
S. R. Das, S. K. Das (Eds.): IWDC 2003, LNCS 2918, pp. 131-142, 2003.
 Springer-Verlag Berlin Heidelberg 2003

Gridscape: A Tool for the Creation of Interactive and
Dynamic Grid Testbed Web Portals

Hussein Gibbins and Rajkumar Buyya

Grid Computing and Distributed Systems (GRIDS) Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
{hag,raj}@cs.mu.oz.au

Abstract. The notion of grid computing has gained an increasing
popularity recently as a realistic solution to many of our large-scale data
storage and processing needs. It enables the sharing, selection and
aggregation of resources geographically distributed across collaborative
organisations. Now more and more people are beginning to embrace
grid computing and thus are seeing the need to set up their own grids
and grid testbeds. With this comes the need to have some means to
enable them to view and monitor the status of the resources in these
testbeds. Generally developers invest a substantial amount of time and
effort developing custom grid testbed monitoring software. To
overcome this limitation, this paper proposes Gridscape � a tool that
enables the rapid creation of interactive and dynamic testbed portals
(without any programming effort). Gridscape primarily aims to provide
a solution for those users who need to create a grid testbed portal but
don't necessarily have the time or resources to build a system of their
own from scratch.

1 Introduction

As we develop into an information dependant society, the amount of information we
produce and the amount that we desire to consume continues to grow. As we
continue to advance in this information society, we find the need for more
sophisticated technology, faster computation and large-scale storage capacity to
handle our information wants and needs on demand in real-time. Recently we have
seen the rise of utilisation of resources distributed across the Internet (e.g.,
SETI@Home [1]) in order to solve problems that need large-scale computational
resources. This paradigm is popularly known as grid computing [2], which has the
potential of being able to deal with large-scale data and compute intensive problems
and is opening the door to new innovative computing solutions to problems in both
scientific (e.g., bioinformatics[22]) and commercial (e.g., portfolio pricing[23]) fields.

The components that make up computational grids include instruments, displays,
computational resources, and information resources that are widely distributed in

132 Hussein Gibbins and Rajkumar Buyya

location and are managed by various organisations. Grid technologies enable large-
scale sharing of these resources and in these settings, being able to monitor any
resources, services, and computations is challenging due to the heterogeneous nature,
large numbers, dynamic behavior, and geographical distribution of the entities in
which a user might be interested. Consequently, information services are a vital part
of any grid software or infrastructure, providing fundamental mechanisms for
monitoring, and hence for planning and adapting application behavior [3].

With the rise in popularity of grid computing, we see an increasing number of
people moving towards grid enabling their work and their applications. Many people
are now attempting to harness distributed resources and are setting up grid testbeds.
Once testbeds have been set up, there is a need for some application or portal to
enable the viewing and monitoring of the testbed's status. Gridscape, presented in this
paper, aims to assist with this problem by assisting the creation of web based portals
as well as making administering these portals an easy process.

The design aims of Gridscape are that it should:

• Allow for the rapid creation of grid testbed portals;
• Allow for simple portal management and administration;
• Provide an interactive and dynamic portal;
• Provide a clear and user-friendly overall view of grid testbed resources; and
• Have a flexible design and implementation such that core components can be

leveraged, it provides a high level of portability, and a high level of
accessibility (from the browsers perspective).

In the remainder of this paper we further identify the need for Gridscape and how it
fits into the grid architecture. We then discuss the design and implementation as well
as walking through an example of Gridscape's usage.

2 Related Work

As mentioned earlier, there is a definite need for software to monitor testbeds once
they are created. However, because of the complex nature of grids, creating useful
tools to gather and present resource information is a challenge. There are a number of
implementations which currently exist, each with their own strengths and weaknesses.
The majority of these efforts are either application specific portals or portal
development toolkits. Here we discuss a few representative implementations and
compare and contrast their design and development methodologies along with their
strengths and weaknesses, clarifying the need for a tool such as Gridscape.

The most basic, and perhaps least useful type of implementation is application
specific and uses HTML with static content to present resource status information.
This type of implementation does not provide users with up-to-date, real-time
feedback about the status of grid resources. This type of monitoring tool is easy to
create, however limits the relevance and usefulness of the information provided and is
also difficult to maintain or keep updated. Also, these types of portals tend to provide
complete, unprocessed grid resource information data, which makes it hard to locate
specific characteristic about any given resource, thus severely hindering its usefulness

Gridscape 133

as a monitoring tool. An example of such an implementation is an early version of
GRIDView, which is used to monitor the status of the US Atlas Grid Testbed [4].

Another, more sophisticated approach is to use dynamic content within HTML
(such as with PHP). This allows for a real-time view of how the grid resources are
performing, which is ideal for this type of tool. The NorduGrid [5] Grid Monitor is a
good example of this, providing current load information as well as processed and
user-friendly Globus MDS [3] (Metacomputing Directory Service, recently called
Monitoring and Discovery Service) information. One feature lacking from this and
the previous implementation is the availability of a spatial or geographical view of the
resources. It is often useful to be able to have a visual picture of where your
resources are located geographically. Again, the downside to this type of
implementation is that it is tailored specifically to a particular testbed or particular
needs, which means that this monitoring tool cannot be used to monitor any general
testbed we may want to monitor.

An even more sophisticated tool can be produced with the use of technology such
as Java and Java Applets. This approach has been taken in a number of instances,
such as the new GRIDView monitoring tool for the US ATLAS Grid Testbed [6].
However, this implementation doesn't provide the user with immediate and concise
information, it is again application specific.

Moving away from the application specific type of portal, we see a number of Grid
portal development toolkits. They include GridPort [7], GPDK [9], and Legion Portal
[10]. These toolkits assist in the construction of application specific portals; however
they operate at a much lower level and aim to provide developers with libraries or
low-level interfaces to Grid resources in order to assist in portal creation. For
example, GridPort toolkit libraries/interfaces have been utilised in the development of
NPACI HotPage[8] portal. Gridscape, on the other hand, requires no explicit
programming effort in order to create a testbed portal.

Map Center [11] basically provides a web interface for querying resources (by
issuing commands such as ping and grid-info-search) for status information. The
command interface is bit low level, for instance, one need to supply attributes at
LDAP (Lightweight Directory Access Protocol) syntax level for querying the MDS.
Gridscape provides high-level and user-friendly portal interface�status of Grid
resources is displayed on a geographic map on the testbed and they can be queried
further for detailed information.

3 Architecture

The architecture of Gridscape and its interaction with various Grid components is
shown in Figure 1. Gridscape itself consists of three components: web application,
administration tool, and interface to grid information service.

Web Application. The web application consists of a customisable template portal
which provides an interactive graphical view of resource locations and the ability to
monitor its status and details, with the added ability of being able to submit queries to
identify resources with specific characteristics.

134 Hussein Gibbins and Rajkumar Buyya

Testbed

Admin
Tool

Interface to MDS/LDAP

Gridscape

Aggregates Resource Information

Web
Browser

How many CPUs
does resource A
have?

Which resources
have > 4
processors?

Web
Browser

Web
Browser

Web
Browser

Globus GRIS

Grid Node A

IP IP

Grid Node B

IP

Grid Node C

IP IPIP

Globus GRIS Globus GRIS

Web App.

Testbed

Admin
Tool

Interface to MDS/LDAP

Gridscape

Aggregates Resource Information

Web
Browser

How many CPUs
does resource A
have?

Which resources
have > 4
processors?

Web
Browser

Web
Browser

Web
Browser

Globus GRIS

Grid Node A

IP IP

Grid Node B

IP

Grid Node C

IP IPIP

Globus GRIS Globus GRIS

Web App.

Fig. 1. Gridscape architecture

Administration Application. The administration tool provides the user with a simple
and user-friendly way of customising and updating their personal testbed portal.
Users are able to manage the resources to be used in the portal by adding, removing
and editing their details.

Interface to Grid Information Service. The information provided by Gridscape is
gathered from individual grid resources by accessing the Monitoring and Discovery
Service (MDS) [3] provided by the Information Services component of the Globus
Toolkit [12], which is run on them. MDS is designed to provide a standard
mechanism for publishing and discovering resource status and configuration
information. It provides a uniform, flexible interface to data collected by lower-level
information providers.

Within Gridscape, �interface to MDS� component has been basically developed as
a Java based class containing high-level methods that hide low-level details (e.g.,
LDAP protocols) of accessing MDS services. This level of separation of low-level
MDS access mechanisms from other Gridscape components will ensure their
portability. For example, if there is a change in MDS access protocols say from
LDAP based to XML-based Web services, we can easily update our �MDS access
interface� without the need of updating other components.

As the MDS services are utilised by Gridscape while gathering individual Grid
node information, it seems logical we first discuss MDS components briefly in order
to better understand Gridscape's interaction with them.

Gridscape 135

Globus MDS

The MDS reduces the complexity of accessing system information. This is achieved
by having local systems use a wide variety of information-generating and gathering
mechanisms, but users only need to know how to interact with MDS to access the
information. MDS acts as a point of convergence between the large number of
information sources and the large number of applications and high-level services
which utilise them.

The MDS represents information in accordance with the Lightweight Directory
Access Protocol (LDAP) [3]. LDAP is a set of protocols for accessing information
directories. LDAP, a Lightweight version of the old X.500 Directory Access
Protocol, supports TCP/IP communication and is becoming the standard protocol
when dealing with any directory information applications. Using an LDAP server,
MDS provides middleware information in a common interface.

There are three components which make up the MDS hierarchy: Information
Providers (IPs), the Grid Resource Information Service (GRIS), and the Grid Index
Information Service (GIIS) [13]. At the lowest level there are Information Providers
(IPs) which provide resource data such as current load status, CPU configuration,
operating system type and version, basic file system information, memory
information, and type of network interconnect. These IPs, interface from any data
collection service, and report to GRIS. The GRIS runs on a resource and contains the
set of information relevant to that resource, provided by the IPs. Individual resources
can then be registered to a GIIS, which combines individual GRIS services to provide
an overall view of the grid. The GIIS can be explored and searched to find out
information about resources, as you would any index.

Gridscape's Interaction with MDS

Gridscape discovers the properties of individual resources of a given testbed by
making MDS queries to individual GRIS installations. Results are sent back to
Gridscape which caches these details for further use. Because Gridscape aims to be
free of 3rd party tools such as a database, and because querying distributed resources
continually is very costly, Gridscape caches the current status of the testbed and
allows this store to be shared by any web browsers accessing the portal. The current
status information held by Gridscape can be automatically updated periodically, or an
immediate status update can be requested at any time.

The action of accessing the GRIS to collect details of individual resources allows
Gridscape to behave as a GIIS, to a certain extent, in that it provides users with a
collection of separate GRIS information from various resources, in order to provide
more of a holistic view of a grid testbed.

4 Design and Implementation

The Gridscape web application is designed following the MVC (Model-View-
Controller) based, Model-2 type architecture [14] shown in Figure 2. This
architecture, which was developed for use with web applications implemented in
technology such as Java Server Pages and Servlets, provides a means of decoupling

136 Hussein Gibbins and Rajkumar Buyya

the logic and data-structures of the application (server-side business logic code) from
the presentation components (web pages)[15][16]. In order to make implementation
easier, and enhance reliability, the Jakarta STRUTS framework [17] has been
adopted. STRUTS provides a framework for building Model-2 type web applications.

With Gridscape, the Model component of the Model-2 architecture becomes the
most interesting to investigate further. The reason for this is because this is where the
main functionality is located within Gridscape. Also, because of the separation of the
presentation, control and the business logic achieved with the application's
architecture, we are able to leverage the Model component from the web application
and re-use it in the Gridscape Administration Tool. We can see that in this way, other
applications could be developed which also make use of the core functionality
provided in the Model, by offering a new presentation and control or application
layers which access these core components, as illustrated in Figure 3 .

Fig. 2. MVC Model2 architecture of Gridscape implementation

Misc. Gridscape
Tool

Gridscape

Web App.

Gridscape

Admin. Tool

Swing
Components

JSP and
Servlets

Presentation/
Application

Layers

Model

Fig. 3. Flexibility and reuse of the Model component

Gridscape 137

TestbedManager

- initialise()
- readLocations()
+ search()
+ queryResource()

�

locationList: LocationList

LocationList

+ add()
+ remove()
+ size()
+ refresh()

�

locations: Vector

+ clear()

Location

name: String
address: String

�

GridscapeDirectory

Observer

1

contains

n

Observable Observer
observers

1 observes n

1

uses

1

n contains 1
TestbedManager

- initialise()
- readLocations()
+ search()
+ queryResource()

�

locationList: LocationList

TestbedManager

- initialise()
- readLocations()
+ search()
+ queryResource()

�

locationList: LocationList

LocationList

+ add()
+ remove()
+ size()
+ refresh()

�

locations: Vector

+ clear()

LocationList

+ add()
+ remove()
+ size()
+ refresh()

�

locations: Vector

+ clear()

Location

name: String
address: String

�

Location

name: String
address: String

�

GridscapeDirectoryGridscapeDirectory

ObserverObserver

1

contains

n

ObservableObservable ObserverObserver
observers

1 observes n

1

uses

1

n contains 1

Fig. 4. Class diagram of the core classes of Gridscape's Model

4.1 The Model

So far we have identified the significance of the Model and seen its flexibility. The
Model itself though consists of a number of important classes. In this section we will
take a closer look at some of these classes, their properties, and how they interact with
one another.

4.1.1 GridscapeDirectory

This class provides a convenient wrapper around the necessary elements of the
naming and directory access packages of the core Java API. It provides us with an
easy means of connecting to, and querying, the resources in the testbed. It is easy to
see that this class will be invoked whenever we communicate with the testbed
resources, whether it be through the web application or the admin tool.

4.1.2 Location

This low level class is used to represent and hold information about a particular
resource. This information includes things such as the name, address, port number, as
well as the MDS data which is gathered from the resource.

4.1.3 LocationList

As its name suggests, this class is used to hold a list of the various locations in a
testbed. This class extends the Observable class provided by Java. Allowing this
class to become observable means, that developing presentation layers or views which
depend on this data, is made easy.

138 Hussein Gibbins and Rajkumar Buyya

4.1.4 TestbedManager

This class manages the other components within the Model and is responsible for
handling queries which are communicated from components outside of the Model. It
handles the initialisation of the core of the application and handles duties such as
searching by allowing other components to collaborate. It is interesting to note that
while the TestbedManager contains an instance of the LocationList, it contains only a
singleton instance. The benefit of this type of implementation is that through the web
application, even though each client accessing the application is given a new instance
of the TestbedManager, there is only one instance of the data. This means that
information retrieved from testbed resources is cached, making the site more
responsive, and ensuring that everyone is seeing the same up-to-date data.

5 Gridscape in Practice

Gridscape has already been used by a number of virtual organisations to create their
Grid testbed portals for visualising and monitoring resources [21]. They include
Australian Virtual Observatory and UK AstroGrid Collaboration, Belle Analysis Data
Grid (BADG), and our own World-Wide Grid (WWG) testbed. In this section we
will walk through the steps involved in creation of portal for your own Grid testbed
using Gridscape and illustrate them with an example of creating a portal for WWG.

5.1 Deploying the Gridscape Web Application

To begin using Gridscape the user must first deploy the web application within their
Jakarta Tomcat installation and also install the administering tool.

5.2 Creating Your Portal

Creating your own customised testbed portal with Gridscape simply involves
customising the blank template portal which is provided with Gridscape. Gridscape
supports intuitive GUI (see Figure 5) using which you can supply various elements of
the testbed: a testbed logo, a map for displaying physical location of resources, and
details of resources that are part of the testbed.

5.3 Customising Your Portal

Most of the details about your testbed are stored in configuration files which can also
be edited manually. To make customisation easier, an administrating tool has been
provided. Open the template from within the administrating tool to continue with
customising your portal. Figure 5 shows a snapshot of Gridscape taken while creating
a portal for the WWG testbed.

Gridscape 139

Fig. 5. A snapshot of Gridscape utilisation while creating the WWG portal

5.3.1 Changing Testbed Name, Logo and Other Details

These items are all customisable from the 'Options' menu. If a new logo is required
for the web portal, for example, we can select the 'Change Logo' option. We are then
presented with a dialog box which allows us to browse for a suitable image for our
logo. Once the logo is selected we can save the selection and the changes will
propagate immediately and directly to the web portal. This means that when we next
visit the page, we will be able to see this change. This functionality is the same for all
options. A small pop-up window shown in Figure 5 illustrates how one can supply
testbed name, logo image file, and portal deployment location to Gridscape.

5.3.2 Managing Testbed Resources

The next step in setting up the portal is to tell Gridscape details about the resources
which will be involved. The Gridscape Admin tool provides the user with two
modes, an editing and a viewing mode. The editing mode allows the user to edit
information regarding resources, while the viewing mode allows the user to simply
browse and query existing resources. To add resources to the testbed portal we must
enter 'Edit' mode. This can be achieved by choosing the appropriate mode from the
'Mode' menu.

A grid
node

140 Hussein Gibbins and Rajkumar Buyya

Adding a New Resource

To add a new resource to the testbed, simply click the mouse in a vacant area on the
map. Doing this will automatically create a new resource in your testbed. Position
this resource in a desired location on the map by clicking and dragging this resource
with the mouse. If the testbed is international, then you need supply a name of the
country where the resource is physically located. Figure 5 shows an addition of a Grid
node located in the School of Physics at Melbourne University.

Editing Resource Details

When a new resource is created, it is provided with the default property values. To
change these properties we first need to select the resource by clicking on it with the
mouse. Once selected, we can freely edit such details as its name, address and port
number. Once completed, use the 'Update' button to store the changes.

Deleting an Unwanted Resource

If for some reason you need to remove a resource from the testbed, simply select the
resource and use the 'Delete' button.

5.3.3 Querying Testbed Resources

Before saving your changes or viewing the web portal online, it is a good idea to go
into 'View' mode and query the resources, by clicking on them with the mouse. This
will give you confidence that the details you entered were correct and indicate the
expected behaviour of your web portal.

5.4 Browsing the Testbed Portal

Once the customisation is complete, the testbed details are saved into a configuration
file and deployed on the Web server. A snapshot of browsing and monitoring status of
the WWG testbed resources through a portal created using Gridscape is shown in
Figure 6. The portal can be accessed online by visiting the World Wide Grid Testbed
website [19].

6 Conclusion and Future Work

Currently there are a number of unique applications designed to monitor, very
specifically, details of only one grid testbed. This paper identifies the need for a tool
of this nature - one able to automate the process of creating grid testbed portals. We
propose Gridscape, a tool aimed to meet the needs of those who require a testbed
portal but simply don't have the resources available to invest in creating their own
software from scratch. Gridscape has the potential to provide users with any of the
information made available through Globus MDS, and allows for quick and easy
creation and administration of web based grid testbed portals.

We are planning to extend Gridscape to support live monitoring of application-
level utilisation of Grid resources by integrating it with our Grid application
management portal called G-monitor [20].

Gridscape 141

Fig. 6. A snapshot of browsing World Wide Grid testbed portal

Availability

The Gridscape software and user manual can be downloaded from the Gridbus project
website: http://www.gridbus.org/gridscape/

Acknowledgements

We would like to acknowledge and thank Ankur Chakore, Yogesh Chadee and Rami
Safiya, for their contributions in developing the initial portal creation tool called
STAMPEDE [18] that served as an early seed for Gridscape. We would like to thank
Anthony Sulistio for his comments on early drafts of the paper.

References

[1] SETI@Home - http://setiathome.ssl.berkeley.edu/.
[2] Foster and C. Kesselman (editors), The Grid: Blueprint for a Future Computing

Infrastructure, Morgan Kaufmann Publishers, San Francisco, CA, USA, 1999.
[3] MDS 2.2 User's Guide. http://www.globus.org/mds/mdsusersguide.pdf.
[4] US ATLAS GRIDView (obsolete).

http://heppc1.uta.edu/atlas/grid-status/index.html.

142 Hussein Gibbins and Rajkumar Buyya

[5] NorduGrid � Nordic Testbed for Wide Area Computing and Data Handling.
http://www.nordugrid.org/.

[6] US ATLAS GRIDView (current). http://www-hep.uta.edu/~mcguigan/applet/.
[7] M. Thomas, S. Mock, J. Boisseau, M. Dahan, K. Mueller, D. Sutton, The

GridPort Toolkit Architecture for Building Grid Portals, Proceedings of the
10th IEEE International Symposium on High Performance Distributed
Computing, Aug 2001.

[8] NPACI HotPage -- https://hotpage.npaci.edu/.
[9] J. Novotny, The Grid Portal Development Kit, Special Issue on Grid

Computing Environments, Journal of Concurrency and Computation: Practice
and Experience, Volume 14, Issue 13-15, Wiley Press, USA, Nov.-Dec., 2002.

[10] Natrajan, A. Nguyen-Tuong, M. Humphrey, M. Herrick, B. Clarke, A.
Grimshaw, The Legion Grid Portal, Journal of Concurrency and Computation:
Practice and Experience (CCPE), Volume 14, Issue 13-15, Wiley Press, USA,
Nov.-Dec., 2002.

[11] Map Center - An Open Grid Status Visualization Tool.
 http://ccwp7.in2p3.fr/mapcenter/.

[12] The Globus Project. http://www.globus.org/.
[13] Globus Toolkit 2.2, MDS Technology Brief, Draft 4 � January 30, 2003.

http://www.globus.org/mds/mdstechnologybrief_draft4.pdf.
[14] Govind Seshadri, Understanding JavaServer Pages Model 2 architecture.

December, 1999. http://www.javaworld.com/javaworld/jw-12-1999/jw-12-ssj-
jspmvc.html.

[15] M. Foley, STRUTS your stuff, ZDNet Australia, 11 June 2002.
http://www.zdnet.com.au/builder/program/java/story/0,2000034779,20265872,
00.htm.

[16] Q. Mahmoud, Servlets and JSP Pages Best Practices, March, 2003.
http://developer.java.sun.com/developer/technicalArticles/javaserverpages/servl
ets_jsp/.

[17] Jakarta STRUTS project homepage. http://jakarta.apache.org/struts/.
[18] The STAMPEDE project � Helping utilise the power of many.

http://members.optusnet.com.au/dgibbins/.
[19] World Wide Grid Testbed Portal - http://previn.cs.mu.oz.au:8080/gridscape-

wwg/.
[20] M. Placek and R. Buyya, G-Monitor: Gridbus web portal for monitoring and

steering application execution on global grids, Proceedings of the International
Workshop on Challenges of Large Applications in Distributed Environments
(CLADE 2002), In conjunction with HPDC 2003 symposium, June 21-24,
2003, Seattle, USA.

[21] Gridscape-based Portals - http://previn.cs.mu.oz.au:8080/gridscape/.
[22] R. Buyya, K. Branson, J. Giddy, and D. Abramson, The Virtual Laboratory:

Enabling Molecular Modeling for Drug Design on the World Wide Grid,
Journal of Concurrency and Computation: Practice and Experience, Volume 15,
Issue 1, Wiley Press, Jan. 2003.

[23] Crawford, D. Dias, A. Iyengar, M. Novaes, and L. Zhang, Commercial
Applications of Grid Computing, IBM Research Technical Report, RC 22702,
IBM, USA, Jan. 22, 2003.

	Gridscape: A Tool for the Creation of Interactive and Dynamic Grid Testbed Web Portals
	Introduction
	Related Work
	Architecture
	Design and Implementation
	The Model
	GridscapeDirectory
	Location
	LocationList
	TestbedManager

	Gridscape in Practice
	Deploying the Gridscape Web Application
	Creating Your Portal
	Customising Your Portal
	Changing Testbed Name, Logo and Other Details
	Managing Testbed Resources
	Querying Testbed Resources

	Browsing the Testbed Portal

	Conclusion and Future Work
	Acknowledgements
	References

