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Abstract

Grid computing technologies are increasingly being used to aggregate computing resources that are geographically distributed. Commercial
networks are being used to connect these resources, and thus serve as a fundamental component of Grid computing. Since these Grid resources
are connected over a shared infrastructure, it is essential that we consider the effects of using this shared infrastructure during simulations. In
this paper, we discuss how new additions to the GridSim simulation toolkit can be used to explore network effects in Grid computing. We also
investigate techniques to incorporate differentiated levels of service, background traffic and the collection of information from the network during
runtime in GridSim. As a result, these features enable GridSim to realistically model Grid computing experiments.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Grid computing has emerged as the next-generation parallel
and distributed computing methodology, which aggregates
dispersed heterogeneous resources for solving various kinds
of large-scale parallel applications in science, engineering and
commerce [10]. In order to evaluate the performance of a Grid
environment, we need to conduct repeatable and controlled
experiments, which are difficult due to the Grid’s inherent
heterogeneity and its dynamic nature. Additionally, Grid
testbeds are limited, and creating an adequately-sized testbed
is expensive and time consuming. Moreover, it requires the
handling of different administration policies at each resource.
Due to these reasons, it is easier to use simulation as a means
of studying complex scenarios.

The GridSim toolkit [5] has been developed to overcome
the above problems. It is a Java-based discrete-event Grid
simulation package that provides features for application
composition, information services for resource discovery, and
interfaces for assigning applications to resources. GridSim
also has the ability to model the heterogeneous computational
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resources of various configurations. The GridSim toolkit has
been applied successfully to simulate a Nimrod-G-like [6] Grid
resource broker and to evaluate the performance of deadline
and budget constrained cost- and time-optimization scheduling
algorithms.

Communication networks serve as fundamental components
of Grid computing. Resources, connected over commercial
networks, share bandwidth with other users. A realistic
simulation of Grid environments should include the effects of
sending data over shared communication lines. Earlier versions
of GridSim did not have the ability to specify a network
topology, nor the functionality to connect resources through
network links during the experiment. Resources and Grid users
had all-to-all connections with specifiable bandwidths. Hence,
the simulations did not capture the entire details of an actual
Grid testbed.

In this work, GridSim has been extended to address the
above problems by enhancing the ability to simulate realistic
network models by: (1) allowing users to create a network
topology, (2) packetizing data into smaller chunks for sending
over a network, (3) generating background traffic, and (4)
incorporating different levels of service for sending packets.

The rest of this paper is organized as follows: Section 2
provides some relevant background on GridSim. Section 3
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Fig. 1. GridSim architecture.
presents the design and implementation of the network
additions to GridSim, while Section 4 illustrates the use
of GridSim for simulating a Grid computing environment.
Section 5 mentions related work. Finally, Section 6 concludes
the paper and suggests some further work to be done on
GridSim network models.

2. Background

There has been significant work done in the past to
incorporate more functionality and extensibility into GridSim
ver3.0, such as extending the GridSim infrastructure to
support advance reservation as discussed in [26]. This allows
resources to have their own schedulers and policies in
reservation-based systems. However, no work has been done on
improving the existing network model. Therefore, in the newer
GridSim release, a new package is incorporated to enhance
the capabilities of the existing network model. This package
contains core network components, such as links and routers.
Details of these components will be discussed in Section 3.
Also, our use of the term GridSim denotes the latest version
of the software throughout.

2.1. Overall GridSim architecture

GridSim is based on SimJava [23], a general purpose
discrete-event simulation package implemented in Java. We
designed GridSim as a multi-layer architecture for extensibility.
This allows new components or layers to be added and
integrated into GridSim easily. In addition, the layered
GridSim architecture captures the model of the Grid computing
environment. The overall GridSim architecture is shown in
Fig. 1.
The first layer at the bottom of Fig. 1 is managed by
SimJava for handling the interaction of events among GridSim
components. The second layer represents the infrastructure
components of GridSim, such as network and resource
hardware. The third and fourth layers are concerned with
the modeling and simulation of Computational Grids and
Data Grids respectively. GridSim components such as Grid
Information Service (GIS) and Job Description are extended
from the third layer to incorporate any new requirements of
running Data Grids. The fifth and sixth layers allow users to
extend GridSim as needed.

2.2. Features

Some of GridSim’s features are outlined below:

• It allows the modeling of different resource characteristics
and types;

• It enables the simulation of workload traces taken from real
supercomputers;

• It supports a reservation-based mechanism for resource
allocation;

• It allocates incoming jobs based on space- or time-shared
mode;

• It has the ability to schedule compute- and/or data-intensive
jobs as discussed in [27];

• It provides clear and well-defined interfaces for implement-
ing different resource allocation algorithms; and

• It allows the modeling of several regional GIS components.

With these features, it gives researchers the functionality
and the flexibility of simulating Grids for various topics,
such as evaluating a fairshare scheduling in a decentralized
architecture [9], or analyzing security solutions in Grids [20].
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Fig. 2. A class diagram showing the relationship between GridSim and SimJava entities.
2.3. Fundamental concepts

In SimJava, each simulated system (e.g. resource and user),
that interacts with others is referred to as an entity. An entity
runs in parallel in its own thread by inheriting from the class
Sim entity, while its desired behavior must be implemented
by overriding a body() method.

SimJava requires each entity to have two ports for
communication via the class Sim port: one for sending events
to other entities, and the other for receiving incoming events.
In GridSim, this is represented via classes Input and Output.
Both classes have their own body()method to handle incoming
and outgoing events respectively. Similarly, GridSim entities
must inherit from the class GridSimCore and override a
body() method. The relationship between the Sim entity and
GridSim classes is shown in Fig. 2. In a class diagram, attributes
and methods are prefixed with characters +, # and − indicating
access modifiers as public, protected, and private respectively.
Note that the class GridSimCore does not have the body()
method because it is not necessary (since its subclass will
override the method). Moreover, only attributes and methods
relevant to this work are shown here, and will be discussed later.

3. Design and implementation of the GridSim network

The flow of information among GridSim entities happens via
their Input and Output (I/O) entities. Upon creating an entity
with a specified bandwidth, GridSim creates a new instance of
the Input and Output classes, and links them to the new entity.
Hence, data sent by an entity goes through its Output entity, and
is received by other entities via their Input entities.

The use of separate entities for I/O provides a simple
mechanism for GridSim entities to communicate with each
other, and allows for the modeling of a communication delay. In
addition, this existing design provides a clean interface between
the network entities and others. Therefore, most of the changes
incorporated were in the classes Input and Output, resulting
in transparent and minimal modification to the existing code.

The addition to the existing network architecture allows
GridSim entities to be connected using links and routers, with
different packet scheduling policies for realistic experiments,
as shown in Fig. 3. A detailed explanation of this figure will
be given later in Section 3.4. The network architecture has also
been designed to be extensible and backwards compatible with
existing codes written on older GridSim releases.

3.1. Network components

Important additions to the existing GridSim network
architecture are link, router, packet, packet scheduler and
background traffic generator components. The relationships
amongst these network components, in Unified Modeling
Language (UML) notations [21], are depicted in Fig. 4.
Note that the background traffic generator component will be
discussed in Section 3.3.

3.1.1. Link
A link in GridSim is represented as an abstract class Link

for extensibility. SimpleLink, a subclass of Link as shown
in Fig. 4(a), requires information like the propagation delay,
bandwidth and Maximum Transmission Unit (MTU) for packet
delivery.

3.1.2. Input and output
When Gridsim entities want to send or receive data, they use

the Input and Output entities attached to them, as previously
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Fig. 3. Interaction amongst GridSim network components.

Fig. 4. Generalization and realization relationships in UML for GridSim network classes.
mentioned. The Output entity is responsible for splitting the
data into MTU-sized packets, whereas the Input entity is
responsible for collating the different packets in a stream, and
for sending them as one piece of data to the GridSim entity. In
addition, these I/O entities act as a buffer to hold the packets
until a link is free.

3.1.3. Router
A router in GridSim is represented as an abstract class

Router for flexibility, as shown in Fig. 4(a). Therefore, this
design allows a subclass of Router to determine the forwarding
table at the start of the simulation, and the ability to implement
it using any routing algorithms.

Routing can be done using static tables or dynamic methods,
such as the Routing Information Protocol (RIP) [18] and Open
Shortest Path First (OSPF) [19]. The implementation of a
router in class FloodingRouter uses a flooding algorithm to
set up its forwarding tables automatically. Since routers and
other GridSim entities cannot be created and added after the
simulation has started, the flooding algorithm is a sufficient
method to set up a router’s forwarding tables.

3.1.4. Packet
A network packet in GridSim is represented as an interface

class Packet as shown in Fig. 4(b). Currently, there are two
classes that belong to this category; these are NetPacket
and InfoPacket. A NetPacket class is used to encapsulate
data passing through the network, whereas class InfoPacket
is devoted to gathering network information during runtime,
which is equivalent to the Internet Control Message Protocol
(ICMP) [22] in physical networks.
3.1.5. Packet scheduler
A packet scheduler is responsible for deciding the order

in which one or more packets will be sent downlink.
Implementing a packet scheduler requires extending from class
PacketScheduler, as depicted in Fig. 4(c).

In Gridsim, three implementations of the packet scheduler
are provided i.e. class FIFOScheduler, SCFQScheduler and
RateControlledScheduler. The class FIFOScheduler uses
a simple First In First Out (FIFO) policy, whereas the class
SCFQScheduler adopts a variation of Weighted Fair Queuing
(WFQ) [8], called Self Clocked Fair Queuing (SCFQ) [13]
policy. The RateControlledScheduler is an implementation
of a rate-jitter controlling regulator [32].

3.2. Support for network quality of service and runtime
information

Jobs on Grids may have different requirements with respect
to bandwidth and latency. Systems like those dealing with
fire or earthquake detection require low latency and reliable
delivery of packets. Other jobs like protein folding experiments
require high processing power, and may tolerate some network
errors. Also, in some cases, Grid resource providers may wish
to charge for priority access to their resources. Thus Grid
resource providers need mechanisms to provide users with
different Quality of Service (QoS) levels while using their
networks [3]. In order to support this functionality, every packet
in GridSim contains a Type of Service (ToS) attribute with
a default weight value of zero. This attribute will be used
by routers or packet schedulers to provide a differentiated
service to heterogeneous links or connections for incoming
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packets. In GridSim, class SCFQScheduler can be configured
with different weights. Packets belonging to a class with
higher weight will receive higher priority according to the
SCFQ algorithm. Similarly, RateControlledScheduler can
be used to control the bandwidth that is assigned to each class
of user at a Router. This is a non-work conserving algorithm,
which means that the router can remain idle even if there are
packets in its queue. Non-workconserving policies have some
benefits, like lower buffer space requirements and smoothing
of downstream traffic [33]. At a RateControlledScheduler,
each class of users is assigned to a certain percentage of
bandwidth, and the scheduler makes sure that each class
remains constrained within its bandwidth limits at all times.

GridSim also supports requesting network status during
runtime, such as number of hops to destination, round trip time
(RTT), bottleneck bandwidth and all bandwidths that a packet
has traversed for current or future simulation time. This feature
is similar to an ICMP ping message. The result is captured
inside class InfoPacket.

To enable this functionality, a GridSim entity can use
either a blocking or non-blocking method call from the class
GridSimCore, as shown in Fig. 2. A blocking call needs to
use only a pingBlockingCall() method, where it waits for
a result to come back and prevents any other activities from
progressing. In contrast, a non-blocking call uses a combination
of ping() and getPingResult() methods. Hence, rather
than stopping to wait for the result, the entity can continue
with other activities. Both the pingBlockingCall() and
the getPingResult() methods return an object of class
InfoPacket.

3.3. Simulating with background traffic

In commercial or even academic networks, users expect to
experience delays due to network traffic that does not belong
to them. In order to capture this real world scenario within
a simulation, GridSim supports the modeling of background
traffic. This can be done by creating an instance of class
TrafficGenerator, and storing it as an attribute inside the
class Output. The class TrafficGenerator generates the
inter-arrival time, packet size, and number of packets for each
interval according to various distributions that are supported by
SimJava [23]. Some of the distributions are Bernoulli, negative
exponential, and binomial. Then, these generated values are
used by an Output entity to send background traffic packets to
one or all other entities in the experiment.

3.4. Interaction amongst GridSim network components

When a simulation starts, routers send out advertisement
packets to all neighboring routers, advertising any other
GridSim entities they are connected to. Later on, the
neighboring routers adjust their forwarding tables upon
receiving these packets. Then, they forward the packets to all
their neighboring routers in turn (except the source). Depending
on the complexity of a network topology and the number of
GridSim entities created, this process might take a while.
Once the forwarding tables have been completed, a GridSim
entity, named User, as shown in Fig. 3, can start sending jobs
to a GridResource entity. Each GridSim entity has I/O entities
attached to it that act as buffers. Therefore, when a job is to be
sent out by a User entity, it is first buffered at the Output entity
(step 1). Here, the job is split into multiple packets if it is larger
than the MTU of a link connected to the Output entity. The
packets are then given sequence numbers, enqueued in a buffer,
and sent to the link that connects the entity to the neighboring
downstream router. The link takes the packet, delays it by the
propagation delay specified, and dequeues it at the other end
(step 2).

Routers receive the packet from the link, and decide which
packet scheduler the packet should be sent to (step 3). If the
outgoing interface has a MTU less than the packet size, it splits
the packet into smaller ones, in the same way as the Output
entity does. Next, these packets are enqueued at the packet
scheduler. The packet scheduler uses its own algorithm, such
as FIFO or WFQ, to decide the order in which the packets
should be dequeued (step 4). When a link attached to the packet
scheduler is free, the router dequeues one packet from the
packet scheduler, and sends it down the link (step 5). A similar
approach is required if the other end of the link is another router
entity (step 6–8).

When the final link is traversed and the packet reaches the
GridResource entity, all packets in a sequence are collated
back together into the job (step 9). This is done by the Input
entity. The job is then passed to the GridResource entity for
processing. Once processing is complete, the GridResource
entity passes the completed job to its Output entity, which
follows a similar path until it reaches the Input entity that
created this job.

The current protocol used for sending packets is a datagram
oriented protocol, which is similar to the User Datagram
Protocol (UDP). There is no support for acknowledging each
packet or for packet reordering. Since there is no support
for recovering lost packets, I/O buffers are considered to be
unlimited in order to ensure no packets are lost.

4. Experiments and results

4.1. Experiment Aim

The main aim of this experiment is to show the behavior of
the network components and the packet scheduling algorithms
implemented in GridSim. Hence, we are trying to look at:

• how background traffic can affect network loads and overall
packet execution time; and

• how differentiated QoS levels for packets can help in a heavy
load situation.

In order to conduct this experiment, we use a network
topology based on the EU DataGrid TestBed I [28]. The
topology from this production Grid is chosen because we also
want to show GridSim’s ability to simulate an adequate-size
Grid testbed. Note that the network topology can also be a
generic one and not specific to Grid testbeds (Fig. 5).
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Fig. 5. Network topology.

Table 1
EU DataGrid testbed simulated using GridSim

Resource name (location) # Nodes CPU rating

RAL (UK) 41 49,000
Imperial College (UK) 52 62,000
NorduGrid (Norway) 17 20,000
NIKHEF (Netherlands) 18 21,000
Lyon (France) 12 14,000
CERN (Switzerland) 59 70,000
Milano (Italy) 5 7,000
Torino (Italy) 2 3,000
Rome (Italy) 5 6,000
Padova (Italy) 1 1,000
Bologna (Italy) 67 80,000

4.2. Experiment setup

Table 1 summarizes all the relevant resource information.
Each node of a resource is assumed to be a 2 GHz AMD
Opteron processor. We took the data about the resources and
scaled them down. Only the number of nodes and their CPU
ratings were scaled down by 10; the network parameters are not
affected. The scaling was done primarily to reduce the runtime
of the experiment and its memory consumption. The complete
simulation would have required more than 2 GB of memory.
However, the network parameters were kept the same as in the
original information.

In GridSim, total processing capability of a resource’s CPU
is modelled in the form of its Million Instructions Per Second
(MIPS) rating as per SPEC (Standard Performance Evaluation
Corporation) CPU (INT) 2000 [25] benchmarks. A space
shared policy or First Come First Served (FCFS) algorithm is
used to compute incoming jobs for all resources. In addition, all
links share the same characteristics: 1 MTU size of 1500 bytes
and a latency of 10 ms.

There are four users located on each of the resources (with a
total of 44 users), sharing the same characteristics:
• bandwidth: 100 Mbps connected to a router
• total number of jobs: 30 each
• job length: approximately 42,000k Million Instructions (MI)

± 30%, which is around 10 min if it is run on the CERN
resource

• job data size: 15 MB each
• job submission: 20 jobs are submitted to CERN, while

the rest are uniformly distributed among other resources as
mentioned in Table 1

• arrival time: uses a Poisson distribution, with four random
users who submit all their jobs approximately every 5 min.

To incorporate background traffic functionality into this
experiment, selected users are chosen as the sources to generate
these background packets. A Poisson distribution is used,
with an inter-arrival time of 1 min. In addition, the total
number of packets for each interval is uniformly distributed in
[500. . . 1000], where the size of each packet is 1500 bytes.

To investigate the advantage of having differentiated
network QoS levels, two users from each site are chosen
with a higher ToS weight or rate. For the experiment using a
SCFQ packet scheduler, high priority users’ jobs are assigned a
weight of 2 and normal users’ jobs are assigned a weight of 1.
Background traffic receives a weight of 0. For the experiment
using a Rate Controlled scheduler, high and normal priority jobs
are assigned 55% and 35% of the network bandwidths at each
link respectively, with background traffic receiving 10% of the
bandwidth.

4.3. Building an experiment with GridSim

Creating an experiment in GridSim always requires the
following steps:

1. Initialize the GridSim package by using a GridSim.init()
method. This should be done before creating any GridSim
entities in order to start the SimJava simulation kernel.

2. Create one or more Grid resource entities. Each resource
must have number of processors, speed of processing
and internal process scheduling policy. Currently, two
scheduling policy implementations, time- and space-shared
are provided. However, a user can easily implement a
different scheduling policy as described in [26] because of
well-defined interfaces between the Grid resource and its
scheduling policy entity.

3. Create one or more Grid user entities. A Grid user is
responsible for sending jobs to one or more resources. Other
complex functionalities are open for implementation based
on the user’s needs and requirements. This can be done by
extending the GridSimCore class and writing the necessary
code inside a body() method.

4. Build a network topology by connecting the Grid user and
resource entities. At the moment, the connecting of these
entities needs to be done manually, by first creating network
objects such as Router and Link. Then, these entities are
connected to a Router object using an attachHost()
method. An attachRouter() method can be used to link
one or more routers.
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(a) Without background traffic. (b) With background traffic.

Fig. 6. Average packet lifetime at the CERN router (lower is better).
For experiments with a large network topology, this
process can be tedious and error-prone. Hence, building a
network topology automatically from a file is also supported
in GridSim.

5. Finally, run the experiment by calling a GridSim.
startGridSimulation() method.

The GridSim toolkit contains documentation and few simple
tutorial examples that illustrate the above steps.

4.4. Analysis

The results displayed in Fig. 6 show the average amount
of time spent by each packet in a router’s queue; in this case
the router located in CERN. This router is chosen because the
resource at CERN receives many jobs for execution, and hence
it routes a substantial amount of incoming and outgoing traffic.

As mentioned previously, we compare two types of users,
one of whom has been set to a high priority, while the other
sends packets at a normal priority. It can be seen that high
priority packets are dequeued faster than normal packets, except
for in the FIFO experiment, thus providing a better QoS to high
priority users.

For the FIFO experiment shown in Fig. 6, all packets
are routed based on the arrival time. Hence, there is no
prioritization for these packets. On the other hand, for the
SCFQ experiment as shown in Fig. 6, high priority packets
are dequeued faster than normal packets by more than 2%. An
interesting observation in the SCFQ experiment of Fig. 6(b)
is that the background packets are dequeued faster than other
packets. This is because these packets are being sent at a
continuous rate, while other packets are sent in an interval or
burst mode. As a result, the background packets utilized the
whole bandwidth during those times at which other packets
were not there.

For the Rate Controlled experiment displayed in Fig. 6, high
priority packets are dequeued faster than normal packets by
approximately 36%. The main reason is because, as mentioned
earlier, each class of user is assigned to a certain percentage of
bandwidth, and each class does not use more than the allocated
percentage. Hence, there is not much of a difference for the
experiment with and without background traffic, as illustrated
in Fig. 6(a) and (b) respectively.

As expected, high priority packets spent less time using
the SCFQ scheduler rather than the FIFO one. However, it
is also interesting to note that the Rate Controlled scheduler
dequeued these packets the slowest of all, as shown in Fig. 6.
This is because, as stated earlier, the Rate Controlled scheduler
does not utilize the whole bandwidth in comparison to other
schedulers.

In the real world, Rate Controlled scheduling is useful when
absolute guarantees are required from the network sub-system.
For example, Voice over Internet Protocol (VoIP) or Internet
Protocol Television (IPTV) applications might require a certain
minimum bandwidth in order to perform well. The drawback
of using Rate Controlled scheduling is that it can lead to the
wastage of bandwidth. If 10% of the bandwidth is reserved
for a certain application, and the application is well below
its limit, then the additional bandwidth is being wasted. It is
possible to implement schedulers which detect this wastage,
and send other kinds of traffic in its place, but this adds to the
complexity of the implementation. Higher complexity leads to
increases in memory and processing requirements, hence higher
costs. When prioritization rather than guarantees are required,
an SCFQ should be used. An SCFQ scheduler is also a simpler
algorithm to implement than Rate Controlled schedulers.

The effect of the background traffic in the experiment is
shown in Fig. 7. This figure shows the number of packets
passing through the CERN router for a specific period of time.
On average, the background packets accounted for 36% of total
packets passed by the CERN router, as shown in Fig. 8.

5. Related work

Simulation is widely used in the networking research area.
Examples of such simulators include NS-2 [29], DaSSF [17],
OMNET++ [30] and J-Sim [14]. Though their support for
network protocols is extensive, they are not targeted at
studying Grid computing. This is because simulating Grids
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(a) In the beginning of the experiment. (b) In the middle of the experiment.

Fig. 7. Number of packets passing through the CERN router during the rate controlled experiment.
Fig. 8. Average number of packets passing through the CERN router for all
experiments.

requires modeling the effects of job scheduling algorithms on
Grid resources, and investigating users’ QoS requirements for
application processes. In addition, we believe that simulating
TCP and UDP connections are sufficient to model real world
behavior, because Grid users are mostly interested in finding
out RTT and available bandwidth of a host, based on the
differentiated services offered by various packet scheduling
algorithms. Therefore, we extend GridSim to incorporate these
sets of features as an alternative to building Grid services on
top of a network simulator. However, we are also considering
the feasibility of integrating GridSim with a network simulator
such as J-Sim (written in Java), for more advanced network
functionalities.

There are some tools available, apart from GridSim, for
application scheduling simulation in Grid computing environ-
ments, such as Bricks [1], MicroGrid [24,16], SimGrid [7,15],
and OptorSim [2]. All of these simulators also have an under-
lying network infrastructure, with the ability to simulate real-
istic experiments by using background traffic. The differences
among these Grid simulators, except for Bricks, in terms of net-
work functionalities and other existing features are highlighted
in Table 2. Note that for the Routing Table Entry column, an
automatic entry means filling in a router’s forwarding table au-
tomatically during runtime. In contrast, a manual entry means
filling in the forwarding table by reading from an external file
that defines a router’s connection with others, or by manually
entering the information into the table.

Bricks [1] is able to specify a network’s topology,
bandwidth, throughput and variance of the throughput over
time. The background traffic functionality is modeled by
using a probabilistic distribution, which is similar to GridSim.
However, at the time this article was being written, this package
was not available to download from its website [4]. As a result,
we were not able to compare it with our work in further detail.
Therefore, it is not included in Table 2.

MicroGrid [24,16] allows complex network modeling, such
as transport and routing protocols and large-scale experiments,
since it is based on DaSSF [17]. Hence, in terms of network
capabilities, MicroGrid is the most complete of all Grid
simulators. However, it is actually an emulator, meaning that
the actual application code is executed on the virtual Grid
modeled after Globus [11].

SimGrid [7,15] has a good network infrastructure that
supports the Transmission Control Protocol (TCP) transport
protocol for a reliable service. It also models background traffic
by reading from a trace file generated by the Network Weather
Service (NWS) [31]. NWS is used to monitor the currently
available bandwidth between two machines over the network.
However, SimGrid does not make any distinction between
a job computation and a data transfer, since they are both
modeled as resources performing specific tasks. Therefore, it
does not support data packetization. In addition, requests for
network status functionalities during runtime in SimGrid are
limited to the latency and bandwidth of a link. In contrast,
GridSim reports more network information than SimGrid, such
as number of hops to a destination and RTT, as mentioned in
Section 3.2.

OptorSim [2] has a very simple network infrastructure
model compared to other simulation tools, since it does not
support routing and transport protocol or data packetization.
The background traffic functionality can only be modeled
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Table 2
Listing of network functionalities and other existing features for each Grid simulator

Functionalities GridSim MicroGrid SimGrid OptorSim

Routing table entry Automatic Automatic Manual Manual
Type of Transport A datagram oriented pro- TCP and UDP TCP Not supported
Protocol tocol similar to UDP
Data packetization Supported Supported Not supported Not supported
Runtime network status Supported Supported Supported Not supported
Network QoS Supported Not supported Not supported Not supported

Data replication Supported Not supported Not supported Supported
Disk I/O overheads Supported Supported Not supported Not supported
Complex file filtering/data query Supported Not supported Not supported Not supported

Scheduling user jobs Supported Supported Supported Not supported
CPU reservation of a resource Supported Not supported Not supported Not supported
Workload trace-based simulation Supported Not supported Not supported Not supported
by using a Landau distribution. In addition, simulating with
background traffic requires a configuration file that describes
a network’s topology in a matrix format.

From the above discussion and Table 2, GridSim has
successfully incorporated QoS into a network for scheduling
packets, which is not supported by other Grid simulators.
In addition, GridSim provides a good set of network
functionalities, some of which are not supported in the other
Grid simulators. The combination of these functionalities with
its previously existing features enables GridSim to model an
integrated Grid platform of computing, networks, data, storage
and resource allocation algorithms.

6. Conclusion and further work

The network serves as a fundamental component in Grid
computing, since resources and users are connected over a
network topology with shared bandwidth. Previously, GridSim
did not have the ability to specify a network topology or the
functionality to connect resources through network links during
experiments. In this work, modifications to an existing network
architecture have been incorporated into GridSim to address the
above problems.

With the addition of this network functionality, users can
study the effects that both a network’s topology and its Grid
resources can have on their jobs. This paper explores various
types of network elements in GridSim, like routers, links, and
packet schedulers; and how they can be extended to add more
functionalities. Moreover, GridSim has exciting new features
such as the ability to generate background traffic during an
experiment, to request network information during runtime,
and to provide differentiated service levels for packets based
on users’ Quality of Service (QoS) requirements. We believe
these features help make GridSim a comprehensive package to
simulate a realistic Grid environment.

Our experiment has shown how GridSim can be used to
simulate a medium-sized Grid testbed. It has shown how
schedulers, which provide differentiated levels of service, can
help high priority users achieve better QoS than normal users.
However, providing differentiated qualities of service at the
network level only may not be enough. Grid resources will also
be required to support it in order to achieve end-to-end QoS.

In the future, we are planning to incorporate additional
features into GridSim, such as having different types of routing
algorithms, schedulers and reservation of network resources.
We are also planning to incorporate different protocols, such
as TCP, for dealing with lost packets and GridFTP (as part
of the Globus Toolkit [12]) for transferring huge amounts of
data. Finally, we are considering the addition of other type of
network building blocks, like switches and domain gateways,
or integration with a network simulator, such as J-Sim, for
simulating advanced network functionalities.

Software availability

The latest version of the GridSim toolkit with source code
and examples, can be downloaded from the following website:
http://www.gridbus.org/gridsim/.
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