
Future Generation Computer Systems 18 (2002) v–vii

Guest editorial

The best papers from CCGrid 2001

Cluster and grid computing are experiencing incre-
dible growth in virtually all areas of application, e.g.,
academic, scientific, engineering and commercial.
Cluster computing, of course, is the concept of build-
ing a parallel computer using a “cluster” of commo-
dity processors and networks. Grid computing is the
concept of buildingvirtual organizations or distri-
buted supercomputers or high-throughput computers
using networked, distributed resources world-wide.
While the simplest clusters have the same proces-
sors on a single network switch, many clusters will
have different processors connected by a switch hi-
erarchy. Suchheterogeneity will allow clusters to
evolve as new processors and networks become avai-
lable, and also enablescalability as their size
increases. It is important to realize that such hetero-
geneity can make a cluster look more like a grid.

Given the all-inclusive nature of what is a grid
resource, cluster computers will be integral to many
grid configurations. Clusters and grids are clearly
“joined at the hip” and share many of the same techni-
cal challenges. One of the most fundamental issues is
performance, e.g., how to manage communication and
scheduling in heterogeneous and dynamic environ-
ments, or how to manage data movement to improve
latency tolerance and load balancing. This can be
translated into the management of communication
systems, file systems, and execution models. Clusters
and grids will present a nonuniform communication
hierarchy and topology to the application builder. This
includes not only communication between processors
but also between processors and files and specialized
instruments—in short, any type ofdata movement.
While applications can certainly be hand-coded to
manage specific capabilities and topologies, the real
work lies in systems that can deliver reasonable

performance without explicit application-specific
knowledge.

Simply building applications in such environments
will also be a brave, new world. Web services and
network-enabled RPC coupled with portals and scrip-
ting tools for component software models will enable
flexible applications to be built for clusters and grids.
However, this will also demand a host of services
from the infrastructure, e.g., information services for
resource discovery, allocation, scheduling, and moni-
toring. A grid service must be able to describe itself
with a commonly understood metadata schema (most
likely in XML). This service must either be discove-
rable in a well-known information service or have a
well-known inspection port whereby potential users
can determine the suitability of its functionality and
the interfaces it supports.

Security and fault tolerance are also imperative.
While isolated clusters can be secured with traditional
administrative concepts, any cluster participating in a
grid must be able to provide security on a per-user,
or even per-call, basis since it will essentially be
in an open-ended system. This can require not only
certificates that authenticate clients and servers, but
also proxy certificates that enable the delegation of
trust through a chain or tree of operations at different
sites. Again, for smaller clusters, fault tolerance can
be addressed by traditional means. For larger insta-
llations, however, and clusters that participate in a grid,
fault tolerance must have more extensive support.
Hence, time-outs must be used and communication
tools must be guaranteed not to “hang” without pro-
viding some type of independentevent messaging
that allows corrective actions to be taken.

In light of these many facts, the First IEEE/ACM
International Symposium on Cluster Computing and

0167-739X/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0167-739X(01)00079-6

vi Guest editorial / Future Generation Computer Systems 18 (2002) v–vii

the Grid (CCGrid 2001) was convened on May 15–18,
2001, to serve as the premier world forum for clus-
ter and grid-related issues. CCGrid2001 is a new
millennium symposium that has emerged as a follow
up and merger of the Asia–Pacific International Sym-
posium on Cluster Computing (APSCC 2000) held
in Beijing, China and the International Workshop
on Cluster Computing Technologies, Environments,
and Applications (CC-TEA) series held in the United
States for the past 4 years (1997–2000). CCGrid 2001
was hosted by the Queensland University of Techno-
logy (QUT) in Brisbane, Australia, and sponsored by
the IEEE Task Force on Cluster Computing (TFCC).
It was organized by the General Co-Chairs George
Mohay (QUT) and Rajkumar Buyya (Monash
University) with the Program Chair Paul Roe (QUT).
Complete information is available at http://www.
ccgrid.org.

Of the 48 technical papers presented at CCGrid
2001, this volume contains expanded, journal-length
versions of the 10 best papers representing a cross-
section of the issues facing cluster and grid com-
puting—nominally five in the area of grid comput-
ing and five in the area of cluster computing—even
through some papers overlap both areas significantly.
While making such choices necessarily involves some
subjective judgement, the following “VASE” criteria
were applied (with a numerical rating from 1 to 10)
to aid the selection process:

• Vision: did the paper present an overall vision for
where a field is going?

• Approach: how convincing was the work presented
in support of the vision?

• Significance: how important was the work presented
to the long-term vision?

• Exposition: how well-written and understandable
was the paper?

Many of the papers selected investigate aspects of
performance, and specifically data movement. They
also report on file systems, execution models, program
development techniques and security.

Optimizing execution of component-based appli-
cations using group instances presents afilter/stream
framework for data-intensive grid applications. The
specific question investigated is the scheduling of
filter groups and whether an existing filter should be
reused or a new filter instantiated.

KelpIO: a telescope-ready domain-specific I/O lib-
rary for irregular block-structured applications in-
vestigates the concept of using domain-specific I/O
libraries, rather than language extensions, such that
high-level source code optimizers can produce ef-
ficient I/O operations. The term “telescope-ready”
refers to the notion of “telescoping languages” where
one set of scripts and functionality “telescopes” into
another using interprocedural compilation strategies
to maintain performance.

TACO—exploiting cluster networks for high-level
collective operations introduces a C++ template
library for topologies and collections. While ordi-
nary topologies, such as lists, trees, and meshes are
possible, any topology can be defined by the user.
A parallel traversal of distributed graphs is used
to implement collective operations. Collections are
also dynamic, i.e., new members may join existing
collections.

Latency hiding in dynamic partitioning and load
balancing of grid applications investigates a dynamic
partitioning scheme to balance workloads, hide
latencies, and minimize communication for adaptive
mesh-based applications on the NASA Information
Power Grid infrastructure. The MinEX partitioner
operates in three phases, contraction, partitioning,
and refinement, based on the criterion minimizing the
application execution time rather than simply balan-
cing the load at a given time.

OPIOM: off-processor IO with Myrinet looks at the
hardware aspects of data movement by making disks
closer to the network. Rather than serving disk data
through a processor and its local memory to a remote
consumer over the network, the OPIOM system inserts
a new SCSI service in the Linux SCSI stack such that
the PCI address in a SCSI request is actually that of
a buffer in the Myrinet SRAM. This increases perfor-
mance and decreases host overhead without additional
hardware and cost.

Armada: a parallel file system for computational
grids, on the one hand, describes a distributed file sys-
tem for grids where the application can extensively
control its behavior. Aharbor consists of low-level
functions that is typically hosted close to the physical
location of a data store but can, in fact, be anywhere
in between a client and the data. Aship in the Armada
defines user-level functionality that can be moved be-
tween (executed at) different harbors.

Guest editorial / Future Generation Computer Systems 18 (2002) v–vii vii

OVM: out-of-order execution parallel virtual
machine presents an execution model that may prove
to be very important in distributed heterogenous sys-
tems. OVM is similar to the SPMD programming style
where the user must specify the work decomposition.
However, the user does not explicitly declare the work
distribution, the communication, or the synchroniza-
tion. Since OVM is based on asynchronous RPC, the
runtime system can manage this and accommodate
systems with deep memory/latency hierarchies.

XML-based visual specification of multidisciplinary
applications presents a web-based environment for
building, executing and monitoring distributed appli-
cations. TheArcade environment provides a visual and
script-based specification interface for heterogeneous
modules. XML is used to specifyProject objects that
consist of modules and the dependency graph between
these modules. Using this information, a set of data,
execution, resource, and security managers can con-
trol execution.

Design of a generic platform for efficient and scal-
able cluster computing based on middleware technol-
ogy presents a similar approach based on the notion
of an Intelligent Agent Platform. Computational tasks
are intelligent agents that can utilize coordination,
scheduling, load balancing and migration services to
maintain performance.

Finally, sabotage-tolerance mechanisms for vol-
unteer computing systems describes a technique
to protect “volunteer” computing systems (such as
SETI@home) from being sabotaged by a malicious
participant. This technique does not rely on check-
sums or cryptographic techniques. Instead, the es-
tablished technique of voting is integrated with the
new techniques of spot-checking, backtracking, and
blacklisting based on the concept ofcredibility-based
fault tolerance. This new technique can significantly
reduce and limit the overhead and use of redundancy
required to protect the computation.

We would like to thank editorial staff members of
Elsevier Science: Doutzen Abma, Ruud Koole, and
Inge Pompen for their encouragement and enthusiastic
support during the preparation of this special issue.

We now invite you to read this collection of
papers—not as the final word on any of the topics
they cover, but as a point-of-departure for the further
work that must be done.

Craig A. Lee
Computer Systems Research Department
The Aerospace Corporation
El Segundo, CA, USA
http://www.aero.org
E-mail address: lee@aero.org (C.A. Lee)

Paul Roe
Faculty of Information Technology
Queensland University of Technology
Brisbane, Qld, Australia
http://www.fit.qut.edu.au/∼proe.
E-mail address: p.roe@qut.edu.au (P. Roe)

Rajkumar Buyya
School of Computer Science and
Software Engineering, Monash
University Melbourne,
Vic., Australia
http://www.buyya.com
E-mail address: rajkumar@csse.monash.
edu.au (R. Buyya)

http://www.fit.qut.edu.au/{protect $elax ~$}proe
http://www.buyya.com

