
1

A Taxonomy and Survey of Grid Resource Management Systems

Klaus Krauter1, Rajkumar Buyya2, and Muthucumaru Maheswaran1

Advanced Networking Research Laboratory1

Department of Computer Science
University of Manitoba, Canada

krauter@cs.umanitoba.ca, maheswar@cs.umanitoba.ca

School of Computer Science and Software Engineering2

Monash University
Melbourne, Australia

rajkumar@csse.monash.edu.au

Technical Report: University of Manitoba (TR-2000/18) and Monash University (TR-2000/80)

Abstract – The resource management system is the central component of network computing systems. There
have been many projects focused on network computing that have designed and implemented resource
management systems with a variety of architectures and services. In this paper, we develop a
comprehensive taxonomy for describing resource management architectures. We use this taxonomy in
identifying approaches followed in the implementation of real resource management systems for large-
scale network computing systems known as Grids. We use the taxonomy and the survey results to identify
architectural approaches that have not been fully explored in the research.

Keywords: Metacomputing, Grids, Resource Management, Scheduling, and Internet Computing.

1. Introduction

A network computing system (NCS) is a virtual computer formed by a networked set of heterogeneous
machines that agree to share their local resources with each other. A Grid is a very large-scale network
computing system that scales to Internet size environments with machines distributed across multiple
organizations and administrative domains. Machines in a Grid are typically grouped into autonomous
administrative domains that communicate via high-speed communication links. A good overview of Grid
technology is presented in [21].

The resource management system (RMS) is central to the operation of a Grid. Resources are the
entities such as processors and storage that are managed by the RMS. The set of services provided by a
RMS varies depending on the intended purpose of the Grid. The basic function of a RMS is to accept
requests for resources from machines within the Grid and assign specific machine resources to a request
from the overall pool of Grid resources for which the user has access permission. A RMS matches requests
to resources, schedules the matched resources, and executes the requests using the scheduled resources.
Jobs are the entities that utilize resources to execute network applications in the Grid environment. In this
paper we will use the terms job and resource request interchangeably. The process of matching, scheduling,
and execution is performed so that some metric of aggregate quality of service (QoS) delivered to the
requestor is maximized [23]. This paper develops a taxonomy that describes the RMS architectures for a
Grid.

In the next section the motivation for our taxonomy is developed. We follow this by developing a
classification of Grid systems based on the design objectives and target applications since these greatly
influence the architecture of the Grid RMS. Requirements and an abstract model for resource management
systems are presented in the next section. The requirements and the abstract model are used as a basis to
develop our taxonomy. We then describe our taxonomy for heterogeneous network computing systems. A

2

survey of representative network computing and Grid systems is provided followed by some conclusions
and suggestions for further research.

2. Motivation for the Taxonomy

A distributed computing scheduling taxonomy is presented in [26]. This taxonomy includes static
scheduling techniques that we do not address and does not consider scheduling, state estimation, and
resource models separately when classifying dynamic scheduling. The taxonomy for dynamic scheduling
presented in [27] only considers two aspects of resource management, scheduling and state estimation. In
our taxonomy, we provide a classification of resource models and examine scheduling and state estimation
at a finer level. Several advances in distributed resource management since the publication of [27] have
also been incorporated into our taxonomy.

A taxonomy for heterogeneous computing environments is presented in [29]. The taxonomy covers
application model, target platform model, and mapping heuristic model. We do not cover application
models or differentiate on target platform model since our focus is on issues relevant to the designers of
RMS rather than application and toolkit designers.

Several taxonomies for characterizing a distributed system are presented in [25] and [28]. The EM3

taxonomy in [25] classifies a heterogeneous computing system based on the number of execution modes
and machine models. An extended version of the taxonomy developed in [26] is also presented in [25] to
characterize the scheduling algorithms in heterogeneous computing systems. Our taxonomy focuses on
RMS design issues and thus differs from the taxonomies presented in [25]. The taxonomy presented in [28]
provides a broad characterization based on the external interfaces, internal system design, class of hardware
and software resource support, and resource management issues. Our taxonomy of RMS is more detailed
than the one presented in [28].

3. Grid Systems

3.1. System Elements

A resource management system manages the elements that comprise the computing environment. Thus
it is important to describe the elements that comprise a Grid. Computing systems are evolving from
relatively uniform monolithic elements uniformly connected by low speed communication links to highly
diverse specialized elements connected by diverse high-speed communication links. For example, today’s
networked systems contain personal computers, personal digital assistants, parallel computers, network
routers, network switches, clustered server farms, and network attached storage devices such as fiber
channel RAID, automated tape libraries, and CD-RW/DVD jukeboxes.

In this paper the system elements that comprise a Grid will be categorized as being either a processing
element, a network element, or a storage element. Processing elements can be further classified into
uniprocessor, multiprocessor, cluster, and parallel processing elements. Another possible classification
depends on whether the processing element is fixed or mobile. Network elements are the routers, switches,
voice gateways, virtual private network devices and firewalls. Storage elements are the network attached
storage devices such as fiber channel RAID devices, automated CD-ROM/DVD jukeboxes, tape libraries,
or a dedicated database machine. Note that a dedicated storage element may sometimes have an attached
computing element through which older style storage elements such as NFS storage servers are attached to
the network. Any particular physical machine in a network computing system can be placed into at least
one of these categories based on its intended function within the overall system.

3.2. Classification

The design objectives, target applications, and machine environment for a Grid determine the
architecture of the RMS. In this paper, the design objectives are grouped into three different themes:
improving application performance, data access, and enhanced services. Network computing systems with
similar design objectives usually have similar characteristics. Using these themes, we can group Grid
systems into several categories as shown in Figure 1.

3

The computational Grid category denotes systems that have a higher aggregate computational capacity
available for single applications than the capacity of any constituent machine in the system. These can be
further subdivided into distributed supercomputing and high throughput categories depending on how the
aggregate capacity is utilized. A distributed supercomputing Grid executes the application in parallel on
multiple machines to reduce the completion time of a job. Typically, applications that require a distributed
supercomputer are grand challenge problems. Examples of grand challenge problems are fluid dynamics,
weather modeling, nuclear simulation, molecular modeling, and complex financial analysis. A high
throughput Grid increases the completion rate of a stream of jobs. Applications that involve parameter-
study to explore a range of possible design scenarios such as ASIC or processor design verification tests
would be run on a high throughput Grid [9].

Computational
Grid

Grid Systems

Collaborative

Data Grid

Service Grid

High Throughput

On Demand

Multimedia

Distributed Supercomputing

Figure 1: Grid Systems Taxonomy.

The data Grid category is for systems that provide an infrastructure for synthesizing new information
from data repositories such as digital libraries or data warehouses that are distributed in a wide area
network. Computational Grids also need to provide data services but the major difference between a Data
Grid and a computational Grid is the specialized infrastructure provided to applications for storage
management and data access. In a computational Grid the applications implement their own storage
management schemes rather than use Grid provided services. Typical applications for these systems would
be special purpose data mining that correlates information from multiple different data sources and then
processes it further. For example, high energy physics applications need to process massive data generated
(in the order of GB/second) by an experiment that will be using the LHC (Large Hadron Collider) from
2005 onwards [13]. The two popular DataGrid initiatives, CERN DataGrid [13] and Globus [52], are
working on developing large-scale data organization, catalog, management, and access technologies.

The service Grid category is for systems that provide services that are not provided by any single
machine. This category is further subdivided in on demand, collaborative, and multimedia Grid systems. A
collaborative Grid connects users and applications into collaborative workgroups. These systems enable
real time interaction between humans and applications via a virtual workspace. A multimedia Grid provides
an infrastructure for real-time multimedia applications. This requires supporting quality of service across
multiple different machines whereas a multimedia application on a single dedicated machine can be
deployed without QoS [49]. An on demand Grid category dynamically aggregates different resources to
provide new services. A data visualization workbench that allows a scientist to dynamically increase the
fidelity of a simulation by allocating more machines to a simulation would be an example of an on demand
system.

Most ongoing research activities developing Grid systems fall into one of the above categories.
Development of truly general-purpose Grid systems that can support multiple or all of these categories
remains a hard problem.

4. Resource Management Systems

4.1. Requirements

A resource management system that is ubiquitous and able to deal with the diverse requirements of
network aware applications needs to schedule and control resources on any element in the network
computing system environment. A network application would specify the type of resources required such
as the various types of processing elements, storage elements, and the communication requirements

4

between the elements. The type and topology of the resources is not sufficient to describe the requirements
of the application. The application also needs to specify the required minimum resource levels. This ranges
from network quality of service (QoS), to processor speed, to data storage requirements on a storage
element. In this paper, we will label these as quality of service requirements on Grid system elements.

The network application cannot always specify the resources required since this is dependent on the
input parameters to the application and the execution. In many cases the application can provide only a
partial specification of the resources and required quality of service. For example, a collaborative
workspace application could put strict quality of service requirements on the audio-visual streams for the
human participants but loosely define the quality of service required for the visual rendering of the data.

The resource management system should predict the impact that an application’s request will have on
the overall resource pool and quality of service guarantees already given to other applications. This
prediction can be done either by using past behavior of the application on similar input values or by using
heuristics. The other option is to ignore predictions and develop the resource usage mechanisms according
to some externally defined policy rules.

In order to provide QoS, a resource management system must be able to perform admission control
and policing. Admission control is the process of determining if a resource request can be honored.
Policing is ensuring the contract for resource utilization agreed upon between the resource management
system and the requesting application has not exceeded. All resource managers implicitly perform some
level of admission control during the scheduling process. The requirement to police the resource utilization
impacts the design of the RMS. Issues that need to be addressed are the rate at which the policing action is
performed and the degree to which the RMS can control resource utilization. This determines the quality of
service guarantees a resource manager can offer for any particular resource.

A RMS performs accrediting, reclamation, allocation and naming of resources. Accrediting is the
ability to track resource usage to the jobs. Reclamation is the ability to reclaim a resource when the job that
was using the resource has finished. Allocation is the ability to allocate resource to jobs in a way that does
not violate imposed resource limits. The naming of resources is done via one or more namespaces that
uniquely identify managed resources within the Grid. Jobs use the namespaces to identify the resources that
are required to carry out the computation.

The RMS is also responsible for ensuring the integrity of the underlying resource and thus enforces the
security of resources. The resource management system operates in conjunction with a security manager.
The resource manager authenticates and authorizes all resource requests with the security manager using
the credentials provided by the job. The resource manager does not ensure the integrity of the credentials or
manage the authorization lists since this is the function of the design of the security system and security
manager. A secure channel for exchanging information between the RMS and the security manager is
assumed to be part of underlying Grid infrastructure.

4.2. Abstract Model

A resource management system in a Grid provides three fundamental services, resource dissemination,
resource discovery, and scheduling resources for the execution of jobs. The RMS works in conjunction
with other Grid components as shown in Figure 2. Applications use Grid toolkits to describe the application
resource requirements. Grid toolkits consist of compilers, development environments, and runtime systems.
The toolkits provide higher-level application oriented resource management services. The toolkits in turn
issue resource requests to the RMS. The RMS uses the services of the native operating systems (including
queuing systems) to execute applications. The RMS interfaces with a security component that implements
the authorization, authentication and non-repudiation functions of the Grid. The RMS provides the raw
resource utilization data that is used by the billing and accounting systems.

The RMS manages the allocation, scheduling, and reclamation of resources from jobs. The RMS
assigns resources to jobs in response to resource requests that a job makes during its execution. In the Grid
environment there are external mechanisms on nodes that can introduce jobs and such jobs are not managed

5

by RMS, but by node OS. In this paper, we assume that the RMS is able to take this into account either by
detecting external resource utilization or interfacing with the node’s native operating system.

Native OS

Accounting
/Billing

Security

Grid Toolkits

Applications

RMS

Figure 2: Resource Management System Context.

We defined aabstract model of resource management systems that provides a basis for a comparison
between different RMS architectures. The model presented in Figure 3 shows the functional units and data
stores that a general purpose RMS for a Grid would have. Existing resource management systems
implement some of these functions but do so in very different ways. The abstract model provides a
mechanism to compare and contrast the different RMS implementations.

Resource Management
System

Job Status

Job Monitoring

Reservations

Resource Reservation

Historical Data

Resource Monitoring

Resource Status

Scheduling Execution ManagerState Estimation Job Queues

Naming

Resource
Information

Discovery

Dissemination
Resource

Information

Request Interpreter

Resource Broker

Resource Requests

Figure 3: Resource Management System Abstract Structure.

The model describes the RMS structure as a whole without specifying which machines provide the
functions. In an actual RMS, functions may run on dedicated or special purpose machines within the Grid.
For example, a RMS may have a partially centralized scheduling mechanism that schedules resources for
all machines in the Grid that runs on a few designated machines whereas another RMS performs scheduling
on all machines concurrently. Some resource management systems do not implement some of the data
stores or functional units.

There are three different types of functional units, application to RMS interfaces, RMS to native
operating system or hardware environment, and internal RMS functions. The application to RMS interfaces
provides services that end-user or Grid applications use to carry out their work. The RMS to native
operating system or hardware environment interface provides the mechanisms that the RMS uses to
implement resource management functions. The internal RMS functions are implemented as part of
providing the resource management service. The request interpreter function provides the application to
RMS interfaces. The resource dissemination, resource discovery, and resource broker functions provide
internal RMS functions but may be directly accessible to applications albeit through a more restrictive
interface than the RMS itself. It is up to the implementation to decide whether there are two different
interfaces provided to these functions, one for the applications and the other for the RMS itself. For the

6

purposes of the abstract model the request interpreter will function as the mediator between the application
and the other RMS components. The RMS to native operating system interfaces are provided by the
execution manager, job monitoring, and resource monitoring functions. Internal RMS functions are
provided by the resource naming, scheduling, resource reservation and state estimation.

Resource information is distributed between machines in the Grid using a resource information
protocol. This protocol is implemented by the resource and dissemination functions. In some RMS
architectures that use market based scheduling approaches, a specialized resource broker functions exists
that implements a trading protocol [9][10]. Other RMS architectures could also potentially use a specialized
resource broker that provides alternative application oriented resource presentations for the discovery and
dissemination functions.

 Application resource requests are described using a resource description language or protocol that is
parsed by the resource interpreter into the internal formats used by the other RMS functions. Existing
systems provide different interfaces for resource reservation but in our abstract model, this is considered an
internal function of the RMS since conceptually immediate resource requests and reservation resource
requests are not different. The request interpreter passes reservation requests on to the reservation function
that maintains the database of resource reservations. The resource request protocol is bi-directional since
applications should be able to effectively negotiate resources and associated service levels and thus requires
feedback on requests from the RMS.

The resource dissemination and resource discovery functions provide the means by which machines
within the Grid are able to form a view of the available resources and their state. In some RMS
architectures there is no distinction made between these functions since they are implemented using a
single protocol or function. There is, however, a significant difference between dissemination of resource
information and the discovery of resource information. Resource dissemination provides information about
machine resources or a pointer to a source of information resources. Resource discovery is the mechanism
by which applications find resource information.

For example, an RMS could use a replicated network directory that contains resource information. The
resource dissemination function could be implemented as a directory replication protocol. The resource
discovery function would then consist of searching the nearest network directory. Alternatively, a Grid
could maintain a central network directory where dissemination consists of advertising the network address
and resource discovery consists of querying the central directory. The two examples could both be
implemented using a network directory such as LDAP but would result in quite different RMS
architectures.

The resource naming function is an internal function that enforces the namespace rules for the
resources and maintains a database of resource information. The structure, content, and maintenance of the
resource database are important differentiating factors between different RMS. The implementation of the
resource database is a separate concern from the implementation of the naming function and is less
important. The naming function interacts with the resource dissemination, discovery, and request
interpreter so design choices in the namespace significantly affect the design and implementation of these
other functions. For example, a flat namespace or a hierarchical namespace could both be implemented
using a network directory for resource description databases. A flat namespace would impose a
significantly higher level of messaging between machines in the Grid even with extensive caching.

As the request interpreter accepts requests for resources, they are turned into jobs that are scheduled
and executed by the internal functions in the RMS. The job queue abstracts the implementation choices
made for scheduling algorithms. The scheduling function examines the jobs queue and decides the state of
the jobs in the queue. The scheduling function uses the current information provided by the job status,
resource status, and state estimation function to make its scheduling decisions. The state estimation uses the
current state information and a historical database to provide information to the scheduling algorithm. The
structure of the job queue is dependent on the scheduling algorithm and varies from a simple FIFO queue to
multiple priority ordered queues. The execution manager function is responsible for controlling the
execution of the jobs on the machine. In some systems, the execution manager does not control the

7

execution of the jobs on a machine other than initiating the job using the native operating system services.
The job monitoring and resource monitoring functions update their respective databases.

5. Resource Management System Taxonomy

The taxonomy classifies resource management systems by characterizing different attributes. The
intent of the different parts of the taxonomy is to differentiate RMS implementations with a view to impact
on overall Grid system scalability and reliability. Thus we classify a RMS according to machine
organization within the Grid, resource model, dissemination protocols, namespace organization, data store
organization, resource discovery, QoS support, scheduler organization, scheduling policy, state estimation,
and the rescheduling.

In the following sections we will use the terms resource requestor to identify the machine that is
requesting a resource, resource provider to identify the machine that is providing the resource, and
resource controller to identify the machine that is responsible for allocating the resource. Current research
Grid systems have machines that function in one or more of these roles.

Previous taxonomies focused on distributed and centralized variants of the different attributes of
heterogeneous network computing systems. Grids are highly scaleable wide-area computing systems so
current research implementations use some variant of distributed mechanisms. Thus we omit classifications
of centralized mechanisms since these are not an area of interest.

5.1. Machine Organization

The organization of the machines in the Grid affects the communication patterns of the RMS and thus
determines the scalability of the resultant architecture. Figure 4 shows the taxonomy for the machine
organization. The organization describes how the machines involved in resource management make
scheduling decisions, the communication structure between these machines, and the different roles the
machines play in the scheduling decision.

Previous taxonomies used centralized and decentralized categories. In a centralized organization a
single controller or designated set of controllers performs the scheduling for all machines. This approach is
not used in Grid systems since centralized organizations suffer from scalability issues. In a decentralized
organization the roles are distributed among machines in the Grid. Decentralized organizations have been
previously divided into sender and receiver initiated categories. This is too simple since we need to
distinguish how the resource requestors, resource providers, and the resource controllers organize their
dialogue.

For example, a resource requestor may utilize an agent-based approach to search out resource
providers and allocate the resources on behalf of the originator. This is a sender-initiated approach. A
resource requestor may consult locally or globally available resources and then makes requests to the
resource providers. This is also a sender-initiated approach with a significantly different architecture than
the agent-based approach. In this paper we use a different approach and characterize the organization
structure and resource management implementation separately. This section describes the organization and
the next section describes the resource management implementation.

Flat

Organization Cells

Hierarchical
Hierarchical Cells

Flat Cells

Figure 4: Organization Taxonomy.

In a flat organization all machines can directly communicate with each other without going through an
intermediary. In a hierarchal organization machines in same level can directly communicate with the
machines directly above them or below them, or peer to them in the hierarchy. The fan out below a
machine in the hierarchy is not relevant to the classification. Most current Grid systems use this
organization since it has proven scalability.

8

In a cell structure, the machines within the cell communicate between themselves using flat
organization. Designated machines within the cell function acts as boundary elements that are responsible
for all communication outside the cell. The internal structure of a cell is not visible from another cell, only
the boundary machines are. Cells can be further organized in a flat or hierarchical structures. A Grid that
has a flat cell structure has only one level of cells whereas a hierarchical cell structure can have cells that
contain other cells. The major difference between a cell structure and hierarchical structure is that a cell
structure has a designated boundary with a hidden internal structure whereas in a hierarchical structure the
structure of the hierarchy is visible to all elements in the Grid.

5.2. Resources

The taxonomies in this section describe the different aspects of the RMS that provide the interface to
the resources managed by the Grid RMS. Arguably the interfaces to resource management components are
even more important than the scheduling components since they are ultimately what the applications or
toolkits use to implement their functionality. If the resource interfaces do not provide the correct
abstractions and efficient implementations it is unlikely that a Grid will be used effectively.

5.2.1 Resource Model

The resource model determines how applications and the RMS describe and manage Grid resources.
Figure 5 shows the resource model taxonomy. The taxonomy focuses on how the resources and operations
on the resources are described. It is important to determine if the resource descriptions and resource status
data store are integrated with their operations in an active scheme or if they function as passive data with
operations being defined by other components in the RMS.

In a schema based approach the data that comprises a resource is described in a description language
along with some integrity constraints. In some systems the schema language is integrated with a query
language. The schema languages are further characterized by the ability to extend the schemas. In a fixed
schema all elements of resource description are defined and cannot be extended. In an extensible scheme
new schema types for resource description can be added. Predefined attribute-value based resource models
are in the fixed schema category. The Condor ClassAd approach using semi-structured data approach is in
the extensible schema category.

In an object model scheme the operations on the resources are defined as part of the resource model.
As with schemas the object model can be predetermined and fixed as part of the definition of the RMS. In
the object model extensible approach the resource model provides a mechanism to extend the definition of
the object model managed by the RMS. It may be difficult to implement a high performance extensible
object model scheme. In current fixed object model schemes the object models are typically very basic and
provide very few primitive operations on resources.

Resource
Model

Schema

Object Model

Fixed

Extensible

Fixed

Extensible

Figure 5: Resource Model Taxonomy.

5.2.2 Resource Namespace Organization

The RMS for a Grid system provides a global namespace for resources required by network
applications. The organization of the resource namespace influences the design of the resource
management protocols and affects the discovery methods. For example in a flat namespace the use of
agents to discover resources would require some sort of global strategy to partition the search space in
order to reduce redundant searching of the same information. Figure 6 shows the taxonomy for namespace
organization.

9

A relational namespace divides the resources into relations and uses concepts from relational databases
to indicate relationships between tuples in different relations. A hierarchical namespace divides the
resources in the Grid into hierarchies. The hierarchies are typically organized around the physical (LAN
segments) or logical (DNS domains) network structure of the Grid. The relational/hierarchical namespace
hybrid consists of relations where the contents of the relations are broken into a hierarchy in order to
distribute them across the machines in the Grid. Most network directory based namespaces utilize a hybrid
structure.

A graph-based namespace uses nodes and pointers where the nodes may or may not be complex
entities. Namespaces that are implemented using an object-oriented paradigm typically use graph
namespaces with object as nodes and inter-object references being the pointers. A given resource in a
hierarchical namespace may occur more than once in different part of the hierarchy with an embedded
reference to another part of the hierarchy. This is not considered a graph namespace since the fundamental
navigation method is to descend the hierarchy rather than to chase references as in object oriented
approaches.

Relational

Resource
Namespace

Graph

Hierarchical
Hybrid

Figure 6: Namespace Organization Taxonomy.

5.2.3 Quality of Service Support

The level of support for extensive QoS for all components of the Grid will become more important as
network applications becoming more sophisticated and demanding. Our notion of QoS is not limited to
network bandwidth but extends to the processing and storage capabilities of the nodes in the Grid. Thus we
focus on the degree that a Grid can provide end-to-end QoS across all components rather than QoS only on
the network as is typically done. It is very inefficient to guarantee network bandwidth and not guarantee
processing cycles for the application components communicating over this link. Resource reservation is
also considered to be fundamental QoS attribute. A Grid that provides the ability to specify QoS at job
submission time but cannot reserve resources in advance is considered to provide only a partial solution to
QoS.

Another aspect of QoS is the ability for a Grid application to negotiate a service level agreement (SLA)
with the RMS. In some cases an application can accept lower overall performance or an inexact match
between a specified resource and the actual resource supplied. This idea of general QoS or SLA can be
extended to placing bounds on resource discovery or other grid provided services such as data migration.
For example, if an application requires a resource the RMS could return similar resources within a local
administrative domain. If a particular resource is required the discovery process could be extended outside
of the local administrative domain. An underlying assumption of this scenario is that there is a cost
differential applied when crossing administrative domains when doing discovery. This may be particularly
true of agent based resource discovery.

There are two parts to QoS, admission control and policing. Admission control determines if the
requested level of service can be given and policing ensures that the job does not violate its agreed upon
level of service. Figure 7 shows the taxonomy for QoS support. A RMS that does not allow applications to
specify QoS requirements in resource requests does not support QoS. It can be argued that scheduling is a
form of admission control but if the resource request interface provides no way to specify required resource
service levels it does not support QoS. A RMS that provides explicit QoS attributes for resource requests
but cannot enforce service levels via policing provides soft QoS support. Most current Grid systems
provide soft QoS since most non real-time operating systems do not allow the specification of service
levels for running jobs and thus cannot enforce non-network QoS guarantees. Hard QoS support is
provided when all nodes in the Grid can police the service levels guaranteed by the RMS.

10

QoS
Support

None

Hard

Soft

Figure 7: QoS Support Taxonomy.

5.2.4 Resource Information Store Organization

The resource description, resource status, and resource reservation data store organization help
characterize the overall performance of the RMS. The organization determines the cost of implementing the
resource management protocols since resource dissemination and discovery may be provided by the data
store implementation. Figure 8 shows the taxonomy for data store organizations. Distributed object data
stores utilize persistent object services that are provided by language independent object models such as
CORBA or a language based model such as that provided by persistent Java object implementations.
Network directories data stores are based on X.500/LDAP standards or utilize specialized distributed
database implementation. The important difference between distributed object and network directory
approaches is that in network directories the schema and operations are separated with the operations
defined externally to the data store schema. In an object oriented approach the schema defines the data and
the operations.

Network Directory
Resource

Information Store
Organization

Distributed Objects

X.500/LDAP

Other

Object Model Based

Language Based

Figure 8: Resource Information Store Taxonomy.

5.2.5 Resource Discovery and Dissemination

A major function of a RMS in a Grid is to provide a mechanism for resources in the Grid to be
discovered and utilized by network application. Resource discovery and dissemination provide
complementary functions. Discovery is initiated by a network application to find suitable resources within
the Grid. Dissemination is initiated by a resource trying to find a suitable application that can utilize it. The
overhead of matching resources and applications determines the efficiency of the RMS and determines the
maximum resource utilization that a RMS can achieve in the Grid environment. Figure 9 shows the
taxonomy for resource discovery and Figure 10 shows the taxonomy for resource dissemination.

The implementation of the resource description database in current systems seems to determine the
approach to resource discovery. Network directory based systems mechanisms such as Globus MDS use
parameterized queries that are sent across the network to the nearest directory, which uses its query engine
to execute the query against the database contents. Query based system are further characterized depending
on whether the query is executed against a distributed database or a centralized database. The updating of
the resource description database is characterized by the resource dissemination approach. Agent based
approaches send active code fragments across machines in the Grid that are interpreted locally on each
machine. Agents can also passively monitor and either periodically distribute resource information or in
response to another agent. Thus agents can mimic a query based resource discovery scheme. The major
difference between a query based approach and an agent based approach is that agent based systems allow
the agent to control the query process and make resource discovery decisions based on its own internal
logic rather than rely on an a fixed function query engine. Most agent systems are based on an underlying
mobile code environment like Java. Agent based resource discovery is inherently distributed.

11

Queries
Resource
Discovery Agents

Distributed

Centralized

Figure 9: Resource Discovery Taxonomy.

Resource dissemination is categorized by the approach taken to updating the resource information. The
mechanisms used to implement dissemination determine the amount of data that is sent between machines
in the Grid. The latency of resource information across machines in the Grid is also determined by the
dissemination mechanism. Note that it is possible to have more than one dissemination mechanism. For
example, aggregate resource status may be sent using a different protocol than detailed resource description
information in order to reduce the data transferred and the latency time.

Batch/PeriodicResource
Dissemination Online/On demand

Push

Pull

Figure 10: Resource Dissemination Taxonomy.

In a batch/periodic approach, resource information is batched up on each Grid machine and then
periodically disseminated through the Grid. Information can be sent from the originating machine to other
machines in which case it is pushing the information or another machine in the Grid can request the
information from the originating machine in which case it pulls the information from the machine. In an
online or on demand approach information is disseminated from the originating machine immediately. In
this case the information is pushed to other machines in the Grid. The set of machines that the information
is sent to depends on the organization of the Grid and the resource database implementation.

5.2.6 Valid Combinations

The resource model used by a RMS determines many of the other classifications in the taxonomy. The
choice between a schema based model and an object-oriented model for resources is very fundamental.
Schema based models use either relational or hierarchical namespaces for the resources. Large scale Grid
RMS that use a schema model will use a hybrid namespace where the relations are grouped hierarchically
allowing efficient distribution and replication of resource information. Object oriented models use a graph-
based namespace.

The choice of schema model typically results in using a network directory information store
organization since this is highly efficient mapping of the logical content of the resource information store to
the physical implementation. It is possible to use a distributed object store organization for a schema but
this would be less inefficient than using network directories which have been optimized for storing schemas
in a distributed network environment. Conversely object models would use a distributed object store
organization since the efficient mapping of an object to a network directory typically requires translating
the object representation to the network directory supported schema. This has been difficult to implement
in an effective and efficient manner.

The current state of the art in operating systems and networking equipment makes the support of QoS
difficult. Many network devices do not support QoS and those that do support only a few differentiated
service classes. The concept of QoS is not directly supported in operating systems other than dedicated real
time systems. The other complication is that the Grid RMS operates at the application level rather than at
the operating system level. Existing mechanisms such as application level scheduling priorities do not
allow the direct specification of QoS such as allocating 80% of the processor cycles to an application.
Other issues arise with the attribution of native operating system level activity to individual jobs. Thus soft
QoS is the best that a Grid RMS can offer today unless it runs on a specially engineered network and node
platform, in which case hard QoS can be offered to jobs.

12

Resource discovery is either a distributed query or agent based. Centralized queries will not work in a
large scale distributed system such as the Grid. Future Grid RMS may provide a hybrid environment where
distributed queries give partial results about resource information with full resource information being
obtaining by using agents. There are no current Grid systems that we are aware of that use this approach.

Resource dissemination needs to be scalable and efficient. There are a number of different data stores
in the RMS that contain information that needs to be distributed across the Grid. It is possible to use
different schemes to distribute the information based on the frequency with which the data in the store
changes. For example, the resource and job status information may change frequently which could result in
a periodic push of information through the Grid. The addition of new resources to the Grid is infrequent
and could be performed either on demand or periodically pulled depending on the implementation of the
relevant data store. For example, network directories typically have a replication protocol to synchronize
content.

Based on this discussion we end up with the following valid combinations for the resource model,
namespace organization, and the resource information store organization; schema model with a hybrid
namespace using a network directory or an object model with graph namespace using distributed objects.
All QoS schemes are valid. Resource discovery schemes are either distributed queries or agents. All
schemes are valid for resource dissemination with the potential to have more than one scheme used
concurrently in a RMS for different types of information.

5.3. Scheduling

This section contains the taxonomies that describe how the scheduling components of the RMS are
organized, the degree of extensibility, rescheduling approaches, and state estimation. We do not address the
scheduling algorithms since many of the current scheduling approaches for networking and parallel
computing jobs are also applicable to a Grid RMS. The scheduling components are internal to the RMS but
determine the external Grid performance as determined by applications and also the measured utilization of
the resources provided by the Grid.

The scheduling components of the Grid decide which resources are assigned to which jobs. The
assigning of resources to jobs is a policy decision. The policy can be explicitly specified via an external
rule base or a programmable interface. The policy can be implicitly implemented by choice of state
estimation algorithms and rescheduling approach as well. Both approaches can also provide a way for
external programs to override the scheduling policy. The scheduling taxonomy presented here captures the
scheduling features of a Grid but the actual combination of the features determine how resources are
assigned to jobs.

5.3.1 Scheduler Organization

Previous taxonomies focused on the degree of centralization in the scheduler. Current Grid systems use
decentralized scheduling schemes where more than one machine in the Grid can perform scheduling and
they use a distributed scheme for resource information dissemination.

In our approach we focus upon the resource controller function, the mapping of resource controller to
machine and the number of logical request and job queues used by the RMS at the Grid level. The resource
controller is responsible for allocation and scheduling of the resource providers. A particular machine in the
Grid may support one or more resource providers, a resource controller and a resource requestor. The
resource controllers interact with each other to match providers to a request and then schedule the resources
provided by the resource providers. Once a schedule has been determined the resource providers and the
resource requestors are informed of the schedule. Figure 11 shows the scheduler organization taxonomy.

 In a centralized controller scheme there are one or more machines that provide the resource controller
function for resource requestors and resource providers. All requests are routed to the resource controller
machines that schedule the resource provider machines. Logically there is one central request and job
queue that is distributed among the designated resource controllers in the Grid. In a hierarchical controller
approach the resource controllers are organized as a hierarchy. Resource controllers in higher levels of the

13

hierarchy schedule bigger units of resource providers with lower level resource controllers scheduling
smaller units of resource providers until individual resource providers are scheduled. Logically there is one
request and job queue per hierarchy level. A one level hierarchical controller organization and a centralized
controller organization can be considered to be equivalent. In a fully decentralized approach there are no
dedicated resource controller machines, the resource requestors and resource providers directly determine
the allocation and scheduling of resources. Logically there are as many different request and job queues as
there are resource requestors and resource providers in the Grid.

Centralized

Scheduler
Organization

Decentralized

Hierarchical

Figure 11: Scheduler Organization Taxonomy.

5.3.2 State Estimation

Previous taxonomies of state estimation concentrated on the degree of information available for
estimated state and the communication organization by which this information was distributed. In Grid
systems, state estimation is always done on partial or stale information due to information propagation
delay in large distributed systems. The focus of this taxonomy is on the mechanism used to estimate state
that affects the implementation of the current and historical data stores in our abstract model. Figure 12
shows the state estimation taxonomy.

Non-predictive state estimation uses only the current job and resource status information since there is
no need to take into account historical information. Non-predictive approaches use either heuristics based
on job and resource characteristics or a probability distribution model based on an offline statistical
analysis of expected job characteristics. A predictive approach takes current and historical information such
as previous runs of an application into account in order to estimate state. Predictive models use either
heuristic, pricing model or machine learning approaches. In a heuristic approach, predefined rules are used
to guide state estimation based on some expected behavior for Grid applications. In a pricing model
approach, resources are bought and sold using market dynamics that take into account resource availability
and resource demand [10]. In machine learning, online or offline learning schemes are used to estimate the
state using potentially unknown distributions. Note that heuristics or statistics-based techniques can be used
for both predictive and non-predictive state estimation approaches.

State
Estimation

Non-predictive

Predictive

Heuristics

Probability Distribution

Heuristics

Machine Learning

Pricing Models

Figure 12: State Estimation Taxonomy.

5.3.3 Rescheduling

The rescheduling characteristic of a RMS determines when the current schedule is re-examined and the
job executions reordered. The jobs can be reordered to maximize resource utilization, job throughput, or
other metrics depending on the scheduling policy. The rescheduling approach determines the suitability of a
RMS for different types of Grid systems. Figure 13 shows the rescheduling taxonomy. Periodic or batch

14

rescheduling approaches group resource requests and system events and process them at intervals. This
interval may be periodic or may be triggered by certain system events. The key point is that rescheduling is
done to batches instead of individual requests or events. Event driven online rescheduling performs
rescheduling as soon the RMS receives the resource request or system event.

Rescheduling

Periodic/Batch

Event-Driven/
Online

Figure 13: Rescheduling Taxonomy.

Batch rescheduling allows potentially more effective utilization of the Grid resources since more
requests can be considered at one time. Predictive state estimation schemes may also work better with
periodic or batch rescheduling. Hard QoS would be difficult to provide using a batch rescheduling
approach since the violation of service level would not cause immediate rescheduling of the offending job.
Online schemes can be more reactive and show less latency for jobs. It may be quite difficult to implement
a general-purpose online RMS scheme that can address the different types of Grid systems.

5.3.4 Scheduling Policy

The RMS uses the scheduling policy to determine the relative ordering of requests and jobs when
rescheduling. Figure 14 shows the scheduling policy taxonomy. This taxonomy focuses the degree that the
scheduling policy can be altered by entities outside the RMS. In a large Grid system with many different
administrative domains we can expect different resource utilization policies. Thus it is unlikely that an
unalterable scheduling policy will suffice for the different needs.

Scheduling
Policy

Fixed

Extensible
Ad-hoc

Structured

System Oriented

Application Oriented

Figure 14: Scheduling Policy Taxonomy.

In a fixed approach the policy implemented by the resource manager is predetermined. Fixed policies
are further subdivided into maximizing system throughput schemes or maximizing application oriented
schemes. Application oriented schemes try to optimize some specific metric such as application completion
time. Some fixed policy schemes allow fine-tuning by providing specific control parameters to fine-tune
the gross level scheduling objective such as maximizing overall resource utilization. Extensible scheduling
policy schemes allow external entities the ability to change the scheduling policy. In the ad-hoc extensible
scheme the resource manager implements a fixed scheduling policy but provides an interface whereby an
external agent can change the resulting schedule. This is typically done only for specific resources that
demand special treatment. In a structured extensible scheme the resource manager provides a model of the
scheduling process with associated semantics. External agents are allowed to override the default RMS
supplied behaviors with their own thus changing the default scheduling policy.

5.3.5 Valid Combinations

Unlike the taxonomies for the resources for a RMS, the scheduling taxonomies are orthogonal to each
other. Thus different combination of scheduler organization, state estimation, rescheduling, and scheduling
policy classifications can be implemented in a Grid RMS. In current Grid systems it is possible to change
portions of the scheduling subsystem without affecting the other components of the RMS or the other

15

scheduling components. For example, the Nimrod/G super-scheduler was used in conjunction with the
existing Globus scheduling and resource components.

6. Grid Resource Management Systems Survey

There are many existing Grid and network computing projects currently underway with many new
projects starting all the time. The example systems survey is no exhaustive, but comprehensive enough to
have case systems so that most classifications in the Grid RMS taxonomy are covered (Figure 1). We are
trying to capture as many different classifications of the resource taxonomies and scheduling taxonomies as
possible. In the following survey we will give a brief description of each system and then classify the
resource management system attributes according to our taxonomy. We will focus our attention on the
RMS aspect of the surveyed system rather than the overall Grid level characteristics of a system. A
summary of architectural design choices made by a few popular Grid resource management systems is
shown in Table 1. Attributes that are not described in a section for a system are not part of the surveyed
system or provided by some other component such as the underlying Grid fabric or operating systems. The
goal of this section is to demonstrate the use of the taxonomy to classify a large number of examples from
the literature particularly recent works in grid resource management.

Table 1: Grid resource management systems and their architecture choices.

System Grid Type Organization Resources Scheduling

2K On Demand

Service Grid

Flat

(Hierarchical

in the Future)

Extensible object model, graph

namespace, soft network QoS, object

model store, agent based discovery,

online/demand dissemination

One level hierarchical scheduler for

network resources, decentralized

scheduler for other resources

AppLeS Computational

Grid

(scheduling)

Uses resource model provided by the

underlying Globus, Legion, or Netsolve

middleware services

Centralized scheduler, predictive

heuristic state estimation, online

rescheduling, fixed application

oriented policy

Bond On Demand

Service Grid

Flat Extensible object model, graph

namespace, hard QoS, language based

object store, agent based discovery,

periodic push dissemination

Decentralized scheduler, predictive

pricing models, online

rescheduling, fixed application

oriented policy

CERN

DataGrid

Data Grid

Computational

Grid

Hierarchical Extensible schema model, hierarchical

namespace, no QoS, LDAP network

directory store, distributed query-based

discovery, periodic push dissemination.

Hierarchical schedulers, extensible

scheduling policy

Condor Computational

Grid

Flat Extensible schema model, hybrid

namespace, no QoS, other network

directory store, centralized query based

discovery, periodic push dissemination

Centralized scheduler

Darwin Network

Oriented

Service Grid

Hierarchical Fixed schema model, graph namespace,

hard QoS

Hierarchical scheduler, non-

predictive state estimation, online

rescheduling, fixed system oriented

policy.

Globus Grid Toolkit

(for developing

computational,

data, & service

Grids)

Hierarchical

Cells

Extensible schema model, hierarchical

namespace, soft QoS, LDAP network

directory store, distributed query based

discovery, periodic push dissemination

It offers lower level services for

resource allocation or co-allocation

including resource reservation.

Higher-level tools (like Nimrod/G)

perform scheduling.

16

Javelin Computational

Grid

Hierarchical Fixed object model, graph namespace,

soft QoS, other network directory store,

distributed query based discovery,

periodic push dissemination

Decentralized scheduler, fixed

application oriented policy

Lancaster

DMRG

Multimedia

Service Grid

Flat Extensible object model, graph

namespace, hard QoS

Decentralized scheduler, ad-hoc

extensible policy

Legion Computational

Grid

Flat

Hierarchical

Extensible object model, graph

namespace, soft QoS, object model store,

distributed query based discovery,

periodic pull dissemination.

Hierarchical scheduler, ad-hoc

extensible scheduling policies

MOL Computational

Grid

Hierarchical

Cells

Extensible schema model, hierarchical

namespace, no QoS, object model store,

distributed query based discovery,

periodic push dissemination

Decentralized scheduler, extensible

ad-hoc scheduling policies

MSHN Computational

& Service Grids

Flat Fixed schema model, hybrid namespace,

hard QoS, other network directory store,

distributed query based discovery, online

dissemination

Centralized scheduler, predictive

heuristics for state estimation, event

driven rescheduling, fixed system

oriented scheduling policy

NetSolve Computational

& Service Grids

Hierarchical Extensible schema model, hierarchical

namespace, soft QoS, centralized query

based discovery, periodic push

dissemination.

NetSolve Agents perform

scheduling.

Nimrod/G

& GRACE

High-

throughput

Computational

and Service

Grids.

Hierarchical

Cells

Uses resource model provided by the

underlying Globus or Legion middleware

services. It offers both soft and hard QoS

depending on their availability on

computational nodes.

Application-level scheduling

policies driven by computational

economy and deadline. It follows

hierarchically distributed

scheduling model.

Ninf Computational

& Service Grid

Hierarchical Extensible schema model, relational

namespace, no QoS, centralized query

based resource discovery, periodic push

for dissemination.

Decentralized scheduler,

Ninja On Demand

Service Grid

Hierarchical Extensible object model, graph

namespace, no QoS, language based

store, distributed query based discovery,

periodic push dissemination

Not applicable

PUNCH Computational

& on Demand

Service Grids

Hierarchical Extensible schema model, hybrid

namespace, soft QoS, distributed query

based discovery, periodic push

dissemination.

Both Hierarchical and decentralized

approach in scheduler organization.

PUNCH employs non-preemptive,

decentralized, adaptive, sender-

initiated scheduling.

6.1. 2K: A Distributed Operating System

2K is a distributed operating system [40], [42] that provides a flexible and adaptable architecture for
providing distributed services across a wide variety of platforms ranging from a Palm PDA to large scale
Unix and Microsoft Windows platforms. The emphasis in the 2K project is on providing a flexible and

17

extensible operating system environment for the development and deployment of distributed service
applications. High performance grand challenge applications do not seem to be a target of the 2K project.

The core of the 2K system is a dynamic reflective CORBA object request broker (ORB) called
dynamicTAO that is an extension of the TAO ORB [43]. The dynamicTAO ORB provides the ability to
dynamically create environments for applications and move them across the 2K Grid machines using
mobile reconfiguration agents. Code and service distribution is also managed using the 2K facilities.

The classification comes mainly from the use of CORBA as the underlying substrate for the system.
The 2K system can be considered to be a demand service Grid that uses a flat machine organization. In [41]
an extension to the current flat model to hierarchical model is described using CORBA traders and Name
servers. 2K uses an extensible object model with a graph based resource namespace and provides soft
network QoS. The resource information store is object model based using the CORBA object model.
Resource discovery is performed through agents. Locating services and resource is also performed using
the CORBA trading services. Resource dissemination is performed on demand by injecting mobile agents
into the system.

The 2K system uses a one level hierarchical controller for scheduling network bandwidth. Other
resources are scheduled locally using the (DSRT) Dynamic Soft Real Time scheduling at each resource
provider resulting. Thus 2K uses a decentralized controller for all other resources. There does not appear to
be any state estimation function or rescheduling approach in the 2K system other than those provided by
the underlying native operating system. They do not appear to support any scheduling policy component in
the 2K system.

6.2. AppLeS: A Network Enabled Scheduler

The AppLeS [1] (Application Level Scheduling) project at the University of California, San Diego
primarily focuses on developing scheduling agents for individual applications on production computational
Grids. It uses the services of Network Weather Service (NWS) to monitor changes in performance of
resources dynamically. AppLeS agents use static and dynamic application and system information while
selecting viable set of resources and resource configurations. It interacts with other resource management
systems such as Globus, Legion, and NetSolve to implement application tasks. The applications have
embedded AppLeS agents and thus become self-schedulable on the Grid. The concept of AppLeS has been
applied to many application areas including Magnetohydrodynamics [2], Gene Sequence Comparison,
satellite radar images visualization, and Tomography [3].

Another effort within AppLeS project framework is the development of AppLeS templates (similar to
Nimrod/G framework and resource broker, but not budget and deadline scheduling). These templates can
be applied to a number of applications, but they need to be structurally similar and have the same
computational model. Templates have been developed for application classes such as master/slave and
parameter studies.

As the focus of AppLeS project is on scheduling, it follows the resource management model supported
by the underlying Grid middleware systems. An AppLeS scheduler is central to the application that
performs mapping of jobs to resources, but the local resource schedulers perform the actual execution of
application units (like in Nimrod/G). AppLeS schedulers do not offer QoS support and build on whatever
resource model offered by the underlying systems. AppLeS can be considered to have predictive heuristic
state estimation model with online rescheduling and application oriented scheduling policies.

6.3. Bond: Java Distributed Agents

Bond is a Java based object oriented middleware system for network computing [44]. Bond is based on
agents [45] that communicate using KQML, the Knowledge Querying and Manipulation Language, for
inter object communication. KQML is implemented using Java and is used for inter agent communications
rather than the lower level Java mechanisms in order to provide a uniform base of operation semantics
between agents. Bond defines a uniform agent structure and agent extension mechanism. Agents are
structured into finite state machines and strategy objects that define behavior in different states. External

18

events cause state transitions that in turn trigger the strategy objects. Agents are dynamically assembled
from components using a blueprint. Agents can be checkpointed and migrated by Bond. Agents can
discover interface information via an interface discovery service that is accessed via a KQML message.
Agent extensions are done using subprotocols [46]. Subprotocols are small closed subsets of KQML
commands and are used to dynamically extend the objects provided by the Bond library. Bond has a two
level scheduler based on a stock market or computational economy approach. The Concerto extension of
Bond [47] supports hard QoS and provides a general-purpose real time OS platform for multiresource
reservation, scheduling and signaling. Tempo is the bandwidth manager component and schedules network
bandwidth. It is implemented as an extension of Sun Solaris.

Bond is middleware that provides the infrastructure for an on-demand service Grid with a flat
organization since there is no concept of autonomous domains with a border. Other organizations can
implemented on top of Bond but require extended the resource management functions provided by Bond.
The resource model is extensible object model, with hard QoS support, and a graph namespace. The
resource information store is language based distributed objects. Resources implement their interfaces in
Java but exchange information between themselves using KQML. Resource discovery is agent based.
Resource dissemination is accomplished through periodic push using probes. Schedulers are decentralized
and use predictive pricing models for state estimation. Rescheduling is online. The scheduling policy seems
to be fixed and application oriented.

6.4. CERN Data Grid

CERN, the European Organization for Nuclear Research, and the High-Energy Physics (HEP)
community have established a project called ‘‘Research and Technological Development for an
International Data Grid’’ [13]. The objectives of this project are the following. Firstly, establish a Research
Network that enables the development of the technology components essential for the implementation of a
new worldwide Data Grid on a scale not previously attempted. Secondly, demonstrate the effectiveness of
this new technology through the large-scale deployment of end-to-end application experiments involving
real users. Finally, demonstrate the ability to build, connect and effectively manage large general-purpose,
data intensive computer clusters constructed from low-cost commodity components. Furthermore, the
project does not only cover HEP but also other scientific communities like Earth Observation and
Bioinfomatics.

The CERN Data Grid project focuses on the development of middleware services in order to enable a
distributed analysis of physics data. The core middleware system is the Globus toolkit with hooks for Data
Grids. Data on the order of several Petabytes will be distributed in a hierarchical fashion to multiple sites
worldwide. Global namespaces are required to handle the creation of and access to distributed and
replicated data items. Special workload distribution facilities will balance the analysis jobs from several
hundred physicists to different places in the Grid in order to have maximum throughput for a large user
community. Application monitoring as well as collecting of user access patterns will provide information
for access and data distribution optimization.

The CERN Data Grid project has a multi-tier hierarchical machine organization. For example, tier-0 is
CERN, which stores almost all relevant data, several tier-1 regional centers (in Italy, France, UK, USA,
Japan) will support smaller amounts of data, and so on. It has an extensible schema based resource model
with a hierarchical namespace organization. It does not offer any QoS and the resource information store is
expected to be based on an LDAP network directory. Resource dissemination is batched and periodically
pushed to other parts of the Grid. Resource discovery in the Data Grid is decentralized and query based.
The scheduler uses a hierarchical organization with an extensible scheduling policy.

6.5. Condor: Cycle Stealing Technology for High Throughput Computing

Condor [14], [16] is a high-throughput computing environment developed at the University of
Wisconsin at Madison, USA. It can manage a large collection of computers such as PCs, workstations, and
clusters that are owned by different individuals. Although it is popularly known for harnessing idle
computers CPU cycles (cycle stealing), it can be configured to share resources. The Condor environment

19

follows a layered architecture and offers powerful and flexible resource management services for sequential
and parallel applications. The Condor system pays special attention to the computer owner’s rights and
allocates their resources to the Condor pool as per the usage conditions defined by resource owners.
Through its unique remote system call capabilities, Condor preserves the job’s originating machine
environment on the execution machine, even if the originating and execution machines do not share a
common file system and/or user ID scheme. Condor jobs with a single process are automatically
checkpointed and migrated between workstations as needed to ensure eventual completion.

Condor can have multiple Condor pools and each pool follows a flat machine organization. The
Condor collector, which provides the resource information store, listens for advertisements of resource
availability. A Condor resource agent runs on each machine periodically advertising its services to the
collector. Customer agents advertise their requests for resources to the collector. The Condor matchmaker
queries the collector for resource discovery that it uses to determine compatible resource requests and
offers. The agents are then notified of their compatibility. The compatible agents then contact each other
directly and if they are satisfied, then the customer agent initiates computation on the resource.

Resource requests and offers are described in the Condor classified advertisement (ClassAd) language
[15]. ClassAds use a semi-structured data model for resource description. Thus no specific schema is
required by the matchmaker allowing it to work naturally in a heterogeneous environment. The ClassAd
language includes a query language as part of the data model, allowing advertising agents to specify their
compatibility by including constraints in their resource offers and requests.

 The matchmaker performs scheduling in a Condor pool. The matchmaker is responsible for initiating
contact between compatible agents. Customer agents may advertise resource requests to multiple pools
with a mechanism called flocking, allowing a computation to utilize resources distributed across different
Condor pools.

The Condor system has recently been enhanced to support creation of a personal condor pools. It
allows the user to include their Globus-enabled nodes into the Condor pool to create a “personal condor”
pool along with public condor pool nodes. The Grid nodes that are included in personal condor pool are
only accessible to the user who created the pool.

Condor can be considered as a computational Grid with a flat organization. It uses an extensible
schema with a hybrid namespace. It has no QoS support and the information store is a network directory
that does not use X.500/LDAP technology. Resource discovery is centralized queries with periodic push
dissemination. The scheduler is centralized.

6.6. Darwin: Resource Management for Network Services

Darwin is a customizable resource management system [24] for creating value added network services.
It is oriented towards resource management in network based equipment, but does provide mechanisms for
scheduling computation in non-network nodes. Darwin provides a virtual network or mesh to distributed
applications. An application provides an application input graph that describes the resource required. The
input graph describes a set of end nodes and the network connections between them. The graph is annotated
with QoS specifications that are used by Darwin in allocating resources. Darwin can provide hard network
QoS since Darwin components run in routers and can control bandwidth at the network flow level using the
built-in router functions.

The core component of Darwin is Xena, a request broker, which performs global allocation of
resources. Control delegates perform runtime adaptations of the initial resource assignment. Control
delegates are Java code segments that reside on the routers. Data delegates operate on the network flows
and provide services such as encryption, decryption, and data compression. Local resource managers
provide low-level resource allocation. Local resource managers coordinate the allocation of network
resources using the Beagle signaling protocol [30]. Darwin uses a hierarchical fair service curve scheduling
algorithm (H-FSC) for higher level resource allocation. The H-FSC algorithm was designed to efficiently
support virtual networks for distributed applications.

20

Darwin is a networked oriented on demand service Grid. The machine organization is a one level
hierarchy since all requests are sent to a Xena request broker, which interacts with its peer request brokers
in a Darwin system. The resource model is a fixed schema with hard QoS support. The resource namespace
is a graph. Darwin does not provide a separate resource information store, resource discovery protocol, or
resource dissemination protocol. Darwin is network oriented and much of the network resource information
is available from the underlying network routers. Scheduling is hierarchical with non-predictive state
estimation. Rescheduling is event driven and implemented by the control delegates. The scheduling policy
is fixed and system oriented.

6.7. Globus: A Toolkit for Grid Computing

Globus [5] provides software infrastructure that enables applications to view distributed heterogeneous
computing resources as a single virtual machine. The Globus project is an American multi-institutional
research effort that seeks to enable the construction of computational Grids. Currently the Globus
researchers are working together with the High-Energy Physics and the Climate Modeling community to
build a Data Grid [52]. A central element of the Globus system is the Globus Metacomputing Toolkit
(GMT), which defines the basic services and capabilities required for constructing computational Grids.
The toolkit consists of a set of components that implement basic services, such as security, resource
location, resource management, data management, resource reservation, and communications. The GMT
provides a bag of services from which developers of specific tools or applications can select from to meet
their own particular needs.

Globus is constructed as a layered architecture in which higher level services can be developed using
the lower level core services [6]. Its emphasis is on the hierarchical integration of Grid components and
their services. This feature encourages the usage of one or more lower level services in developing higher
level services. Globus offers Grid information services via an LDAP-based network directory called
Metacomputing Directory Services (MDS) [50].

The recent MDS (resource info store) is distributed in nature and it consists of two components: GIIS
(Grid Index Information Service) and GRIS (Grid Resource Information Service). The GRIS is responsible
for providing a uniform means of querying resources on a Grid for their current configuration, capabilities,
and status. The directory information is provided by Globus system (running each resource) or other
information providers or tools. The GIIS provides a means of knitting together arbitrary GRIS services to
provide a coherent system image that can be explored or searched by Grid applications. It could list all of
the resources available within a confederation of laboratories, or all of the distributed data storage systems
owned by a particular agency. It can also pool information about all of the Grid resources (computation,
data, networks, and instruments) in a particular research consortium, thus providing a coherent system
image of that consortium’s computational Grid. The resource information providers’ use push protocol to
update GRIS. The information maintained in GIIS is updated using pull protocol (i.e., GISS pulls
information from multiple GRIS).

Thus MDS follows both push and pull protocol for resource dissemination. Higher-level tools such as
resource brokers can perform resource discovery by querying MDS using LDAP protocols. The MDS
namespace is organized hierarchically in the form of a tree structure. Globus offers QoS in the form of
resource reservation [51]. It allows application level schedulers such as the Nimrod/G resource broker to
extend scheduling capabilities. The resource brokers can use heuristics for state estimation while
performing scheduling or re-scheduling whenever the status of the Grid changes. Globus is a Grid toolkit
and thus does not supply scheduling policies, instead it allows third party resource brokers. Globus services
have been used in developing many resource brokers (global schedulers) including, Nimrod/G, AppLeS,
and Condor/G.

6.8. Javelin

Javelin [12] is a Java based infrastructure for internet-wide parallel computing. The three key
components of Javelin system are the clients or applications, hosts, and brokers. A client is a process
seeking computing resources, a host is a process offering computing resources, and a broker is a process

21

that coordinates the allocation of computing resources. Javelin supports piecework and branch and bound
models of computation. In the piecework model, adaptively parallel computations are decomposed into a
set of sub-computations. The sub-computations are each autonomous in terms of communication, apart
from scheduling work and communicating results. This model is suitable for parameter sweep (master-
worker) applications such as ray tracing and Monte Carlo simulations. The latest Javelin system, Javelin
2.0, supports branch-and-bound computations. It achieves scalability and fault-tolerance by integrating
distributed deterministic work stealing with a distributed deterministic eager scheduler. An additional
fault-tolerance mechanism is implemented for replacing hosts that have failed or retreated.

The Javelin system can be considered a computational Grid for high-throughput computing. It has a
hierarchical machine organization where each broker manages a tree of hosts. Resources are simple fixed
objects with graph (tree) based namespace organization. The resources are simply the hosts that are
attached to a broker.

Any host that wants to be part of Javelin contacts JavelinBNS system, a Javelin information backbone
that maintains list of available brokers. The host then communicates with brokers and chooses suitable
broker and then becomes part of the broker-managed resources. Thus the information store is a network
directory implemented by JavelinBNS. Hosts and brokers update each other as a result of scheduling work
thus Javelin uses demand resource dissemination. The broker manages the host-tree or resource information
through a heap-like data structure. Resource discovery uses the decentralized query based approach since
queries are handled by the distributed set of brokers.

Javelin follows a decentralized approach in scheduling using work stealing and fixed application
oriented scheduling policy. Whenever a host completes an assigned job, it requests works from peers and
thus load balancing is achieved.

6.9. Lancaster Distributed Multimedia Research Group

The University of Lancaster Distributed Multimedia Research Group (DMRG) has a number of
projects focused on providing a high performance real time platform for distributed multimedia
applications. The Generic Object Platform Infrastructure (GOPI) project developed a platform based on
CORBA with RM-ODP extension that provides an extensible architecture for adaptive multimedia
applications [35][36]. GOPI provides an API and core services that are extended using network protocol
extensions called application specific protocols. These extensions are stacked on top of transport protocols
and implement application specific scheduling policies with the scheduling framework provided by GOPI.
The resource namespace is based on the RM-ODP computational model and is specified using CORBA
IDL. Reflective middleware and open bindings support QoS annotation on interfaces and the ability for an
application to inspect and adapt its behavior to the underlying network.

The Lancaster DRMG systems together form what can be considered a multimedia service Grid. The
organization is flat with an extensible object oriented resource model since it is based on CORBA. Thus the
resource namespace is a graph. The system provides hard QoS if the underlying operating systems and
network provide support as in the case in the SUMO project. The research has been focused on delivering
multimedia application support and thus lacks infrastructure for resource information directory, resource
discovery, and resource dissemination protocols. A scheduler framework is provided into which application
specific schedulers are loaded. The scheduler framework and scheduling extensions operate on a per nodes
basis thus the scheduler organized is decentralized with an ad-hoc extensible scheduling policy. State
estimation and rescheduling are determined by the application specification extensions and thus cannot be
classified.

6.10. Legion: A Grid Operating System

Legion [4] is an object-based metasystem or Grid operating system developed at the University of
Virginia. Legion provides the software infrastructure so that a system of heterogeneous, geographically
distributed, high performance machines can seamlessly interact. Legion provides application users with a
single, coherent, virtual machine. The Legion system is organized into classes and metaclasses.

22

Legion objects represent all components of the Grid. Legion objects are defined and managed by their
class object or metaclass. Class objects create new instances, schedule them for execution, activate or
deactivate the object, and provide state information to client objects. Each object is an active process that
responds to method invocations from other objects within the system. Objects can be deactivated and saved
to persistent storage. Objects are reactivated automatically when another object wants to communicate
with it. Legion defines an API for object interaction, but not specify the programming language or
communication protocol.

Although Legion appears as a complete vertically integrated system, its architecture follows the
hierarchical model. It uses an object based information store organization through the Collection objects.
Collections periodically pull resource state information from host objects. Host objects track load and users
can call the individual host directly to get the resource information. Information about multiple objects is
aggregated into Collection objects. Users or system administrators can organize collections into suitable
arrangements. Currently, there is a global collection named “/etc/Collection” for the system that tracks
HostObjects and VaultObjects which embody the notion of persistent storage. The users or their agents can
obtain information about resources by issuing queries to a Collection.

All Classes in Legion are organized hierarchically with LegionClass at the top and the host and vault
classes at the bottom. It supports a mechanism to control the load on hosts. It provides resource reservation
capability and the ability for application level schedulers to perform periodic or batch scheduling. Legion
resource management architecture is hierarchical with decentralized scheduling policies. Legion supplies
default system oriented scheduling policies, but it allows policy extensibility through resource brokers.
That is, application level schedulers such as Nimrod/G [10] and AppLeS [2] can change Legion default
scheduling policies to user-oriented policies such as computational economy and deadline-based
scheduling.

6.11. MOL: Metacomputing Online Kernel

MOL initiative is developing technologies that aim at utilizing multiple WAN-connected high performance
systems as a computational resource for solving large-scale problems that are intractable on a single
supercomputer. One of the key components of MOL toolbox is the MOL-Kernel [48]. It offers basic
generic infrastructure and core services for robust resource management that can be used to construct
higher level services (tools and applications). MOL-Kernel services include, managing available resources
of institutions (computing) centers, establishing a dynamic infrastructure for interconnecting these
institutions, managing faults (network connection failures), and providing access points for users.

The MOL-Kernel follows a three-tier architecture consisting of resource abstraction, management, and
access layers containing resource module (RM), center management modules (CMMs), and access module
(AM) respectively along with customizable and predefined handlers. The resource modules are meant to
encapsulate various metacomputing resources such as hardware (e.g., computing resources and scientific
devices) and services (e.g., applications and databases). All resource modules in an institution (center) are
coordinated by CMM. This module is responsible for keeping its network components/resources in a
consistent state and also makes them accessible from the outside world. It essentially acts as a gatekeeper
and controls the flow of data between center resources and external networks. Usually there is one CMM
per institution, but it is possible to have multiple (identical) CMMs in the case of large organizations. If any
of the MOL-Kernel components fails, only one institute becomes inaccessible in the worst case. Hence,
there is no single-point-of-failure exist in the system. As long as a single CMM available, the MOL-kernel
remains operational. That means, organizations can leave or enter the metacomputing environment as they
wish. The MOL-Kernel dynamically reconfigures itself to include or exclude corresponding center
(organization) resources. A significant challenge in this distributed architecture is how to guarantee that the
collective CMMs always maintain consistent state. In MOL-kernel, this is achieved by using a transaction-
oriented protocol on top of virtual shared memory objects associated with each CMM. In order to make the
global state available at all entry points, mirror instances of shared active objects are maintained at each
CMM. Whenever the state of a shared object changes, the new information is automatically distributed to
the corresponding mirror instances.

23

Higher level functionality of the MOL-Kernel is based on typed messages and event handlers. Any
module in the kernel can send messages to any other component. This is usually triggered by either a user
interacting with an access module, by another incoming message or by a changed state at one of the
available resources or services. The event management unit associated with each kernel module checks for
incoming messages and invokes appropriate event handlers. There exist two types of event handlers:
predefined and customizable. Some of the predefined handlers offer basic services like routing messages to
other destinations, broadcasts, collecting information from a subset of available services. High level
handlers can offer services like “response to load status queries” and invocation of preinstalled
applications. Such high level services (are not part of kernel) and they need to be implemented as
customized event handlers.

The MOL follows a service Grid model with hierarchical cell-based machine organization. It adopts
the schema based resource model and hierarchical name space organization. The global state is maintained
in shared objects of each CMM (i.e., object based resource information storage). The resources and services
themselves announce their initial presence to MOL (push protocol in information dissemination). The
access modules/schedulers perform resource discovery and scheduling by querying shared objects.
Although the resource model is schema based, its primary mode is service based. For example, if users
request an application (e.g. CFD-simulation) with a certain quality of service. MOL then finds those
computers, which have this application, installed and asks them "which of you are powerful enough to
provide the requested quality of service?" (i.e., decentralized scheduler). It then selects one or more to
execute the request.

6.12. MSHN: Management System for Heterogeneous Networks

The MSHN project [37] is a collaborative effort between the United States Department of Defense
(Naval Postgraduate School), academia (NPS, USC, Purdue University), and industry (NOEMIX). It is a
research effort aimed at developing a resource management system for distributed heterogeneous
environments. The resource manager is designed to run in a true Grid environment where each machine has
its own native operating system. One unique aspect of MSHN is that it is targeted to support applications
that can adapt to resource conditions in the Grid [39]. Different versions of an application may be available
to run on different machine architectures or under different operating systems. In addition some
applications may be able to change their resource utilization at runtime in order to adapt to changes in the
Grid resource availability. MSHN supports a general concept of QoS in the scheduler design [38] but has
no explicit QoS specification language. Advance reservation of resources is also supported. Applications
are described to MSHN by a directed acyclic graph where the nodes are subtasks that are annotated with
QoS requirements. The edges denote subtask precedence.

 The MSHN architecture consists of a client library module, a resource status server, resource
requirements database, and a scheduling advisor. The MSHN application resource interface approach is
similar to Condor. The client library is linked into applications and the resource requests trapped and routed
to the MSHN system. For example, attempting to start an application on a remote machine causes the
request to transfer to MSHN for scheduling. Each machine in MSHN runs mshd, a daemon that provides
the interfaces to the other parts of the system. The scheduling advisor provides centralized scheduling
services for the MSHN system. The resource status server keeps track of the resource status and compares
the scheduled resource utilization against the actual resource utilization. A rescheduling event is generated
and sent to the schedule advisor if there is a significant discrepancy. The resource requirement server
contains fine grained resource information about applications resource requirements. The goal is that
compilers and application developers can populate the resource information database.

MSHN can be considered as a computational and service Grid with a flat machine organization. The
resource model will be classified as fixed schema since it will be based on network directories. The
resource namespace for similar reasons will be a hybrid namespace. MSHN will also support hard QoS.
The information store will use an X.500/LDAP network directory. Resource discovery is achieved through
distributed queries and resource dissemination performed online. The scheduler organization is centralized
with predictive heuristics for state estimation. MSHN is investigating a number of scheduling approaches.
Currently it can be classified as event driven rescheduling with a fixed system oriented scheduling policy.

24

6.13. NetSolve: A Network Enabled Computational Kernel

Netsolve [8] is a client-agent-server paradigm based network enabled application server. It is designed
to solve computational science problems in a distributed environment. The Netsolve system integrates
network resources including hardware and software into the desktop application. It performs resource
discovery and delivers solutions to the user in a directly usable and “conventional” manner (i.e., no need to
develop special program code like parallel code to use high-end machines). The backend networks
resources that includes supercomputers and software (i.e., it can be parallel high performance
computational kernel/special purpose software library). The use of such techniques will help in hiding
parallel processing complexity from the user applications and deliver the power of parallel processing to
desktop users with ease.

Netsolve clients (applications) can be written in C and Fortran and use Matlab or the Web to interact
with the server. A Netsolve server can use any scientific package to provide its computational software.
Communications within Netsolve is performed using TCP/IP socket facility. Good performance is ensured
by a load-balancing policy that enables Netsolve to use the computational resources available as efficiently
as possible. Netsolve offers the ability to search for computational resources on a network, choose the best
one available, solve a problem (with retry for fault-tolerance), and return the answer to the user.

The Netsolve system follows the service Grid model with hierarchical cell-based machine
organization. The Netsolve-agents act as an information repository and maintains the record of resources
(hardware and software) available in the network. The resources themselves are responsible for making
their existence aware to Netsolve Agent (push protocol in information dissemination). That is, whenever a
new server comes-up, it sends information such as its location and services that served can offer to the
Agent. The Netsolve Agent also acts as a resource broker and performs resource discovery and scheduling.
The user requests are passed to the Agent that identifies the best resource, initiates computations on that
resource, and returns the results. It may request assistance of other Agents in identifying the best resources
and scheduling (decentralized scheduling).

6.14. Nimrod/G Resource Broker and Economy Grid

Nimrod/G [9], [10] is a Grid resource broker that allows managing and steering task farming
applications (parameter studies) on computational Grids. It follows an economic (computational market)
model for resource management and scheduling. It allows the study of the behavior of output variables
against a range of different input scenarios. The users can easily formulate parameter studies using
declarative parametric modeling language or GUI and run and manage the whole experiment on a global
Grid with ease. The key features of Nimrod/G include: 1) support for a formulation of parameter studies, 2)
a single window to manage and control experiments, 3) resource discovery, 4) trade for resources, 5)
scheduling, 6) staging executables and data on Grid resource, 7) steering and data management, and 8)
gathering results and presenting them to the user.

The current focus of the Nimrod/G project team is on the use of economic theories in Grid resource
management and scheduling as part of a new framework called GRACE (Grid Architecture for
Computational Economy). The components that make up GRACE include global scheduler (broker), bid-
manager, directory server, and bid-server working closely with Grid middleware and fabrics. The GRACE
infrastructure also offers generic interfaces (APIs) that the Grid tools and applications programmers can use
to develop software supporting the computational economy. The Grid resource brokers such as (Nimrod/G)
uses GRACE services to dynamically trade with resources owner agents to select those resources that offer
low-cost access services and meet the user requirements. GRACE enabled Nimrod/G has been used for
scheduling parameter sweep application’s jobs on economy Grid testbed resources spanning across four
continents: Australia (Melbourne), Asia (Japan), North America (USA), and Europe (Germany) [11].

Nimrod/G follows hierarchical and computational market model in resource management [10]. It uses
services of Grid middleware systems such as Globus and Legion for resource/information discovery and
uses either network directory or object model based data organization. It supports both soft and hard QoS
through computational economy services of GRACE infrastructure and resource reservation. The users

25

need to define their QoS requirements explicitly (i.e., they need to define the deadline and budget as part of
an experiment setup). The Grid resource estimation is performed through heuristics and historical
information (load profiling) and scheduling policy is application oriented and is driven by user defined
requirements such as deadline and budget limitations. The load balancing is performed through periodic
rescheduling.

6.15. Ninf: A Network Enabled Server

Ninf is a client/server-based network infrastructure for global computing [7]. The Ninf system
functionalities are similar to NetSolve, but they differ in the protocols and some of the APIs. It allows
access to multiple remote compute and database servers. Ninf clients can semi-transparently access remote
computational resources from languages such as C and Fortran. Programmers can build a global computing
application by using the Ninf remote libraries as its components, without being aware of the complexities
of the underlying system they are programming. Procedural parameters, including arrays, are efficiently
marshaled and sent to the Ninf-server on a remote host responsible for executing requested library
functions and send back the results. The Ninf-client library calls can be synchronous or asynchronous in
nature.

The key components of Ninf system include: Ninf-client interfaces, Ninf-Metaserver, and Ninf-remote
libraries. When Ninf-applications invoke Ninf-library functions through APIs, the request goes to Ninf-
Metaserver that maintains the information of Ninf servers in the network (using LDAP technology), and
automatically allocates remote library calls dynamically on appropriate servers for load balancing or
scheduling. That means, the Ninf-metaserver itself performs the resource discovery by querying its
information store. Ninf-computational resources themselves register details of available library services
with Ninf-metaserver (i.e., it uses push protocol in resource dissemination). Ninf follows a flat model in
machine organization, schema for resource model, and relational name space organization. Ninf-
Metaservers performs resource brokering or superscheduling, but actual scheduling is done using dynamic
policies.

6.16. Ninja: Java Infrastructure

Ninja is a Java based infrastructure for fault tolerant, scalable, and high available Internet based
applications. Ninja provides a distributed application namespaces called Multispaces [31]. Multispaces
also provide service mobility so that services can migrate between nodes in a Ninja based system. The Java
virtual machine with Ninja extensions and run time class libraries (an Ispace) provide a uniform execution
environment between nodes. Nodes with limited resources use RMI to access non-resident services.

Components that comprise Ninja services are described using a document markup language based on
XML called ISL (Interface Specification Language) [32]. Services are discovered in a Ninja system using a
directory service that is called Ninja SDS (Service Discovery Service) [33]. SDS uses XML rather than
attribute value pairs to describe services. Service information is periodically disseminated via multicast
with plans to use agents and active messages later. The servers can be grouped into a hierarchy in order to
reduce traffic loads. SDS servers are just another instance of a Ninja service and thus are accessible using
standard Ninja communication mechanisms.

The Ninja system extends the Java platform in the area of performance and inter-object
communication. Jaguar provides a compiler extension and run time enhancements to enhance I/O
performance [34]. Ninja uses NinjaRMI, a reimplementation of Java RMI, for distributed object
communication. NinjaRMI provides unicast UDP, multicast, and best effort UDP transport mechanisms
that are better suited to Grid like systems than regular JavaRMI. There are some example applications such
as the Ninja Jukebox, a distributed music jukebox using CD-ROM at nodes as the players and Keiretsu, an
instant messaging service that integrates a variety of devices including Palm Pilots, pagers, and
workstations.

Ninja can be classified as an on demand service Grid. It provides a hierarchical machine organization
since there is no concept of specially designated border nodes in separate autonomous systems. The Ninja

26

resource model is an extensible object model. Services are described in extended XML but the service
definition is written in ISL, which describes the Java object interface. The namespace organization is graph
based with no explicit QoS support. The resource information store is language based distributed objects
since the services are all Java objects. The current resource discovery scheme is distributed queries with
plans to move to agents in the future. Resource dissemination is periodic push using multicast. Ninja does
not support explicit scheduling services at this time.

6.17. PUNCH: The Purdue University Network Computing Hubs

PUNCH [17][18] is a middleware testbed that provides operating system services in a network-based
computing environment. It provides transparent and universal access to remote programs and resources;
access-control (privacy and security) and job-control (execute, abort, and run-status) functionality in a
multi-user, multi-process environment; and logical (virtual) organization and decentralized management of
resources.

The PUNCH infrastructure consists of a collection of technologies and services that allow seamless
management of applications, data, and machines distributed across wide-area networks. Users can access
any application from anywhere via standard Web browsers --- applications do not have to be written in any
particular language, and access to source or object code is not required.

PUNCH employs a hierarchically distributed architecture with several layers. A computing portal
services layer provides Web-based access to a distributed, network-computing environment. This layer
primarily deals with content management and user-interface issues. A network OS layer provides
distributed process management and data browsing services. An application middleware layer allows the
infrastructure to interoperate with other application-level support systems such as PVM [19] and MPI [20].
A virtual file system layer consists of services that provide local access to distributed data in an application-
transparent manner. Finally, an OS middleware layer interfaces with local OS services available on
individual machines or clusters of machines. The described layers interoperate with a distributed resource
management system and a predictive performance modeling sub-system in order to make intelligent
decisions in terms of selecting application implementations (e.g., sequential versus parallel), data storage
sites, and hardware resources (e.g., a dedicated server versus a Condor [14] pool).

7. Discussion and Conclusion

There are many approaches/models [53] for developing Grid resource management systems. The systems
we surveyed have for the most part focused on either a computational Grid or a service Grid. The only Data
Grid project that we have surveyed is the CERN Data Grid, which is in the initial stages of development.
The other category of system is the Grid scheduler such as Nimrod/G and AppLeS that is integrated with
another Grid RMS such as Globus or Legion. These combinations are then used to create application
oriented computational Grids with certain degree of QoS.

Any RMS that provides support for QoS, even if it is limited to network QoS, provides the basis for
both computational and service Grid. A RMS that does not provide QoS is only able to provide a
computational Grid. Another observation is that systems that provide QoS use a wide variety of scheduling
approaches. For example 2K uses a hierarchical scheduler, Bond uses a decentralized scheduler, and
MSHN uses a centralized scheduler. A topic of further research would be to correlate the scheduling
attributes from different systems with different Grid sizes.

Extensibility of the resource model is a feature of all the surveyed RMS with the exception of Darwin,
Javelin, and MSHN. Darwin is oriented towards network services and thus does not require extensibility
and Javelin is oriented towards Internet parallel computing and thus does not require a rich resource model.
The degree of extensibility is quite different between systems. Extensible schema based models range from
the semi-structured data models of Condor to the LDAP based structure for Globus. Object based model
extensibility typically follows what is available in the underlying technology, which is either CORBA or
Java. The Legion system is an exception to this since it builds its object model from its own primitives. A
topic for further research is to investigate the extent to which the extensible features of the various resource

27

models are used by Grid applications. It may be possible the resource model extensions are only used
internally by the RMS components.

Most systems employ a periodic push approach to resource dissemination within a hierarchical
machine organization. The resource discovery approach is correlated with the resource model. Schema
based system use queries whereas object model sometimes uses an agent-based approach. There are no
systems that we are aware of that use a schema based resource model with agent based queries. A topic of
further research is to investigate the relative efficiency of different dissemination schemes in conjunction
with the machine organization and resource model.

The survey indicates that most of the different aspects of the taxonomy have been explored in the
different systems. The flat and hierarchical machine organizations are quite common. Cell based
organizations have so far appeared in only schema based resource models. Different resource models have
been developed but there have been no comparisons between the performances of the schemes. The
scheduling aspect of the taxonomy has not been fully explored. A decentralized, online rescheduling
system with an extensible scheduling policy has, to our knowledge, not been developed for a Grid system.

In this paper, we presented a taxonomy for Grid resource management systems. Requirements for
resource management systems were described and an abstract functional model developed. The
requirements and model were used to develop the taxonomy. The taxonomy focused on the type of Grid
system, machine organization, resource model characterization, and scheduling characterization.
Representative Grid systems were then surveyed and placed into the different categories. This helped in
identifying some of the key Grid resource management approaches and issues that are yet to be explored
and we expect such unexplored issues as topics of future research.

Acknowledgements

The authors would like to acknowledge all developers of the Grid systems described in the paper. In
particular, we thank Ian Foster (ANL), Jim Basney (Wisconsin), Hidemoto Nakada (ETL), Nirav Kapadia
(Purdue), Heinz Stockinger (CERN), Achim Streit (Paderborn), Michael Neary (UCSB), Joern Gehring
(Paderborn), John Karpovich (Virginia), Henri Casanova (UCSD), Dan Marinescu (Purdue), Andre Merzky
(ZIB), Fabio Kon (UIUC), Colin Gan (Minnesota), Omer Rana (Cardiff), and Jarek Nabrzyski (Poznan) for
their intellectual communications during the preparation of the manuscript.

References

[1] F. Berman and R. Wolski, The AppLeS Project: A Status Report, Proceedings of the 8th NEC Research
Symposium, Berlin, Germany, May 1997.

[2] H. Dail, G. Obertelli, F. Berman, R. Wolski, and Andrew Grimshaw, Application-Aware Scheduling of a
Magnetohydrodynamics Application in the Legion Metasystem, Proceedings of the 9th Heterogeneous Computing
Workshop, May 2000.

[3] S. Smallen, W. Cirne, J. Frey, F. Berman, R. Wolski, M. Su, C. Kesselman, S. Young, and M. Ellisman,
Combining Workstations and Supercomputers to Support Grid Applications: The Parallel Tomography
Experience, Proceedings of the 9th Heterogeneous Computing Workshop, May 2000.

[4] S. Chapin, J. Karpovich, A. Grimshaw, The Legion Resource Management System, Proceedings of the 5th

Workshop on Job Scheduling Strategies for Parallel Processing, April 1999.

[5] I. Foster and C. Kesselman, Globus: A Metacomputing Infrastructure Toolkit., Intl Journal of Supercomputer
Applications, Volume 11, No. 2, 1997.

[6] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, S. Tuecke, A Resource Management
Architecture for Metacomputing Systems, Proceedings of the 4th Workshop on Job Scheduling Strategies for
Parallel Processing, 1998.

[7] H. Nakada, M. Sato, S. Sekiguchi, Design and Implementations of Ninf: towards a Global Computing
Infrastructure, Future Generation Computing Systems, Metacomputing Special Issue, October 1999.

28

[8] H. Casanova and J. Dongarra, NetSolve: A Network Server for Solving Computational Science Problems, Intl.
Journal of Supercomputing Applications and High Performance Computing, Vol. 11, Number 3, 1997.

[9] R. Buyya, D. Abramson, J. Giddy, Nimrod/G: An Architecture for a Resource Management and Scheduling
System in a Global Computational Grid, International Conference on High Performance Computing in Asia-
Pacific Region (HPC Asia 2000), Beijing, China. IEEE Computer Society Press, USA, 2000.

[10] R. Buyya, J. Giddy, D. Abramson, An Evaluation of Economy-based Resource Trading and Scheduling on
Computational Power Grids for Parameter Sweep Applications, Proceedings of the 2nd International Workshop on
Active Middleware Services (AMS 2000), Kluwer Academic Press, August 1, 2000, Pittsburgh, USA.

[11] R. Buyya, D. Abramson, J. Giddy, An Economy Grid Architecture for Service-Oriented Grid Computing, 10th
International Heterogeneous Computing Workshop (HCW 2001) (In conjunction with IPDPS 2001), San
Francisco, California, USA (submitted).

[12] M. Neary, A. Phipps, S. Richman, P. Cappello, Javelin 2.0: Java-Based Parallel Computing on the Internet,
Proceedings of European Parallel Computing Conference (Euro-Par 2000), Germany, 2000.

[13] W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger, and K. Stockinger, Data Management in an International
Data Grid Project, Proceedings of the first IEEE/ACM International Workshop on Grid Computing, (Springer
Verlag Press, Germany), India, 2000.

[14] M. Litzkow, M. Livny, and M. W. Mutka, Condor - A Hunter of Idle Workstations, Proceedings of the 8th
International Conference of Distributed Computing Systems, June 1988.

[15] R. Raman and M. Livny, Matchmaking: Distributed Resource Management for High Throughput Computing,
Proceedings of the Seventh IEEE International Symposium on High Performance Distributed Computing, July 28-
31, 1998, Chicago, IL.

[16] J. Basney and M. Livny, Deploying a High Throughput Computing Cluster, High Performance Cluster
Computing, Vol. 1, Chapter 5, Prentice Hall PTR, May 1999.

[17] N. Kapadia and J. Fortes, PUNCH: An Architecture for Web-Enabled Wide-Area Network-Computing, Cluster
Computing: The Journal of Networks, Software Tools and Applications, September 1999.

[18] N. Kapadia, R. Figueiredo, and J. Fortes, PUNCH: Web Portal for Running Tools, IEEE Micro, May-June, 2000.

[19] V. Sunderam, A. Geist, J. Dongarra, and R. Manchek, The PVM Concurrent Computing System: Evolution,
Experiences, and Trends, Parallel Computing Journal, Volume 20, Number 4, April 1994.

[20] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, A High-Performance, Portable Implementation of the Message
Passing Interface (MPI) Standard, Parallel Computing Journal, Volume 22, Number 6, September 1996.

[21] I. Foster and C. Kesselman (editors), The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann
Publishers, USA, 1999.

[22] M. Baker, R. Buyya, D. Laforenza, The Grid: International Efforts in Global Computing, International
Conference on Advances in Infrastructure for Electronic Business, Science, and Education on the Internet
(SSGRR 2000), l‘Aquila, Rome, Italy, July 31 - August 6. 2000.

[23] M. Maheswaran, Quality of service driven resource management algorithms for network computing, International
Conference on Parallel and Distributed Processing Technologies and Applications (PDPTA ’99), July 1999.

[24] P. Chandra, A. Fisher, C. Kosak et al., Darwin: Customizable Resource Management for Value-Added Network
Services. 6th IEEE International Conference on Network Protocols, 1998.

[25] I. Ekmecic, I. Tartalja, and V. Milutinovic, A survey of heterogeneous computing: Concepts and Systems,
Proceedings of the IEEE, Vol 84, No 8, Aug 1996, pp. 1127-1144.

[26] T.L. Casavant and J. G. Kuhl, A taxonomy of scheduling in general-purpose distributed computing systems, IEEE
Transactions on Software Engineering, Vol 14, No 2, 1988, pp. 141-154.

29

[27] H.G. Rotithor, Taxonomy of dynamic task scheduling schemes in distributed computing systems, Proceedings of
Computer Digital Technology, Vol 141, No 1, January 1994, pp. 1-10.

[28] N. H. Kapadia, On the Design of a Demand-based Network Computing System: The Purdue University Network-
Computing Hubs, PhD Thesis, Purdue University, August 1999.

[29] T. Braun, J. Siegel, et al, A Taxonomy for describing Matching and Scheduling Heuristics for Mixed-Machine
Heterogeneous Computing Systems, IEEE Workshop on Advances in Parallel and Distributed Systems, in
Proceedings of the 17th IEEE Symposium on Reliable Distributed Systems 1998, pp. 330-335

[30] P. Chandra, A. Fisher, et al, A Signalling Protocol for Structured Resource Allocation, IEEE Infocom’99, New
York, March 1999.

[31] S. Gribble, M. Welsh, E. Brewer, D. Culler, The Multispace: an Evolutionary Platform for Infrastructural
Services, Proceedings of the 1999 Usenix Annual Technical Conference, Monterey, CA, June 1999.

[32] T. Hodes and R. Katz, A Document-based Framework for Internet Application Control, 2nd USENIX Symposium
on Internet Technologies and Systems, Boulder, CO, October 1999.

[33] S. Czerwiniski, B. Zhao, et al, An Architecture for Secure Service Discovery Service, Fifth Annual International
Conference on Mobile Computing and Networks (MobiCom ’99), Seattle, WA, August 1999, pp. 24-35.

[34] M. Welsh and D. Culler, Jaguar: Enabling Efficient Communication and I/O in Java, Concurrency: Practice and
Experience, Special Issue on Java for High-Performance Applications, Decmeber 1999.

[35] G. Coulson, A Configurable Multimedia Middleware Platform, IEEE Multimedia Vol. 6, No. 1, January – March
1999.

[36] G. Coulson and M. Clarke, A Distributed Object Platform Infrastructure for Multimedia Applications, Computer
Communications Vol. 21, No. 9, July 1998, pp. 802-818.

[37] D. Hensgen, T. Kidd, et al, An Overview of MSHN: The Management System for Heterogeneous Networks, 8th
Workshop on Heterogeneous Computing Systems (HCW '99), San Juan, Puerto Rico, April 1999, invited.

[38] G. Xie, D. Hensgen, T. Kidd, and J. Yarger, SAAM: An Integrated Network Architecture for Integrated Services,
Proceedings of the 6th IEEE/IFIP International Workshop on Quality of Service, Napa, CA, May 1998.

[39] M. Schnaidt, D. Hensgen, et al, Passive, Domain-Independent, End-to-End, Message Passing Performance
Monitoring to Support Adaptive Applications in MSHN, International Symposium on High Performance
Distributed Computing (HPDC), Aug. 1999.

[40] F. Kon, R. Campbell, M. Mickunas, and K. Nahrstedt, 2K: A Distributed Operating System for Dynamic
Heterogeneous Environments, 9th IEEE International Symposium on High Performance Distributed Computing
(HPDC’9) August 2000.

[41] F. Kon, T. Yamane, et al., Dynamic Resource Management and Automatic Configuration of Distributed
Component System, 6th Usenix Conference on Object-Oriented Technologies and Systems (COOTS’2001)
February 2001.

[42] D. Carvalho, F. Kon, et al, Management of Environments in 2K, 7th International Conference on Parallel and
Distributed Systems (ICPADS-2000), Iwate Japan, July 4-7 2000.

[43] F. Kon, M. Roman, et al, Monitoring and Dynamic Configuration with the dynamicTAO Reflective ORB, IFIP
International Conference on Distributed Systems Platforms and Open Distributed Processing (Middleware'2000),
New York. April 3-7, 2000.

[44] L. Boloni and D. Marinescu, An Object-Oriented Framework for Building Collaborative Network Agents, in
Agents in Intelligent Systems and Interfaces, A. Kandel et al, eds, Kluewer Publishing House 1999.

[45] K. Jun, L. Boloni, K. Palacz, and D. Marinescu, Agent-Based Resource Discovery, Proceedings of the
Heterogeneous Computing Workshop (HCW 2000), IEEE Press.

30

[46] L. Boloni, R. Hao, K. Jun and D. Marinescu, Subprotocols: an object oriented solution for semantic
understanding of messages in a distributed object system.

[47] D. Yau, D. Marinescu, K. Jun, Middleware QoS Agents and Native Kernel Schedulers for Adaptive Multimedia
Services and Cluster Servers, Proceedings of the Real-Time System Symposium 99, IEEE Press, 1999.

[48] J. Gehring and A. Streit, Robust Resource Management for Metacomputers, 9th IEEE International Symposium on
High Performance Distributed Computing, Pittsburgh, USA, 2000.

[49] K. Nahrstedt, H. Chu and S. Narayan, QoS-aware Resource Management for Distributed Multimedia, Journal on
High-Speed Networking (Special Issue on Multimedia Networking), December 1998.

[50] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, S. Tuecke, A Directory Service for
Configuring High-Performance Distributed Computations, 6th IEEE Symp. on High-Performance Distributed
Computing, 1997.

[51] I. Foster, A. Roy, and V. Sander, A Quality of Service Architecture that Combines Resource Reservation and
Application Adaptation, 8th International Workshop on Quality of Service (IWQOS 2000), June 2000.

[52] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke, The Data Grid: Towards an Architecture for the
Distributed Management and Analysis of Large Scientific Datasets, Journal of Network and Computer
Applications (to appear).

[53] R. Buyya, S. Chapin, D. DiNucci, Architectural Models for Resource Management in the Grid, First IEEE/ACM
International Workshop on Grid Computing (GRID 2000), Springer Verlag LNCS Series, Germany, Dec. 17,
2000, Bangalore, India.

