,
using a regular full-system emulator like iContinuum would
only allow data collection from the location retrieval appli-
cation, which uses HTTP for communication. Furthermore,
iAnomaly’s automated dataset generation capabilities led to
an 87% reduction in code lines compared to using a regular
full-system emulator such as iContinuum during our dataset
generation. Notably, iAnomaly completely eliminated the need
for human intervention during the data collection process,
requiring only 31 lines of configurations per microservice,
while iContinuum needs 307 lines of code and significant
human involvement to generate the same dataset.

VI. CONCLUSIONS AND FUTURE WORK

Since existing research on performance anomaly detection
in edge computing environments is limited due to the absence
of publicly available edge performance anomaly datasets and
due to the lack of accessibility of real edge setups to generate
necessary data, we propose iAnomaly: a full-system emulator
with performance anomaly dataset generation capabilities.
Towards that, it is equipped with open-source tools such as
Pixie for monitoring, Jmeter for normal workload generation,
and client/sensor-side anomaly injection, as well as Chaos
Mesh to introduce server-side anomalies. It also incorporates
a dataset generation orchestrator to facilitate automatic data
generation and collection based on user-defined configurations.

As a case study, we generated a performance anomaly
dataset using iAnomaly. It contains performance data for
various microservice-based IoT applications with different
QoS and resource requirements, injected with anomalies on
both the client/sensor side and the server side. Analysis of this
dataset showed that it represents the characteristics of real edge
environments, and the anomalous data in the dataset meets
the required standards for high-quality performance anomaly
datasets. We have made this dataset available to the public.
Additionally, we have released the iAnomaly toolkit for other
researchers who may need to collect a more extensive dataset
or conduct further anomaly detection research.

iAnomaly toolkit can easily be extended to collect trace data
alongside metrics, which is particularly useful for research on
root cause localization (RCL). Extending to such multi-source
datasets is possible due to Pixie’s support. Researchers can
further enhance this framework to conduct real-time experi-
ments on anomaly-aware resource management. The toolkit
and the released dataset are not limited to anomaly detection
research. Normal data from the dataset, as well as normal
data generated from the iAnomaly toolkit, can be used as
foundational traces for experiments in other related research
areas, such as resource scheduling and resource management.
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(a) latency p50 of the preprocessor (b) cpu usage of the face detector

Fig. 11. PDFs for normal and anomalous data distributions of selected metrics

(a) User surges using latency p50 (b) Memory stress using rss (c) CPU stress using cpu usage

Fig. 12. Visualization of selected anomalies from the dataset
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