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ABSTRACT 
Large communities of researchers distributed around the world are 
engaged in analyzing huge collections of data generated by 
scientific instruments and replicated on distributed resources. In 
such an environment, scientists need to have the ability to carry 
out their studies by transparently accessing distributed data and 
computational resources. In this paper, we propose and develop a 
Grid broker that mediates access to distributed resources by (a) 
discovering suitable data sources for a given analysis scenario, (b) 
suitable computational resources, (c) optimally mapping analysis 
jobs to resources, (d) deploying and monitoring job execution on 
selected resources, (e) accessing data from local or remote data 
source during job execution and (f) collating and presenting 
results. The broker supports a declarative and dynamic parametric 
programming model for creating grid applications. We have used 
this model in grid-enabling a high energy physics analysis 
application (Belle Analysis Software Framework) on a grid testbed 
having resources distributed across Australia. 

1. INTRODUCTION 
The next generation of scientific experiments and studies, 
popularly called as e-Science [14], will be carried out by 
communities of researchers from different organizations that span 
national and international boundaries. Some well-known scientific 
experiments of this nature include the CERN-led ATLAS and 
CMS experiments and the KEK-led Belle experiment. These 
experiments involve geographically distributed and heterogeneous 
resources such as computational resources, scientific instruments, 
databases and applications.  

Grid computing [11] enables aggregation and sharing of these 
resources through by bringing together communities with common 
objectives and creating virtual organizations [12]. Data Grids [9] 
have evolved to tackle the twin challenges of large datasets and 
multiple data repositories at distributed locations in data-intensive 
computing environments [16]. However, the harnessing the power 
of grids remains to be a challenging problem for users due to the 
complexity involved in the creation and composition of 
applications and their deployment on distributed resources.  

Resource brokers hide the complexity of grids by transforming 
user requirements into a set of jobs that are scheduled on the 
appropriate resources, managing them and collecting results when 
they are finished. A resource broker in a data grid must have the 
capability to locate and retrieve the required data from multiple 
data sources and to redirect the output to storage where it can be 
retrieved by processes downstream. It must also have the ability to 
select the best data repositories from multiple sites based on 
availability of files and quality of data transfer. In this paper, one 
such broker called the Gridbus Broker providing services relevant 
to data-intensive environments is presented. Its application to the 
high-energy physics domain is discussed by illustrating its use 
within the Belle Analysis Data Grid and the results of experiments 
that have been conducted on it are presented. 

2. RELATED WORK 
While the scheduling of independent jobs on distributed 
heterogeneous resources is a well-studied problem [15], the 
discussion here is restricted to those efforts which deal with Grids. 

The Gridbus broker extends the Nimrod-G [1] computational Grid 
resource broker model to distributed data-oriented grids. Nimrod-
G specializes in parameter-sweep computation and its model has 
been proven successful for several applications [4][18]. However, 
the scheduling approach within Nimrod-G aims at optimizing 
user-supplied parameters such as deadline and budget [5] for 
computational jobs only. It has no functions for accessing remote 
data repositories and for optimizing on data transfer. The Gridbus 
broker also extends Nimrod-G’s parametric modeling language by 
supporting dynamic parameters, i.e. parameters whose values are 
determined at runtime.  

Like Nimrod-G, the AppLeS PST [7] [8] supports deployment 
of parameter-sweep applications on computational grids, but its 
adaptive scheduling algorithm emphasizes on data-reuse. The 
users can identify common data files required by all jobs and the 
scheduling algorithm replicates these data files from the user node 
to computational nodes. It tries to re-use the replicated data to 
minimize the data transmission when multiple jobs are assigned to 
the same resource. However, multiple repositories of data are not 
considered within this system and therefore, this scheduling 
algorithm is not applicable to Data Grids. 

Ranganathan and Foster [17] have conducted simulation 
studies for various scheduling scenarios within a data grid. Their 
work recommends decoupling of data replication from 
computation while scheduling jobs on the Grid. It concludes that it 
is best to schedule jobs to computational resources that are closest 
to the data required for that job, but the scheduling and simulation 
studies are restricted to homogeneous nodes with a simplified 
First-In-First-Out (FIFO) strategy within local schedulers. 
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Similar to [17], our work focuses on a resource scheduling 
strategy within a Data Grid but we concentrate on adaptive 
scheduling algorithms and brokering for heterogeneous resources 
that are shared by multiple user jobs. In addition, the scheduling 
strategy has been implemented within the Gridbus broker and its 
feasibility to support the deployment of distributed data-intensive 
applications (e.g. KEK Belle high-energy physics experiment data 
analysis) within a real Grid testbed (e.g., Australian Belle Analysis 
Data Grid) has been evaluated.  

3. ARCHITECTURE 
3.1 Data Grid Overview and Brokering 
A data-intensive computing environment can be perceived as a 
real-world economic system wherein there are producers and 
consumers of data. Producers are entities which generate the data 
and control its distribution via mirroring at various replica 
locations around the globe. Information about the data replicas is 
assumed to be available through a data catalogue mechanism such 
as the Globus Replica Catalog [19]. The consumers in this system 
would be the users who may need to investigate specific datasets 
out of a set of hundreds and thousands. A sample scenario for 
such a data-intensive computing environment and the role of the 
broker in it is discussed in [6]. 

3.2 Gridbus Data Grid Service Broker 
The architecture of the Gridbus broker is shown in Figure 1. The 
inputs to the broker are the tasks and the associated parameters 
with their values. These can be specified within a “plan” file that 
specifies the tasks and the types of the parameters and their values 
for these tasks. 

A task is a sequence of commands that describe the user’s 
requirements. For example, the user may specify an application to 
be executed at the remote site, an input file to be copied over 
before execution and the results to be returned back. A task 
encapsulates this information within its description. A task is 
accompanied by parameters which can either be static or dynamic. 
A static parameter is a variable whose domain is well-defined 
either as a range of values, as a single static value or as one among 
a set of values. A dynamic parameter has either an undefined or an 
unbounded domain whose definition or boundary conditions 
respectively, have to be established at runtime. As an example, in 
the current implementation, a parameter type has been defined 
which describes a set of files over which the application has to be 
executed. This set can be described as a wildcard search within a 
physical or a logical directory, to be resolved at runtime, thus 
creating a dynamic parameter. 

The task requirements drive the discovery of resources such as 
computational nodes and data resources. The resource discovery 
module gathers information from remote information services 
such as the Grid Index Information Service (GIIS) [10] for 
availability of compute resources. Optionally, the list of available 
compute resources can be provided by the user to the broker. The 
broker also interacts with the information service on each 
computational node to obtain its properties. Data files can be 
organised as Logical File Names (LFNs) within a virtual directory 
structure using a Replica/Data Service Catalog. Each LFN maps to 
one or many Physical File Names (PFNs) somewhere on the Grid, 
usually specified via URLs. The broker will resolve the LFNs to 
the appropriate physical file location(s) by querying the catalog. 

  The task description, i.e. the task along with its associated 
parameters, is resolved or “decomposed” into jobs. A job is an 
instantiation of the task with a unique combination of parameter 
values. It is also the unit of work that is sent to a Grid node. The 
set of jobs along with the set of service nodes are an input to the 
scheduler. For jobs requiring remote data, the scheduler interacts 
with a network monitoring service to obtain the information about 
current available bandwidth between the data sources and the 
compute resources. In the current implementation, the Network 
Weather Service (NWS) [21] has been used to obtain this 
information. The scheduling algorithm is described in more detail 
in the next section. 

 

Figure 1:  Gridbus broker architecture. 

The jobs are dispatched to the remote node through the 
Actuator component. The Actuator submits the job to the remote 
node using the functionality provided by the middleware running 
on it. The Actuator has been designed to operate with different 
Grid middleware frameworks and toolkits such as Globus 2.4 [13]. 
The task commands are encapsulated within an Agent which is 
dispatched to and executed on the remote machine. If a data file 
has been associated with the job and a suitable data host identified 
for that file, then the Agent obtains the file through a remote data 
transfer from the data host. Additionally, it may require some 
configuration or input parameter files that it obtains from the 
broker through a mechanism such as a GASS [2] (Globus Access 
to Secondary Storage) Server. These files are assumed to be small 
and in tens or hundreds of kilobytes which impact the overall 
execution time of a job negligibly whereas the data files are in the 
range of megabytes or larger. On the completion of execution, the 
Agent returns any results to the broker and provides debugging 
information. The Monitoring component keeps track of job status 
– whether the jobs are queued, executing, finished successfully or 
failed. The Bookkeeper keeps a persistent record of job and 
resource states throughout the entire execution. 

The design and implementation of the broker could not be 
described here due to paucity of space. The interested reader can 
refer to the related technical report [20] for details.  
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3.3 Scheduling  
The scheduler within the broker looks at a data grid from the point 
of view of the data. It perceives a data-intensive computing 
environment as a collection on data hosts, or resources hosting the 
data, surrounded by compute nodes. Some of the data resources 
may have computation facilities too, in which case there is 
assumed to be nearly infinite bandwidth between the data host and 
the compute resource at the same site. The scheduling heuristic is 
listed in Figure 2. 

The scheduler minimizes the amount of data transfer involved 
while executing a job by dispatching jobs to compute servers 
which are close to the source of data. A naïve way of achieving 
this would be to run the jobs only on those machines that contain 
their data. But, the data hosts may not have the best computational 
resources. Hence, the scheduler selects an appropriate compute 
resource to execute a job based on factors such as capability and 
performance of the resource, bandwidth available from the 
compute resource to the data host that contains the data file 
required for the job and the cost of data transfer. A detailed 
analysis and performance evaluation of this scheduling algorithm 
is out of scope of this paper. However, an evaluation using a high 
energy physics analysis application within a Data Grid 
environment is presented in the next section. 

4. EXPERIMENTAL EVALUATION 
High-Energy Physics (HEP) Experiments are large and technically 
sophisticated and necessarily involve international collaboration 
between many institutes over very long time scales. Computing 

resource requirements for HEP are increasing exponentially 
because of advancements in particle accelerators and increasing 
size of collaborations. Therefore, data grids are important to 
ensure continued availability of computational and data resources 
in experimental high energy physics. A survey of the data grid 
efforts in this domain is presented in [3].  

The Belle experiment, built and operated by a collaboration of 400 
researchers across 50 institutes from 10 countries, provides the 
state-of-the-art instruments to explore the effects of Charge-Parity 
(CP) violation within B-mesons produced at the the KEKB 
accelerator at the Japanese High Energy Accelerator Research 
Organization (KEK) in Tsukuba. The current experiment and 
simulation data set is increasing rapidly and has begun to pose 
problems for the processing and access of data at geographically 
remote institutions, such as those within Australia. Hence, it is 
important for Data Grid techniques to be applied in this 
experiment [21]. 

4.1 The Testbed 
The Belle Analysis Data Grid (BADG) testbed has been set up in 
Australia in collaboration with IBM. The location, configuration 
and capabilities of the testbed resources are shown in Figure 3.  
Each of the nodes have 4 CPUs (2 Intel Xeons), except for the PC 
in the School of Physics, University of Melbourne which has only 
one. However, two of these resources (Adelaide and Sydney) were 
effectively functioning as single processor machines as the 
Symmetric Multi-Processing (SMP) Linux kernel was not running 
on them. All the nodes in this testbed were running Globus 2.4.2 

Initialisation 

1. Identify characteristics, configuration, capability, and suitability of compute resources using the Grid 
information services (GIS).  

2. From the task definition, obtain the data query parameters (if present), such as the logical file name  
a. Resolve the data query parameter to obtain the list of Logical Data Files (LDFs) from the Data Catalog 
b. For each LDF, get the data sources or Data Hosts that store that file by querying the Data Catalog.   

Scheduling Loop 

Repeat while there exist unprocessed jobs. [This step is triggered for each scheduling event. The event period is a 
function of job processing time, rescheduling overhead, resource share variation, etc.]: 
1. For each compute resource, predict and establish the job consumption rate or the available resource share 

through the measure and extrapolation strategy taking into account the time taken to process previous jobs. 
Use this estimate along with its current commitment to determine expected job completion time. 

2. If any of the compute resource has jobs that are yet to be dispatched for execution and there is variation in 
resource availability in the Grid, then move such jobs to the Unassigned-Jobs-List.  

3. Repeat until all unassigned jobs are scheduled or all compute resources have reached their maximum job 
limit. 
a. Select the next job from the Unassigned-Jobs-List. 
b. Identify all Data Hosts that contain the LDF associated with the job.  
c. Create a Data-ComputeResource-List for the selected job:  
d. For each data host, identify a compute resource that can complete the job earliest given its current 

commitment, job completion rate, and data transfer time using current available bandwidth estimates. 
e. Select a data host and compute resource pair with the earliest job completion time from the Data-

ComputeResource-List. 
f. If there exists such a resource pair, then assign the job to the compute resource and remove it from the 

Unassigned-Jobs-List. 
End of scheduling loop. 

Figure 2: Adaptive scheduling algorithm for Data Grid. 
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and NWS sensors and except for the Adelaide node, are connected 
via GrangeNet, a Gigabit wide-area network within Australia. The 
broker was deployed on the Melbourne Computer Science 
machine and broker agents were dispatched at runtime to the other 
resources for executing jobs and initiating data transfers. 

 

Figure 3: Australian Belle Analysis Data Grid testbed. 

Data that was produced on one site in BADG had to be shared 
with the other sites. For this purpose, a Data Catalog was set up 
for BADG using the Globus Replica Catalog (RC) mechanism. 
The primary application for the Belle experiment is the Belle 
Analysis Software Framework (BASF). This application is used 
for simulation, filtering of events, and analysis. It is also a legacy 
application that consists of about a Gigabyte of code. Therefore, 
this application was installed on all the resources beforehand. 

4.2 Application Parameterisation and 
Experimental Setup 
The experiment consists of 2 parts, both of which involve 
execution over the Grid using the Gridbus broker. In the first part, 
100,000 events of the “decay chain” of particles, B0->D*+D*-Ks 
as shown in Figure 4, are simulated via distributed generation and 
this data is entered into the replica catalog. In the analysis part, the 
replica catalog is queried for the generated data and this is 

analysed over the Belle Data Grid to generate histograms. Here 
only the results of the analysis are discussed as it involved 
accessing remote data. 

A plan file for the composing analysis of Belle data as a 
parameter sweep application is shown in Figure 5. The plan file 
follows Nimrod-G’s declarative parametric programming language 
which has been extended in this work by introducing a new type 
of parameter called “Gridfile”. This dynamic parameter describes 
a logical file location, either a directory or a collection of files and 
the broker resolves it to the actual file names and their physical 
locations. The plan file also instructs copying of user defined 
analysis modules and configuration files to the remote sites before 
any execution is started. The main task involves executing a user-
defined shell script at the remote site which has 2 input 
parameters: the full network path to the data file and the name of 
the job itself.  The shell script invokes BASF at the remote site to 
conduct the analysis over the data file and produce histograms. 
The histograms are then copied over to the broker host machine. 

 
Figure 4: The B0->D*+D*-Ks decay chain. 

The Logical file name in this particular experiment resolved to 
100 data files. Therefore, the experiment set consisted of 100 jobs, 
each dealing with the analysis of one data file using BASF. Each 
of these input data files was 30 MB in size. The entire data set was 
equally distributed among the five data hosts i.e. each of them has 
20 data files each. The data was also not replicated between the 
resources, therefore, the dataset on each resource remained unique 
to it. The histograms generated were 968 KB in size. 

For monitoring the bandwidth between the resources, an NWS 
sensor was started on each of the resources which reports to the 
NWS name server located in Melbourne. An NWS activity for 
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parameter INFILE  Gridfile lfn:/users/winton/fsimddks/fsimdata*.mdst;
task nodestart

copy ddks_ana.so node:ddks_ana.so
copy libanalyser.so node:libanalyser.so
copy libbase_analyser.so node:libbase_analyser.so
copy libreconstructor.so node:libreconstructor.so
copy libtools.so node:libtools.so
copy event.conf node:event.conf
copy recon.conf node:recon.conf
copy particle.conf node:particle.conf

endtask
task main

node:execute ./runme.ddksana $INFILE $jobname
copy node:runme.log runme.log.$jobname
copy node:ddks-$jobname.hbook ddks-$jobname.hbook

endtask

New parameter type defined to describe an input data file

Logical file name pointing to the location in the replica catalog

parameter INFILE  Gridfile lfn:/users/winton/fsimddks/fsimdata*.mdst;
task nodestart

copy ddks_ana.so node:ddks_ana.so
copy libanalyser.so node:libanalyser.so
copy libbase_analyser.so node:libbase_analyser.so
copy libreconstructor.so node:libreconstructor.so
copy libtools.so node:libtools.so
copy event.conf node:event.conf
copy recon.conf node:recon.conf
copy particle.conf node:particle.conf

endtask
task main

node:execute ./runme.ddksana $INFILE $jobname
copy node:runme.log runme.log.$jobname
copy node:ddks-$jobname.hbook ddks-$jobname.hbook

endtask

New parameter type defined to describe an input data file

Logical file name pointing to the location in the replica catalog

 

Figure 5: Plan file for Data Analysis 
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monitoring bandwidth was defined at the name server within 
which a clique containing all the resources on the testbed was 
created. Members of the clique conduct experiments one at a time 
to determine network conditions between them. Querying the 
name server at any point provided the bandwidth and latency 
between any 2 members of the clique.  

4.3 Results of Evaluation 
Three scheduling scenarios were evaluated: (1) scheduling with 
computation limited to only those resources with data, (2) 
scheduling without considering location of data, and (3) our 
adaptive scheduling (shown in) that optimizes computation based 
on the location of data. The experiments were carried out on April 
19th, 2004 between 18:00 and 23:00 AEST. At that time, the 
Globus gatekeeper service on the Adelaide machine was down and 
so, it could not be used as a computational resource. However, it 
was possible to obtain data from it through GridFTP. Hence, jobs 
that depended on data hosted on the Adelaide server were able to 
be executed on other machines in the second and third strategies. 
A graph depicting the comparison of the total time taken for each 
strategy to execute all the jobs is shown in Figure 6 and another 
comparing resource performance for different scheduling 
strategies is shown in Figure 7. 

In the first strategy (scheduling limited to resources with the 
data for the job), jobs were executed only on those resources 
which hosted the data files related to those jobs. No data transfers 
were involved in this scenario. As is displayed in the graph in 
Figure 7, all of the resources except the one in Adelaide were able 
to execute 20 jobs each. The jobs that were scheduled on that 
resource failed, as its computational service was unavailable. 
Hence, Figure 6 shows the total time taken for only 80 successful 
jobs out of 100. However, this time also includes the time taken 
by the scheduler to analyse the remaining 20 jobs as failed. In this 
setup, the related data was exclusively located on that resource and 
hence, these jobs were not reassigned to other compute resources. 
Thus, a major limitation of this scheduling strategy was exposed.  

In the second strategy (scheduling without any data 
optimization), the jobs were executed on those nodes that have the 
most available computational resources. That is, there was no 
optimization based on location of data within this policy. The 
Adelaide server was considered a failed resource and was not 
given any jobs. However, the jobs that utilized data files hosted on 
this machine were able to be executed on other resources. This 
strategy involves the maximum amount of data transfer which 
makes it unsuitable for applications involving large data transfers 
and utilising resources connected by slow networks. 

The last evaluation (scheduling with data optimization) was 
carried out by scheduling jobs to the compute resources that 
satisfied the algorithm given in Section 3.3. In this case, as there 
were no multiple data hosts for the same data, the policy was 
reduced to dispatching jobs to the best available compute resource 
that had the best available bandwidth to the host for the related 
data. It can be seen from Figure 7 that most of the jobs that 
accessed data present on the Adelaide resource were scheduled on 
the Melbourne Physics and CS resources because the latter had 
consistently higher available bandwidth to the former. This is 
shown in the plot of the available bandwidth from the University 
of Adelaide to other resources within the testbed measured during 
the execution, given in Figure 8. The NWS name server was 
polled every scheduling interval for the bandwidth measurements. 

As can be seen from Figure 6, this strategy took the least time of 
all three. 
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Figure 6: Total time taken for each scheduling strategy. 
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Figure 7: Comparison of resource performance under different 
scheduling strategies. 
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Figure 8: Available bandwidth from University of Adelaide 
to other resources in the testbed. 

5. SUMMARY AND CONCLUSION 
We have presented a grid broker for executing distributed data-
oriented jobs on a grid. The broker discovers computational and 
data resources, schedules jobs based on optimization of data 
transfer and returns results back to the user.  We have applied this 
broker to a data-intensive environment, which is the analysis of 
the Belle high-energy physics experiment data and have presented 
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the results of our evaluation with different scheduling strategies. 
The proposed scheduling strategy took into consideration the 
network conditions and has produced the best possible outcome 
by executing the jobs within the least amount of time.  

We plan to conduct further evaluations with larger file sizes 
and multiple repositories for the same datasets. This will ensure 
that the data transfer time becomes more significant while making 
scheduling decisions and that the scheduler will be able to choose 
between different data hosts. 
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