
epcAware: A Game-Based, Energy, Performance
and Cost-Efficient Resource Management

Technique for Multi-Access
Edge Computing

Muhammad Zakarya , Lee Gillam , Hashim Ali , Izaz Ur Rahman , Khaled Salah ,

Rahim Khan , Omer Rana, and Rajkumar Buyya

Abstract—Internet of Things (IoT) is producing an extraordinary volume of data daily, and it is possible that the datamay become useless

while on itsway to the cloud, due to long distances. Fog/edge computing is a newmodel for analysing and acting on time-sensitive data,

adjacent to where it is produced. Further, cloud services provided by large companies such asGoogle, can also be localised to improve

response time and service agility. This is accomplished through deploying small-scale datacentres in various locations, where needed in

proximity of users; and connected to a centralised cloud that establish amulti-access edge computing (MEC). TheMEC setup involves three

parties, i.e., service providers (IaaS), application providers (SaaS), network providers (NaaS); whichmight have different goals, therefore,

making resourcemanagement difficult. Unlike existing literature, we consider resourcemanagement with respect to all parties; and suggest

game-theoretic resourcemanagement techniques tominimise infrastructure energy consumption and costswhile ensuring applications’

performance. Our empirical evaluation, usingGoogle’sworkload traces, suggests that our approach could reduce up to 11.95 percent

energy consumption, and�17.86% user costswith negligible loss in performance. Moreover, IaaS can reduce up to 20.27 percent energy

bills and NaaS can increase their costs-savings up to 18.52 percent as compared to other methods.

Index Terms—Resource management, Internet of Things, multi-access edge computing, energy efficiency, performance, game theory

Ç

1 INTRODUCTION

REAL-TIME applications such as on-line gaming and video
conferencing have on-demand requirements to provide

high-quality results within the agreed time e.g., shorter
response time through communication with the closest app-
lication server. Using cloud platform to deploy real-time
applications offers several benefits including reduced OpEx
(operational costs), but not necessarily, and on-demand
resource allocation - assign resources based on needs of the
application. However, real-time applications may be sensi-
tive to the quality of network e.g., latency between users
and services. Therefore, real-time application requirements

could be addressed through combining edge computing
technology with MEC and fog - which allows computations
to be accomplished at the edge of the network. The rationale
of commissioning this technology is to offer services within
the proximity of customers and closer to where computa-
tional results are desirable. This can be achieved through
deploying small-scale datacentres (cloudlets) closer to cus-
tomers and connected to regional datacentres. Note that, the
management systems to run and practice such infrastruc-
tures are, largely, implemented now – for example AWS
outposts1 and revised OpenStack [1], and lots are under
investigation. Further, with the Multi-access edge comput-
ing (MEC) framework, there are certain questions that still
need to be investigated. For example; (i) where these cloud-
lets should be deployed; (ii) which services should be
installed; (iii) where and how the resources should be allo-
cated to users’ applications; (iv) how user mobility (service
migration) should be handled; and (v) how the MEC frame-
work should be optimised to minimise or maximise various
objectives such as users’ monetary costs, energy consump-
tion and workload performance in terms of latency, execu-
tion time and throughput etc. Albeit, (iii) to (v) can be seen,
largely, similar to traditional clouds; but the management
policies should be redesigned for fog infrastructure.

This research aims to examine resource allocation/place-
ment and consolidation challenges associated with the MEC
platforms. The main questions that this research will

� Muhammad Zakarya, Hashim Ali, Izaz Ur Rahman, and Rahim Khan are
with the Department of Computer Science, Abdul Wali Khan University,
Mardan, Khyber Pakhtunkhwa 23200, Pakistan.
E-mail: {mohd.zakarya, hashimali, izaz, rahimkhan}@awkum.edu.pk.

� Lee Gillam is with the University of Surrey, GU2 7XH Guildford, United
Kingdom. E-mail: l.gillam@surrey.ac.uk.

� Khaled Salah is with the Khalifa University, Abu Dhabi, UAE.
E-mail: khaled.salah@ku.ac.ae.

� Omer Rana is with the University of Cardiff, CF10 3AT Cardiff, United
Kingdom. E-mail: ranaof@cardiff.ac.uk.

� Rajkumar Buyya is with the Cloud Computing and Distributed Systems
(CLOUDS) Lab, School of Computing and Information Systems, Univer-
sity of Melbourne, Parkville, VIC 3010, Australia.
E-mail: rbuyya@unimelb.edu.au.

Manuscript received 4 Jan. 2020; revised 10 June 2020; accepted 24 June 2020.
Date of publication 26 June 2020; date of current version 15 June 2022.
(Corresponding author: Hashim Ali.)
Digital Object Identifier no. 10.1109/TSC.2020.3005347 1. https://aws.amazon.com/outposts/

1634 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

1939-1374 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 05:59:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7070-6699
https://orcid.org/0000-0001-7070-6699
https://orcid.org/0000-0001-7070-6699
https://orcid.org/0000-0001-7070-6699
https://orcid.org/0000-0001-7070-6699
https://orcid.org/0000-0002-8884-1247
https://orcid.org/0000-0002-8884-1247
https://orcid.org/0000-0002-8884-1247
https://orcid.org/0000-0002-8884-1247
https://orcid.org/0000-0002-8884-1247
https://orcid.org/0000-0003-0239-8000
https://orcid.org/0000-0003-0239-8000
https://orcid.org/0000-0003-0239-8000
https://orcid.org/0000-0003-0239-8000
https://orcid.org/0000-0003-0239-8000
https://orcid.org/0000-0002-2289-6624
https://orcid.org/0000-0002-2289-6624
https://orcid.org/0000-0002-2289-6624
https://orcid.org/0000-0002-2289-6624
https://orcid.org/0000-0002-2289-6624
https://orcid.org/0000-0002-2310-2558
https://orcid.org/0000-0002-2310-2558
https://orcid.org/0000-0002-2310-2558
https://orcid.org/0000-0002-2310-2558
https://orcid.org/0000-0002-2310-2558
https://orcid.org/0000-0003-1631-6483
https://orcid.org/0000-0003-1631-6483
https://orcid.org/0000-0003-1631-6483
https://orcid.org/0000-0003-1631-6483
https://orcid.org/0000-0003-1631-6483
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
mailto:mohd.zakarya@awkum.edu.pk
mailto:hashimali@awkum.edu.pk
mailto:izaz@awkum.edu.pk
mailto:rahimkhan@awkum.edu.pk
mailto:l.gillam@surrey.ac.uk
mailto:khaled.salah@ku.ac.ae
mailto:ranaof@cardiff.ac.uk
mailto:rbuyya@unimelb.edu.au
https://aws.amazon.com/outposts/

answer include: (i) where cloudlets should be installed to
meet users’ demand while abating the global infrastructure
cost (CapEx - capital expenditures + OpEx); (ii) once the
platform has been installed, what, how and where should
global control, scheduling and management services be
deployed; and (iii) at what size/scale. Furthermore, this
will open opportunities for advising a generic resource allo-
cation/placement and management/migration framework
for various kind of fog/edge services. While the model of
cloud computing provided by a few mega/large providers
(Google and Amazon AWS) is still widely used, the begin-
ning of innovative and emerging technologies such as inter-
net of things (IoT) applications, edge computing and MECs
is challenging this approach [1]. To cope with this techno-
logical change, cloud and network communities are now
working in the direction of large-scale distributed, small-
sized, infrastructures (cloudlets) that are installed at the
edge of the network - closer to users i.e., fog infrastructure
(hence, distributed-shape applications that consist of vari-
ous modules) [2], [3]. The fog, edge and cloud paradigm are
attracting rising interest as it also improves services’ agility
and performance in terms of response time. For example,
IoT applications can take benefits from edge nodes’ deploy-
ment to perform real-time analysis while conserving remote
clouds for in-depth data analytics [4]. This can be seen as a
mixture of fog/edge/cloudlet/MEC (the latter now being
multi-access rather than merely mobile) – where MEC sug-
gests being within the radio access network (RAN) but fog/
edge could relate consumer devices aggregating data from
sensors (before passing to the remote cloud). Furthermore,
“cloudlet” as a mini datacentre, presumably consistent with
a large cloud provider’s provisions, would be able to sup-
port such aggregation but would always be further from
one or more such sensors. Nevertheless, the need of such a
cloudlet has no direct relationship with the RAN.

In addition to recognising where edge clouds should be
deployed/installed, the drivers of such an evolution lie in
the design of suitable management systems that will permit:
(i) an operator i.e., cloud, network, or edge to aggregate,
supervise and expose such massively distributed resources;
and (ii) to implement new kinds of services that may be
deployed and managed by the operator/user. However,
designing such a management system is challenging
because fog/edge infrastructures differ from traditional
clouds regarding heterogeneity, dynamicity, the possible
huge distribution of resources, and economics of scale - if
smaller, heterogeneity is less likely. The objective of this
research is to explore placement-related questions of a mas-
sively distributed MEC infrastructure. The research is
organised around the subsequent activities: (i) propose
placement algorithms that can satisfy QoS expectations
while optimising different objectives such as infrastructure
cost minimisation, energy requirements and reliability (per-
formance in terms of response time and QoS); and (ii) evalu-
ate the proposed algorithms through simulations by
leveraging the iFogSim toolkit [5] and Google cluster data-
sets [6].

Our work makes the following major contributions:

� we model MECs resource allocation and service
migration problems using non-cooperative (NC) and
semi co-operative (SC) game-theoretic approaches;

� bidding-based, game-theoretic resource allocation
and migration algorithms are proposed that ensure
benefits to all parties within the MEC; and

� performance of the algorithms is evaluated through
simulations in iFogSim [5], using real workload
traces from Google’s cluster [6].

The rest of the paper is organised as follows. In Section 2,
we discuss MECs and resource management. In Section 3,
we model the MECs resource allocation problem as a game.
A game theoretic solution is presented, is Section 4, to solve
the problem. We validate the proposed approach using
real workload traces from Google cluster in Section 5. We
offer an overview of the related work in Section 6. Finally,
Section 7 concludes the paper with several directions for
future research.

2 BACKGROUND

MECs offer finite resources at the edge of the network;making
it possible to run the user’s application in its proximity, as
shown in Fig. 1. The resources at the edge are provisioned at
the cloudlet or MEC server. Moreover, the application, in
cloudlet, runs at one (or more than one) hop communication
distance unlike to their native execution either in the mobile/
fog device or core internet (remote cloud) - zero and two+ hop
distance, respectively. Therefore, application latencymight be
potentially affected depending on the network services. The
finite number of cloudlets’ resources also put questions on
their efficient allocation to connected users. Although, there
are several proposals to share the resources of several cloud-
lets in a particular geographic area [7]. However, this will be a
challenging problem when the cloudlet resources are offered
by different service providers having different goals and
objectives. Similarly, beside providers, mobile users, who run
the applications, are also usually selfish and competitive; each
user wants to optimise his/her own pay-off or application’s
performance [8].

Moreover, different resources can be offered at different
costs, energy consumption and performance levels. Resource
placement can significantly affect service providers (IaaS, net-
work) and customers (SaaS) economics [10]. For example,
reduced performance of applications increases users’ costs as
well as energy consumption. Therefore, it is essential to pro-
vide appropriate resources in order to meet application QoS
requirements and providers objectives. Moreover, if mobility
is involved - users are moving or application modules are
explicitly migrated among hosts for energy efficiency or per-
formance gains, then resource management complexities will
potentially increase. Appropriate resource management

Fig. 1. Cloud, cloudlet and fog architecture [9].

ZAKARYA ETAL.: EPCAWARE: A GAME-BASED, ENERGY, PERFORMANCE AND COST-EFFICIENT RESOURCE MANAGEMENT TECHNIQUE FOR... 1635

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 05:59:15 UTC from IEEE Xplore. Restrictions apply.

techniques are, therefore, essential to copewith various objec-
tives. In this paper, we elaborate: (i) how the infrastructure
and available resources (IaaS, SaaS, NaaS) should bemanaged
in order to increase service agility, performance in terms of
response time and minimise the energy-related costs; (ii)
investigate how users’ workloads or services should be run
and, most importantly, which resources or instance types
should be provisioned for their execution; (iii) develop algo-
rithms and mathematical models to solve the resource alloca-
tion (network and computing) problem, efficiently, for MEC
to support emerging mobile applications; (iv) investigate the
effect of CPU heterogeneity and co-location; and (v) realize
and implement the models and algorithms into a software to
demonstrate their feasibility and practicability.

3 PROBLEM DESCRIPTION

Management of resources in MECs is very challenging,
because offering quality services to the end-users depends on
various players, with moderately conflicting goals, such as
infrastructure owners (IaaS), network operators (network as a
service - NaaS), and application providers (SaaS), where each
player controls a particular part of the whole system. These
three business models are further explained in Section 3.1.
Integral to the problem is the fact that both communication
and computation capacity are needed to guarantee high QoS
in terms of low response time and high throughput. Since,
each player may have different objectives to optimise where
the objectives of one player may potentially affect the objec-
tives of another player and vice versa - as shown in Table 1.
Existing works [1], [7], [10], [11] either assume that the
whole infrastructure is managed by a single player, largely,
the resource providers [10], or separate the management
of the network, application resources from the core edge
computing capacity [7]. We believe, resource allocation in
MECs should be assumed as a multi-objective optimisation
problem in such a way that players’ competition for their
objectives can be optimised. The objectives of all parties are
somehow aligned. For instance, the insufficient resource
provisions for the user’s application would ruin revenues for
all parties concerned. As a result, customers will prefer to go
elsewhere, and so do the providers. Therefore, there is an
incentive to only minimise to the point at which such situa-
tions are avoided i.e., either all ‘win’ together (can minimise
absent impact) or all ‘lose’ together (minimising has impact).
Moreover, simple optimisationmethods cannot ensure a win-
win situation for all players, in similar resource allocation sce-
narios [12], [13]. Therefore, we use game theory to model and
solve such a complex, multi-player resource allocation
problem.

Largely, SaaS providers host their applications on virtual-
ised resources provided by an IaaS provider. Moreover, SaaS
providers need to comply with every application’s quality of
service (QoS) requirements, as described in Service Level
Agreement (SLA) with the customers, which determine the
SaaS revenue on the basis of achieved level of performance.
However, application performance is not only dependent on
computational resources (provided by IaaS), but, as well as,
on the network bandwidth provided by the network opera-
tors. Users quality of experience (QoE) with network opera-
tors affect IaaS, as well as, SaaS revenues. Similarly, service
providers would prioritise their workloads based on the
nature of applications (native or third-party) [7]. Furthermore,
in MECs, the network operators could be: (a) the IaaS owners
(internal network); and (b) third-party mobile network opera-
tors (external network). Therefore, network resources from
various providers should be provisioned at affordable prices.
The focus of SaaS providers would be to maximise their reve-
nues through minimising SLA violations, while reducing the
total cost of using computation, as well as, network resources
provided by the IaaS and third-party network service pro-
viders. Moreover, in the case of multiple IaaS providers dis-
tributed over various geographic areas or cities (MECs), SaaS
providers would compete and bid for the use of infrastruc-
tural resources based on prices. On the other hand, the IaaS
and third-party network service providers could maximise
their revenues through providing their virtualised resources
as much as possible. Moreover, IaaS providers could maxi-
mise their resource usage (utilisation) in order to minimise
energy consumption.

3.1 Business Models

Largely, IaaS providers sell their resources in the form of
VMs and storage. Users are billed, for pre-defined VMs/
container types; in currency per hour (using PAYG model -
pay as you go) based on their workload execution times.
AWS EC2, and Google Cloud are common examples of IaaS
services. According to Gartner Inc.,2 the world’s IaaS mar-
ket, while AWS ranked no. 1, grew 21.6 percent in 2019 to
total $38.9 billion, up from $30.5 billion in 2018. SaaS is a
web-based software delivery model in which the software
is hosted in a centralised datacentre; and is sold on sub-
scription basis - usually on monthly fee or annual fee. Goo-
gle App Engine, and on-line games are the most common
examples of SaaS service model. The cost of a SaaS applica-
tion varies with respect to its certain parameters such as the
total number of users accessing it. Besides these, certain
SaaS providers offer freemium services (with limited func-
tionalities) - Gmail and completely free software [10]. The
world’s SaaS market was valued $134.44 billion in 2018; and
is expected to grow as high as $220.21 billion by 2022.3

Similarly, NaaS providers have network infrastructure
which is virtually offered to a third-party in the form of band-
width capacities using an on-demand provisioning model
[14]. NaaS enables IaaS companies to use their network
with high dynamism, scalability and flexibility, adapting to
SaaS requirements as they emerge. Network virtualisation,
software defined networks (SDNs), bandwidth on demand,

TABLE 1
List of Players With Objectives and Conflicting Aims

Player Objectives Conflicting aims

IaaS Revenue,
Energy

lower performance, SLA violations

SaaS Performance,
Cost

non-appropriate resources, user
costs, energy consumption

NaaS Bandwidth
QoS

latency that produces SLA violations,
less revenue due to users QoE

2. https://www.gartner.com/en/newsroom/
3. https://www.prnewswire.com/news-releases/

1636 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 05:59:15 UTC from IEEE Xplore. Restrictions apply.

https://www.gartner.com/en/newsroom/
https://www.prnewswire.com/news-releases/

datacentre connectivity, and virtual private networks (VPNs)
are some well-known approaches to network services [15].
Very similar to SaaS, NaaS resources along-with mobile net-
works (4G, 5G) are also offered on subscription fee or, usually,
for a contracted period of time. However, renting high net-
work capacity, WAN, dedicated links and bandwidth may
not be cost-effective for IaaS providers. NaaS services could
also be oversubscribed to increase revenues. In 2016, theNaaS
marketwas valued at $1.85 billion.4

3.2 Mathematical Formulation

In our game, we assume three players with conflicting goals
- as shown in Table 1: (i) IaaS – whose aim is to minimise
energy consumption through consolidating the workload
onto the fewest resources; (ii) SaaS – who wants to maximise
service performance and avoids SLA violations (and, there-
fore, increase revenue); and (iii) third-party network service
providers and operators – whose aim is to minimise net-
work traffic (increase bandwidth) in order to ensure QoS in
terms of performance (response time). We assume that
N ¼ f1; 2; . . . ; ng denotes a set of all service providers that
act as players. A list of all mathematical notations can be
found in Table 2. Moreover, each player has a set of
K ¼ f1; 2; . . . ; kg resources including computation (IaaS),
application (SaaS) such as on-line services and emails, and
communication (NaaS) resources. The mth service provider
denotes its offered resources as Cm ¼ fCm

1 ; Cm
2 ; . . . ; Cm

Kg
where Cm

k is the amount of resources of type k offered by
service provider m. Therefore, all offered resources at

various service providers is given by:

C ¼
(X

m2N
Cm

1 ;
X
m2N

Cm
2 ; . . . ;

X
m2N

Cm
K

)
: (1)

Moreover, every job j (i.e., application module) asks for a set
of resources (in the form of coalition) that belongs to a set of
all applications given by M ¼ fM1UM2 . . .UMKg subject to
the condition that every application module is allocated
resources once in every m 2 N - an application module can
run exactly once. We assume that every application module
j runs in a virtual machine (VM) or container. Furthermore,
it is possible that a job may comprise a multiplicity of
amounts of containers/VMs/network resources which can
be co-located - unless there can be only one VM or container
per host or application, in which case this readily simplifies.
However, to simplify our formulation, we assume that each
application module requires one VM or container, at most
and the total number of VMs or containers provisioned can-
not exceed the applicationM resource requirements R (sub-
ject to constraint in Eq. (2))

XVMsjcontainers

i¼1
Mi � RM: (2)

Suppose a MEC system with a single cluster (cloud data-
centre), several edge locations (cloudlets) and numerous
mobile/fog devices. These resources are interconnected
through networks such that cloudlets are in proximity to fog
devices. An application’s modules are distributed and run
over these resources. The cloud datacentre which consists ofH
heterogeneous hosts and each host is denoted by h, such that
1 � h � H. For k 2 K resources (such as CPU, memory, stor-
age, network) each h can be denoted as a capacity vector
Ch ¼ fch1 ; ch2 ; ch3 ; ; chkg; and each kind of resource is
denoted as n. For example, hð2; 4; 10; 1Þ describes that a partic-
ular host h has 2 CPUs, 4 GB memory, 10 GB disk storage and
1 Gbps network card. Moreover, we assume that there areM
edge locations (cloudlets) and each edge cloud e consists of
several heterogeneous hosts S; and each edge host s 2 S
resources are also represented as capacity vector Cs – similar to
cluster host Ch. Moreover, cloudlet resources are extremely
lower than datacentre resources i.e

P
S < <

PH and
Cs < < Ch. The resources in datacentre and cloudlets are vir-
tualised, therefore, offered through VMs. Each VM can run a
particular application module or job. The application or job
submitted by a particular user u is denoted as Ju, where
u 2 f1; 2; ; Ug. Every application comprises several
modules that run concurrently [9]. Furthermore, a variety of
VM or container types are predefined by each cloud provider
(cloud and cloudlets); and each type’s resources are encoded
by the capacity vector R such that Ru ¼ fru1; ru2;
. ; ruj; ; rUg. Note that, eachVMor container can run
a single job (application module) at a time (subject to con-
straints in Eq. (12)), both in the remote datacentre and cloud-
lets. Various resources like CPU, memory, storage and
network of a host h 2 H or s 2 S will be occupied, only, when
a particular VM or container is created on h 2 H or s 2 S.
Mobility of applicationmodules is, therefore, possible through
consolidationwithVMmigration [10].

TABLE 2
Notations Used in Problem Formulation

Notation Description

N List of players so thatm 2 N
K List of available resources
Cm

K Type k 2 K resources offered bym 2 N provider
C List of total offered resources bym 2 N
M Set of applications
H List of hosts in datacentre such that h 2 H
L List of users such that u 2 U
M Number of cloudlets such that e 2 M
j A particular job that belongs to an application 2M
R Resource request matrix
A Resource allocation matrix
D Allocation decision
U Utility function of all providers
XiN Resource - provider mapping function, constraint
xij VM - host mapping function, constraint
bcost Cost of network bandwidth B
Trate Rate of transmission over the B
bidj Bid of jth provider for its resources
eij Energy consumed at host j for VM i
tij Runtime of VM i at host j
tk Execution time of application k
Xij Mapping function of provider i to application j
pIaaSij Utility of IaaS for application j on host i
pSaaSij Utility of SaaS for application j of user i
pNaaS
ij Utility of NaaS for application j for ith channel
Em Energy consumed during a VMmigration
VMdata The data copied during the migration of VM

4. https://www.cisco.com/c/en/us/solutions/enterprise-networks/

ZAKARYA ETAL.: EPCAWARE: A GAME-BASED, ENERGY, PERFORMANCE AND COST-EFFICIENT RESOURCE MANAGEMENT TECHNIQUE FOR... 1637

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 05:59:15 UTC from IEEE Xplore. Restrictions apply.

https://www.cisco.com/c/en/us/solutions/enterprise-networks/

With the above terms, resource requests for a particular
job j (or user) can be defined as a u� v dimensional matrix
(Rj); where rows represent the VM or container type and
columns denote the amount of various resources associated
with the VM/container type

Rj ¼
rj1
rj2
. . .
rju

2
664

3
775 ¼

rj11r
j
12r

j
13 . . . r

j
1v

rj21r
j
22r

j
23 . . . r

j
2v

.
rju1r

j
u2r

j
u3 . . . r

j
uv

2
664

3
775: (3)

Note that, the request matrix R is an augmentation of all the
request matrices (from all the service providers) as given
below:

R ¼
r1
r2
. . .
rU

2
664

3
775 ¼

r11r12r13 . . . r1v
r21r22r23 . . . r2v

.
ru1ru2ru3 . . . r

j
UV

2
664

3
775: (4)

We assume that a particular job can be allocated to at most
one host; and various resources mean CPU cores, RAM,
storage capacity and network bandwidth. Moreover, for a
particular host h, a possible resource allocation state can be
described as an allocation matrix Ah

Ah ¼
ah1
ah2
. . .
ahu

2
664

3
775 ¼

ah11a
h
12a

h
13 . . . a

h
1v

ah21a
h
22a

h
23 . . . a

h
2v

.
ahu1a

h
u2a

h
u3 . . . a

h
uv

2
664

3
775; (5)

where ahab represents the amount of resources b on a particu-
lar host h allocated to a container or VM a. Similar to the
request matrix R, the allocation metric A is an augmentation
of all the allocation matrices (from all the service providers)
as given below:

A ¼
a1
a2
. . .
au

2
664

3
775 ¼

a11a12a13 . . . a1v
a21a22a23 . . . a2v

.
au1au2au3 . . . auv

2
664

3
775: (6)

For every host, an allocation decision D is a possible alloca-
tion status from a set of all possibilities based on the
resource requirement matrixR

D ¼
h
A1; A2; A3; . . . ; Ah; . . . ; Ap

i
: (7)

The aim of the resource allocation problem, given the
resource requirement matrix R and the capacity sets of
hosts C, is to calculate a reasonable mapping from resources
to user’s jobs. This is usually accomplished by the resource
management system (or the scheduler) in a centralised, hier-
archical or distributed fashion [16]. In our game, various
players (resource, application and network providers) col-
lectively arrive at a single decision, with a centralised bid-
ding-based scheduling strategy as described in Section 4.1,
that describes VM mappings/allocations which are collec-
tively best for the whole MEC system; and also ensuring
that the allocations are both energy and performance (run-
time) optimised.

If we assume the above problem as a single-objective opti-
misation problem, then each service provider, individually,

wants to maximise its utility through allocating its available
resources such that: (i) energy consumption and workload
performance (runtimes) areminimised (IaaS); (ii) applications’
runtimes are minimised (SaaS); and (iii) network traffic is
minimised (NaaS) – to ensureQoS and availability of the band-
width. From a single-objective optimisation problem of a sin-
gle service provider, the objective of all providers is given by:

maxA

 X
j2N

un
j A

n
i2M

!
: (8)

Moreover, for each VM or application i its allocation matrix to
each service provider N 2 fIaaS;SaaS;NaaSg is given by
XiN ¼ f0; 1g such that

P
Xi;N � 1 i.e., each application is allo-

cated exactly once to every provider. Once allocated, each user
pay p (utility of server providers) for its application i to each
service provider n 2 N ; where p is the sum of pIaaSin , pSaaSin , and
pNaaS
in that represents the cost owned by IaaS, SaaS, and NaaS,
respectively. Therefore, the cost-based utility of the whole
MEC system from a particular user with application i is given
by Ui ¼ XijðpIaaSij þ pSaaSij þ pNaaS

ij Þ. For m applications, the
total utility (cost-based) of theMEC system is given by:

U ¼
Xm
k¼1

Ui: (9)

Therefore, the objective of the whole MEC system with
respect to users’ monetary costs is given by:

maxðUÞ: (10)

The three constraints of the above optimisation problems
are: (i) the allocated resource capacities cannot exceed the
total capacities; (ii) each module is exactly placed on a single
VM; and (iii) each user is allocated resources exactly once in
their proximities.

3.3 The Optimisation Problem

We can formulate the above problem as a Min-Max multi-
objective optimisation problem. Consider a MEC which
comprises a datacentre, several edge locations (hosts), and
users’ jobs that run on a variety of VMs. Find the VM to
host mapping, such that: (i) the cumulative energy con-
sumed by the MEC is minimised; and (ii) the performance
of the VM is maximised (or VM runtime is minimised). Sim-
ilarly, regarding SaaS performance of various applications
is ensured. Moreover, from networks point of view the
available bandwidth (B) is maximised. We further assume
performance as the VM runtime, the longer the VM runs the
worse will be its performance and vice versa. Mathemati-
cally, we can integrate all these into Eq. (11)

min

 XN
i¼1

XM
j¼1

eijxij

XN
i¼1

tijxij þ
XM
k¼1

tk

!

þmax
X

BþmaxA

 X
j2N

unj A
n
i2M

!
þmaxðUÞ;

(11)

where the mapping factor xij equals 1 if a particular VM i is
mapped to host j. Furthermore, eij represents the energy
consumed by host j when a VM i is run. Similarly, tij
denotes the runtime of VM i over host j. Moreover, tk

1638 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 05:59:15 UTC from IEEE Xplore. Restrictions apply.

denotes the execution time of application k and B is the
available bandwidth. The constraints of the above optimisa-
tion problems are

X
i

xn
ik � Cn

k &
Xm
l2N

xl
ik � rnik; (12)

where the first one indicates that various resources allocated
to VMs cannot exceed the hosts (providers) capacities while
the second one ensures that only the required resources are
offered to VMs. Note that, application runtimes, network
performance, and energy consumption are inversely pro-
portional to each other i.e., an increase in one value can
decrease the other one’s value. In the single-objective opti-
misation, the SaaS provider wants to maximise income
through minimising users’ monetary costs. However, lower
costs may increase the number of customers and demand
for services that may have negative performance impacts on
users’ workloads. Therefore, cost minimisation indirectly
implies maximising SLA violations; SLA violations, then,
depends on resources procured from their providers of net-
work and IaaS (who, presumably want to achieve the same
for the same reasons). In such scenarios, an assumption
would be essentially needed in order to avoid the unneces-
sarily demand for IaaS resources by the SaaS providers
(left-hand side of Eq. (12)). Furthermore, it is also possible
that various providers are offering services to the highest
paying customers first - in which case an additional con-
straint would be necessary over the allocation. The later one
can also be assumed similar to native applications of IaaS
providers - Gmail on Google cluster will get preference than
running on Azure cluster [7]. This means that the MEC allo-
cation problem is complex and cannot be easily solved with
simple optimisation techniques.

An alternative approach is to account for individual
player’s objectives, separately. For example, the providers
(IaaS, NaaS) deploying the MEC services aim to maximise
their profits through selling more resources (using certain
price models) and/or reducing energy consumption (pay-
ing less energy bills). Moreover, the SaaS has to account for:
(i) gains from selling their applications; and (ii) the amount
paid to providers (IaaS, NaaS), when deciding on their
resource demands. The providers, first, set prices for their
services. The SaaS providers decide, later on, their required
computing and network resources for running user’s appli-
cation, being aware of the providers’ prices. The utility func-
tion U of each player comprises: amount for selling; and cost
incurred in providing resources [17]. We can divide the
whole game into two sub-games, subject to various con-
straints, as discussed in Section 3.2:

1) every SaaS decides on the resource demand while
maximising the expected utility, given all other SaaS’
demands, i.e., strategies, as well as the MEC resource
prices (Eq. (8)); and

2) the profit of each provider (IaaS, NaaS) is the reve-
nue obtained from charging the SaaS for IaaS, NaaS
and MEC resources (SaaS x pays a unit price px to
each MEC provider) minus the incurred cost
(Eq. (10));

where cost is a function of the resource demand, e.g.,
energy consumed, performance gains and throughput etc.

Moreover, the SaaS providers may want to run users’ appli-
cations in their proximity (the nearest available resources)
in order to ensure expected levels of performance (in terms
of low latency). Furthermore, IaaS, NaaS compete each
other for providing resources and the SaaS compete for pro-
visioning better services. The game solution guarantees that
the resource price or allocation, chosen by various providers
(IaaS, NaaS), increases their profits, such that SaaS pro-
viders achieve optimal performance for applications which
also increases their utilities.

4 PROPOSED SOLUTION

Game theory is largely used for analysing competitive inter-
action among various providers [18]. We model the above
problem as a non-cooperative game where customers - SaaS,
resource providers - IaaS, and access networks (or network
providers - NaaS) act selfishly according to their ownparticu-
lar objectives [17], [19], as described in Section 3. As described
in [12], multi-objective optimisation problems can be solved
in twoways: (i) concurrently solve all objectives; and (ii) solve
one objective first, and then make it a constraint on the
next one. Moreover, various objectives can be combined into
a single metric, and then solved as a single-objective problem
[10]. To concurrently solve multi-objectives, Lagrange multi-
pliers is one of the classical techniques to address such prob-
lems. The Lagrangian will converge all objectives to a single
saddle point. The Hungarian method is also used to solve
such problems, particularly, cooperative games where coali-
tion can be formed among various service providers [19].
Since, we assume our game of non-cooperative nature [8],
[20], and auction theory is a suitable tool to solve such kinds
of games [17]. Therefore, we also solve the allocation problem
with an auction theory using the bidding strategy. Our game
theoretical approach is inspired by the previous work, as
presented in [19].

We assume the whole MEC as a multi-agent system that
consists of three different layers. This closely resembles
hierarchical auction framework in the context of multi-agent
systems [21], [22]. At the top-level, a global resource man-
ager (broker) is responsible for assigning VM requests to a
particular MEC. In the middle layer, a local manager is asso-
ciated with each MEC that is responsible for assigning VM
requests to appropriate computational resources (also
known as agents). In the third layer, agents are responsible
for running VMs. In our game, the local manager can sub-
mit bids for execution contracts to the global manager. Sub-
sequently, the broker will select the winning MEC through
a sealed-bid auction. The bids are computed (by a local
manager) using a particular strategy at each server (for dif-
ferent providers) using various characteristics of the appli-
cation and infrastructure. To effectively estimate the
runtime for a contract bid, every local manager will ask all
agents in its related MEC for estimates in order to create a
runtimes matrix that comprises VM execution times. These
estimates can be either: (a) computed using application
characteristics and machine learning techniques; or (b)
achieved through certain probabilistic methods [10]. The
local manager then chooses which VMs it can execute
and at what price. These details are then passed to the
global resource manager for taking appropriate allocation
decisions.

ZAKARYA ETAL.: EPCAWARE: A GAME-BASED, ENERGY, PERFORMANCE AND COST-EFFICIENT RESOURCE MANAGEMENT TECHNIQUE FOR... 1639

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 05:59:15 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1. VM Placement Algorithm

Input: List of MECs (N), List of hosts in nth MEC (Hn), List
of VM requests (V)

Output: Efficient VM placement
1 for each player p 2 N do
2 for eachmec 2M do
3 resourcemanager de-queues its job queue and announces

that a VMi is ready for bidding ;
4 for each agent j do
5 estimate runtime for VMi ;
6 tempraray en-queues VMi into local job queue to check

its possiblity of execution ;
7 if VMi is executable on j then
8 bidj ¼ compute bid using Eq. (13)
9 else
10 bidj ¼ 0 (since runtime =1)
11 end if
12 end for
13 sort agents in ascending order of their bids ;
14 end for
15 take bid from network provider ;
16 take bid from application provider ;
17 end for
18 sort all bids in ascending order with respect to the group

value ;
19 convert all bids to a combinatorial bid using Eq. (16) ;
20 agt the agent with the lowest bids (Hungarian) ;
21 allocate VMi to agt ;
22 return output

The steps involved in resource allocation are described in
Algorithm 1. The coremodule of the proposed allocation tech-
nique is the bidding strategy. Each service provider is associ-
ated with its own and a particular biding strategy, which is
described later in Section 4.1. For every VM request, all the
bids from various providers i.e., IaaS, SaaS, NaaS, are com-
puted at each server (local resource manager) using the bid-
ding strategy as described later in Section 4.1. The bids are,
then, sorted in ascending orders of their utilities, and con-
verted to a single (combinatorial) bid, given by Eq. (16), which
is shared with the global resource manager. The global
resource manager, then, chooses the local manager with the
highest bid to run the VM. We can also use the Hungarian
method to choose the optimal allocation strategy for a particu-
lar application (SaaS) [12]. Besides resource allocation, the
global resourcemanager (broker) is responsible for consolida-
tion workloads within the remote cloud and across several
cloudlets. The consolidation process ensures that all cloudlets
are balanced (with respect to workloads) and can be achieved
using service migration technique, as described in Algorithm
2. Moreover, appropriate service migration techniques guar-
antee energy savings and workload expected levels of per-
formance. Furthermore, VMs reallocation through service
migration techniques, across various servers or MECs, can be
modelled as a cooperative or semi-cooperative game inwhich
various agents or local resourcemanagers can help each other
to run them, on appropriate resources [19]. In this paper, albeit
we consider service migrations, however, they are modelled
and considered a semi co-operative game, but, not a complete
co-operative game. In the near future, wewill consider service
migrations a complete co-operative game; and will try to

ensure the existence of the Nash equilibrium. The overheads
and time complexities of both Algorithms 1 and 2 are elabo-
rated in Section 4.2, particularly at large-scale in terms of num-
ber of players, hosts, andVM requests.

Algorithm 2. Service Migration Technique

Input: optimiseðÞ,M , Tv, Tl

Output:migration decision d
1 for each cloudlet 2M do
2 compute utilisation level of the cloudlet (Te) ; compute net-

work condition (Tc) ;
3 if Te � Tv or Tc � Tl then
4 select modulem from cloudlet ;
5 choose cloudlet t as destination node ;
6 d true ;
7 else
8 continue with the for loop ;
9 end if
10 end for
11 returnm; t; d

4.1 The Bidding Strategy

The core component of the proposed technique is the bid-
ding strategy that varies with various service providers
involved within the MEC system. Each bid represents a pos-
sible VM schedule at certain cost of energy. For example, for
IaaS with H total number of hosts the bid of each server h is
computed using

bidh2H ¼

he � 1

he

!
� rh; (13)

where he represents the energy consumed and rh denotes the
expected runtime (therefore, performance with respect to
SaaS) of a particular VM on host h 2 H. The fraction he � 1

he

converts he to a higher bid. The lowest bid demotes an opti-
mal agent from both IaaS and SaaS perspective. For NaaS,
we assume that the bandwidth is offered in sub-channels
and is, largely, used for data transmission and communica-
tion. Important parameters, here, include the total distance
between the IaaS and user, data size, transmission rate, exe-
cution delay, and link power consumption. These parame-
ters should be considered in computing the NaaS bid.
Furthermore, the broker is aware of the agent’s distance
from each user. TheNaaS bid is given by:

bidb2B ¼ D� bcost; (14)

where D denotes the distance between the edge cloud and
the agent, while bcost is the channel (bandwidth) cost. We
assume that NaaS offers various channels with numerous
capacities at different costs just like EC2 instance types. The
above bidding strategy can be converted to combinatorial
bidding approach where all bids can be computed in one go
[23]. In such scenarios, each VM request R can be repre-
sented as a 2-tuple i.e., RðC;BÞ where C denotes the instance
type (size) and B the required number of bandwidth chan-
nels. Note that, the required number of channels Bij are
computed using the transmission rate Trate, as given by:

1640 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 05:59:15 UTC from IEEE Xplore. Restrictions apply.

Trate ¼ Bij log2ð1þ Pij:hij

N
Þ; (15)

whereBij represents the bandwidth allocated toVMor user j,
hij denotes the channel gain for user j at service provider i
and Pij is the transmission power of user j. Furthermore,N is
the background noise [23]. Due to experimental simplifica-
tion, we use, here, the combinatorial bidding approach, given
by Eq. (16), in order to allocate IaaS, NaaS resources to differ-
ent services i.e., variousmodules of the applications (SaaS)Y

bidh2Hbidb2B: (16)

4.2 Time Complexity

This section briefly describes the average and best-case com-
plexities for Algorithms 1 and 2. Note that, Eqs. (11) and (12)
show that the allocation procedure is a two-dimensional
knapsack problem; which is widely known as NP-hard. In
the average case, Algorithm 1 will take Oðn2 logðnÞÞ - where
n2 denote the number of players, hosts; and logðnÞ is the
time needed to compute the bid for VM. Note that, the num-
ber of players will not exceed a few i.e., constant numbers.
For instance, in our case it is 3 that leads to an average com-
plexity of Oðn logðnÞÞ. However, complexity would increase
up to Oðn3Þ for large number of players, hosts and VM
requests - if unluckily a VM cannot be placed. Similarly,
Algorithm 2 will approximately take Oðn logðnÞÞ - where n
denotes the number of edges and logðnÞ is the time needed
to compute configuration states. The best case occurs at
OðlogðnÞÞ plus the time needed to complete all possible
migrations.

5 PERFORMANCE EVALUATION

Resource allocation and consolidation can be seen as a kind
of bin-packing problem by means of different sizes and
costs of bins – where bins represent the MEC’s resources
(hosts) and items represent various applications for place-
ment. Furthermore, the sizes of bins represent host’s CPU,
RAM, storage capacities and costs relate to hosts’ energy
consumption. Energy and performance efficient resource
allocation can be assumed as a multi-objective optimisation
problem with the objective(s) to reduce the number of used
hosts – as fewer hosts, possibly, decrease the energy con-
sumption. However, this statement may not hold for hetero-
geneous MECs [24]. Therefore, an alternative approach for
heterogeneous systems is to minimise the sum of total bins
costs instead of a number

min
Xn
k¼1

Chostk ; (17)

whereChost is the cost of host k 2 n.We considerC as the prod-
uct of energy (E), performance – execution time (T) and user
monetary costs (U); that corresponds to all three parties in our
game. Usually, bin-packing problems are solved using various
heuristic approaches which may not guarantee optimal
results, but they are considered fast enough to deal with, par-
ticularly, large problems [25]. It is possible to assume an analo-
gous resource allocation problem as moving from a particular
state of the datacentre to an ideal state – the one using the

fewest hosts. We achieve a datacentre state through imple-
menting various placement techniques (Random, first come
first serve - FCFS, Cloud-Only, Edge-ward, Delay-priority,
andBidding-based,Game-theoretic - epcAware),with applica-
tion packing then needing to ensure energy, performance and
cost-efficiencies. The Random placement policy allocates an
edge or datacentre server through pseudo-random number
generator. If the randomly picked server has not enough
capacity to run the workload, then, another one is selected;
and the process is repeated until the workload is placed. Fur-
ther, the FCFS policy is like a first fit approach that puts the
workload from a queue on first suitable host out of n hosts -
starting from 1 ton.

5.1 Modelling Applications

To demonstrate the efficiency of the proposed technique, we
use two kinds of applications: (i) near real-time – where we
model the well-known electroencephalography (EEG) trac-
tor beam game (EEGTBG); and (ii) delay-tolerant – where a
video surveillance/object tracking (VSOT) application is
modelled. In respect of (i), several players attempt to collect
items through concentrating on them - the better the concen-
tration, the higher chances to collect more items. A true, on-
line, real-time, experience can be observed through fast
processing and low response times.

The EEGTBG application has 5 modules: (a) EEG sensor;
(b) display; (c) client; (d) concentration calculator; and (e)
coordinator. The EEG headset probes user concentration
and communicates raw data to the client module. Subse-
quently, the client module transmits reliable data to the con-
centration calculator module, which calculates the user level
of concentration. Furthermore, the computed concentration
level is sent back to the client module, to update the game
status (display) on the player’s device. The coordinator
module collects and distributes measured concentration
among all players. As described in [9], the three modules
i.e., sensor, display, and client are placed in the mobile
device. However, the other two modules i.e., the concentra-
tion calculator and coordinator could be placed either in
cloudlets or datacentre. Various modules of the EEGTBG
application are shown in Fig. 2.

The VSOT application depends on a set of distributed
cameras that could track movement, having six modules:
(a) camera; (b) motion detector; (c) object detector; (d) object
tracker; (e) user interface; and (f) pan, tilt, and zoom (PTZ)
control. The camera streams video to the motion detector
that, subsequently, filters the streamed video and transmits
the video of interest, i.e., in which motion was detected, to
the object detector module. The object detector recognises the
moving objects and sends their identification and position
data to the object tracker module. Sequentially, the object
tracker calculates the required PTZ and sends the command

Fig. 2. EEGTBG application modules [9].

ZAKARYA ETAL.: EPCAWARE: A GAME-BASED, ENERGY, PERFORMANCE AND COST-EFFICIENT RESOURCE MANAGEMENT TECHNIQUE FOR... 1641

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 05:59:15 UTC from IEEE Xplore. Restrictions apply.

to PTZ control. We further deliberate that the two modules
i.e., motion detector and PTZ control are permanently
located within the camera, whereas the user interface runs in
the cloud (datacentre). The other two modules i.e., the object
detector and object tracker might be placed either in a cloud-
let or datacentre.

The above applications can be set up in a MECs infra-
structure to yield benefits of lower latency due to the use of
edge devices. Moreover, VSOT can work reasonably well
under datacentre-distance latencies (greater than 100 milli-
seconds) [9]. Alternatively, higher delays in EEGTBG appli-
cation can impact the players’ real-time observation,
making the game weird as its playability might be dam-
aged. We contemplate that both these applications belong
to two diverse classes of applications types i.e., delay-sensi-
tive and delay-tolerant, that could benefit from a MECs
infrastructure. Various modules of the VSOT application
are shown in Fig. 3.

5.2 Experimental Set-Up

We use the “iFogSim” simulator [5] to model and evaluate
the performance of various resource placement policies
because it: (i) supports the hierarchical composition of IaaS
clouds, cloudlets and edge devices; (ii) runs on top of
“CloudSim” [26] – the most widely used simulator in the
cloud research community; and (iii) supports the measure-
ment of application performance in terms of delays, res-
ponse and execution times. We assume twelve instances of
the VSOT application that run over cloudlet-2 and thirty-six
instances of the EEGTBG application that run over cloud-
lets-1 and cloudlet-3, collectively. Initially, eighteen EEG-
TBG users are playing the game in proximity of cloudlet-1
location and the other eighteen players are in proximity of
cloudlet-3 location. To emulate mobility and to assess per-
formance degradation that may cause from poor resource
allocation and service migrations, we move the EEGTBG
players one by one to cloudlet-2. Due to low-latency
requirements of EEGTBG application, we assume that a par-
ticular player in a cloudlet plays only against other players
in the same cloudlet [9]. To simulate service mobility in the
context of epcAware allocation and migration policies,
appropriate migration decisions are, then, triggered using

Algorithm 2. The migrations may happen either: (a) among
hosts of the remote cloud – inter-datacentre; (b) among hosts
of an individual edge cloud or across several edge clouds –
inter-fog and intra-fog; and/or (c) among hosts of the edge
and remote clouds – fog-datacentre. In respect of (a) and (b),
migrations occur if hosts’ utilisation levels drop below cer-
tain threshold value e.g., 20 percent. In theory, to avoid SLA
violations, if server utilisation surpasses an upper threshold
value i.e., 100 percent (over-subscription), some workloads
could be migrated from it to the least utilised server. Never-
theless, we assume, here, that sensible ways of addressing
VM density [10], given as constraint in Eq. (12), will not lead
to overloading and SLA violations. In respect of (c), applica-
tionmodules aremoved explicitly, as described later.

Every cloudlet has a processing capability (speed) of 3 het-
erogeneous servers, as shown in Table 4, that maps to the
notion of millions of instructions per second (MIPS), for con-
sistency with the iFogSim simulator, and is connected to the
gateway (proxy server) through a link of bandwidth equal to
10 Mbps and latency of 4 ms (milliseconds). Moreover, the
link between the gateway and the cloud has 10 Mbps band-
width and 100 ms latency. We further assume that edge devi-
ces, such as mobile and camera, are connected to the cloudlets
through a link of bandwidth equal to 10 Mbps and 2 ms
latency. The maximum resource (CPU, RAM, and network
bandwidth) requirements of each application’s module are
shown in Table 3. However, at scheduling time, prior to exe-
cution, each application’s (module) resource requirements are
unknown. Later on, resources could be predicted. Moreover,
we assume that the application module workload (modelled
as tuple) is dynamic that changeswith time to time.Moreover,
every tuple is assigned a particular task (i.e., fixed number of
MIPS) which utilises the VM resources, using a normal distri-
bution - most likely resource usage in Google cluster, that
could create variations in runtimes.

Similarly, we account for resource contention or interfer-
ence on various servers, that could, possibly, degrade applica-
tions performance. The cloud consists of 100 heterogeneous
hosts that correspond to three different CPU platforms, as
shown in Table 4. The idle (Pidle) and maximum power con-
sumption (Pmax) of hosts were taken from the SPECpower
benchmarks.5 To maintain consistency with the iFogSim sim-
ulator, speeds of the hosts are transformed toMIPS. Each host
can run several VMs where each core of a particular host cor-
responds to a single vCPU of a VM instance. This implemen-
tational simplification is justified due to the facts that: (i) the
dataset, used in this paper, comes from a single-core VMs ser-
vice provider; and (ii) the notion of VM density [10]. We, fur-
ther, assume that every module of the fog application runs in
a VM instance and the speed of VM is exactly equal to the

Fig. 3. VSOTapplication modules [9].

TABLE 3
CPU, RAM, and Network Bandwidth (BW) Requirements (in MIPS, MB, and Mbps, Respectively)

for Both Applications and Their Various Modules [9]

VSOT EEGTBG

Object Motion Object User Client Concentration Coordinator

detector detector tracker interface calculator

CPU 550 300 300 200 200 350 100
RAM 30 25 25 20 50 60 30
BW 100 100 100 400 500 200 200

1642 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 05:59:15 UTC from IEEE Xplore. Restrictions apply.

CPU requirement of each module, as shown in Table 3. We
also account for migration costs [24], resource heterogeneity
(in terms of CPU architecture) and resource contention due to
co-location i.e., when similar modules of the same applica-
tions are placed on the same host and compete for the same
resources [27]. The resource contention and CPU heterogene-
ity parameters for various hosts, as shown in Table 4, were
taken from our previous work [10]. Each migration degrades
the VM performance by 10 percent, as investigated in [28].
Moreover, the energy cost of each VM migration Em is mod-
elled using Eq. (18)

Em ¼ 0:512� VMdata þ 20:165; (18)

where VMdata denotes the amount of memory (measured in
MBs) allocated to the VM plus memory pages dirtied during
the migration process [10]. Note that, speed of hosts and VMs
are transformed into the notion of MIPS in order to keep con-
sistency with the CloudSim and iFogSim simulators. More-
over, each service requirements (CPU) are according to the
default setting of iFogSim (number of MIPS). We assume that
each module of various application utilises its provisioned
VM resources in whole. Furthermore, each provider’s utility
is computed using a particular cost model. In our experi-
ments, there are 12 servers in cloud, 1 proxy server, and 3 serv-
ers per cloudlet. Each service is placed on the most energy,
performance and cost-efficient host, using Algorithm 1, in
such a way that resource requirements of each service are
ensured [29], [30].

5.3 Evaluation Metrics

The metrics used to evaluate the energy, performance and
cost-efficiency of the proposed resource allocation and
migration policies are: (i) total energy consumed (E) mea-
sured in KWh; (ii) execution time (T) measured in seconds –
as application’s performance is inversely proportional to T;
(iii) delay; (D) among various modules which is measured
in milliseconds; (iv) the total number of migrations – fewer
migrations may ensure higher performance levels and
lower energy consumption; and (v) provider’s utility. Note
that, the providers’ utilities actually describe the money (in
US dollars - $) for energy consumption bills (IaaS), resources
being sold (NaaS, IaaS) and instances being purchased
(SaaS, IaaS). We assume the energy cost at the rate of 0.08$
per KWh, VM instances and bandwidth costs at 0.07$ and
0.02$ per hour, respectively [10]. These values reflect the
real market prices in the United States.6 We also assume

that VMs running in cloudlets incurs an additional cost of
approximately 20 percent greater than the cloud VMs [29].
Where needed, statistical tests (t-test) were performed to
show significant differences among various techniques.

5.4 Experimental Results and Discussion

Table 5 describes experimental results for various resource
placement, consolidation and management policies. The
results show that various approaches to resource placement
and placement methodologies (cloud-only, edge-ward) offer
variations in energy consumption, and workload perfor-
mance. Largely, our findings are consistent with previous
outcomes [9] that the edge-ward approach is approximately
3.24 to 8.94 percent energy and�0.81% performance efficient
than the cloud-only placementmethod. However, if resource
contention (due to co-located VMs) and platform heteroge-
neities (due to CPU architectures) are considered at the
cloudlets, then the edge-ward approach cannot ensure per-
formance benefits. Therefore, performance gains are obtain-
able if certain performance-aware placement policies such as
“epcAware-NC” or “epcAware-SC” are taken into account;
where the words, NC and SC, indicate whether the problem
is solved using a non-cooperative or a semi-cooperative
game, respectively.

Migrations which may happen due to cooperation among
various players (service providers) can increase energy, per-
formance, therefore costs saving. However, if migration
costs, resource heterogeneities and contention are conside-
red, then migrations could potentially degrade applications’
performance up to -10.97 percent. The figures, as described in
previous paragraph, can further be improved i.e., �11.95%
energy savings and �3.56% performance gains, if certain
epcAware service migration techniques are considered, as
shown in Table 6. The total number of migrations, as shown
in Fig. 4, affect the overall performance degradation – a higher
number of migrations potentially lead to applications lower
performance. The migrations may happen either inter-fog
nodes or/and intra-fog platform. Moreover, inter-datacentre
migration and fog-datacentre migrations are also possible.
Our investigation suggests that, in MEC, migrations may,
largely, happen inter-datacentre which is justifiable due to the

TABLE 5
Experimental Results - Energy is the Sum of Both
Dataceneter and Cloudlets Usage and R Means

Total Execution Time [Without Migrations]

Allocation Providers utility ($) Energy R

Policy IaaS SaaS NaaS (KWh) (hours)

Cloud only
Random 279.3 1.82 0.48 3,491.7 26.12
FCFS 262.8 1.75 0.5 3,285.3 24.98
Delay-priority 239.7 1.68 0.5 2,996.0 23.93
epcAware-NC 225.8 1.68 0.52 2,822.1 23.87
epcAware-SC 223.0 1.68 0.53 2,787.9 23.51

Edge-ward

Random 270.2 1.96 0.44 3,377.0 27.95
FCFS 239.3 1.89 0.47 2,991.5 26.69
Delay-priority 231.9 1.75 0.5 2,898.9 25.07
epcAware-NC 216.1 1.68 0.52 2,701.0 23.87
epcAware-SC 215.4 1.61 0.53 2,692.5 23.32

TABLE 4
Different Characteristics of Various Hosts Used in the

Simulated MEC System [Pidle and Pmax Denote the Host’
Idle (0 percent Utilised) and Maximum (100 percent Utilised)

Power Consumption, Respectively] - Performance
Parameters of These Hosts are Described in [10]

CPU
model

Speed
(MHz)

No of
cores

Memory
(GB)

Pidle

(Wh)
Pmax

(Wh)
Total amount
of servers

E5430 2830 8 16 166 265 34
E5507 2533 8 8 67 218 33 100
E5645 2400 12 16 63.1 200 33

5. https://www.spec.org/power_ssj2008/
6. https://www.eia.gov/electricity/monthly/

ZAKARYA ETAL.: EPCAWARE: A GAME-BASED, ENERGY, PERFORMANCE AND COST-EFFICIENT RESOURCE MANAGEMENT TECHNIQUE FOR... 1643

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 05:59:15 UTC from IEEE Xplore. Restrictions apply.

https://www.spec.org/power_ssj2008/
https://www.eia.gov/electricity/monthly/

increased number of nodes in datacentre. Moreover, since the
Random policy puts modules scattered, therefore creating
maximum opportunities for migrations, as shown in Fig. 4.
However, if mobility is considered [9], then moving applica-
tion modules across several cloudlets or between cloudlets
and datacentre would be essential. This also demonstrates
that migrations can be reduced up to 52.8 percent if providers
cooperate and scheduleworkloads on appropriate resources.

Table 7 shows the percentage of improvements in energy
efficiency and performance gains when resource allocation
problem is modelled, using a game approach, among differ-
ent service providers with conflicting goals. Our findings
demonstrate that cooperative-based game approaches for
resource allocation ensure higher efficiencies. To study
the impact of long-running monitoring services and short-
running game applications, we changed the runtimes of
applications in the above experiment, accordingly [10]. We
observed that monitoring applications (VSOT) modules
are more cost-effective to migrate than game application
(EEGTBG) modules in terms of the total number of migra-
tions (reduced), and performance loss (reduced). Longer
runtimes could guarantee recoverability of the migration
costs [24] through subsequent running over the target and,
therefore, cost-savings. This creates further gap for investi-
gation of placing and running modules of monitoring serv-
ices in VMs and game modules in containers. This will also
ensure reduction in application migration times since con-
tainer images are smaller than VM images.

The scheduling and migration decisions in fogs also affect
the total network use, as shown in Fig. 5. For example, migra-
tions increase the utilisation levels, that could be up to 9.65
percent, of the used bandwidth irrespective of the network
capacity. Moreover, if network provider allocates their

channels or bandwidth capacities in such a way that each
application or user gets exactly what is needed for quality of
service (QoS). Then the allocated bandwidth can be
decreased, but, utilisedmore.When placement andmigration
decisions are taken based on the cooperation among various
service providers, then approximately 3.83 to 12.86 percent
network capacity could be saved which translate to cost-sav-
ing fromNaaS perfective.

Table 8 shows average delays (measured in seconds) for
various applications and resource placement and migration
policies. The delay actually represents the time needed to
complete a particular task (tuple). For example, in the case of
the VSOT application, the delay represents the time between a
sensor notices an object and PTZ controller to identify the
object. The edge-ward approach is somehow offering lower
delays than the remote cloud-only technique - which is justifi-
able due to short distances. Moreover, the application delay is
affected through increasing the number of users (or applica-
tion modules), network usage (available bandwidth), and the
total number of migrations, which may produce contention if
same modules are placed on same resources. We observed
that the classical FCFS policy offers the least application
delays since it prefers to put application modules on the
remote cloud. Moreover, the delay-priority policy [9] offer
acceptable delays, however, for a large number of users (con-
current application modules) it cannot guarantee consistent
lower delays. Albeit, our proposed policies can ensure lower
delays if migrations are not taken into account. However,
since the proposed algorithms look for opportunities to
reduce network (bandwidth) provisioning – the NaaS objec-
tive; therefore, combined with migrations, improvement in
delays is not trivial and this needs furtherwork.

We observed that IaaS energy costs are largely affected by
the heterogeneity of resources and degree of co-location. If

TABLE 6
Experimental Results - Energy is the Sum of Both
Dataceneter and Cloudlets Usage and R Means

Total Execution Time [With Migrations]

Allocation Providers utility ($) Energy R

Policy IaaS SaaS NaaS (KWh) (hours)

Edge-ward

Random 237.9 1.96 0.44 2,973.5 28.03
FCFS 219.6 1.89 0.45 2,745.2 27.4
Delay-priority 224.3 1.96 0.44 2,803.6 27.82
epcAware-NC 215.8 1.61 0.54 2,697.7 23.02
epcAware-SC 215.4 1.61 0.54 2,691.8 23.01

Fig. 4. Total number of migrations [including inter-datacentre, inter and
intra-fog, and fog-datacentre].

TABLE 7
Percentage Improvements of Using Game-Theoretic Methods to

Placement [Base is the Delay-Priority Approach, E and P
Denote Energy and Performance (%), Respectively]

Policy Base epcAware-NC epcAware-SC

E P E P E P

cloud-only - - 5.8 0.25 6.94 1.76
——————————————————————

edge-ward - - 6.83 4.79 7.12 6.98
- - 3.78 17.25 3.98 17.29

Fig. 5. Network usage for various policies [larger utilisation means more
profit due to more number of customers; therefore, higher values are
better than the lower values].

1644 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 05:59:15 UTC from IEEE Xplore. Restrictions apply.

schedulers aremade aware of the infrastructure heterogeneity,
performance of the co-located applications; then it is possible
to reduce up to 13.48 percent energy costs. Due to existing
trade-off between energy consumption and workload perfor-
mance, lower performance increases customers costs, utilities
of IaaS andNaaS; however, it coulddecrease energy efficiency.

5.5 Results Generalisation

To demonstrate the applicability of the epcAware approach in
a real MEC test-bed, we run several experiments with differ-
ent MEC set-up, hosts, previous assumptions and application
types. Various hosts, their characteristics and workload types
were selected from [31]. We validated epcAware technique
(P1) to check whether generalisation of our findings is correct
or not. The experimental details and results are shown in
Table 9. On average, our approach outperforms other meth-
ods; however, we noticed some overlap between epcAware-
NC (P2) and epcAware-SC (P3). Using the t-test analysis
(95 percent confidence interval i.e., p = 0.05), we observed that
bothmethods are significantly different; where P3 largely out-
performs P2. As the number of applications grows, more
migrations occur leading to rise in IaaS energy usage i.e., up
to 6.85 percent at cost of approximately 0.01 percent perfor-
mance loss. Albeit, runtimes of P3 vary for 300 applications;
that leads to lower average performance. However, we
observed significant differences between P2 and P3 using the
t-test analysis – the least values for p (t-critical = 2.374) [10].

6 RELATED WORK

Gupta et al. [5] proposed two application placement poli-
cies: (i) cloud-only that places all modules of the application
in cloud datacentre; and (ii) edge-ward that favours running
modules of the application on edge/fog devices. However,
in the case of (ii), if the allocation of a fog device is not
appropriate, then resources from other fog devices or cloud
datacentres could be provisioned. Moreover, a simulator
“iFogSim” is developed to simulate mobile edge cloud plat-
forms. Empirical evaluation of both allocation policies for
two real-time applications suggests that the edge-ward pol-
icy significantly improves the application’s performance
and reduces the network traffic. Bittencourt et al. [9] investi-
gated three different allocation policies; (i) concurrent – the
requests at cloudlet are served in the same cloudlet; (ii)
FCFS – requests are served in the order of their arrival
(edge-ward); and (iii) delay-priority – the lowest delay
applications are scheduled first and the remaining applica-
tions are placed according to edge-ward placement. More-
over, application (modules) migration is supported; and if a
particular module is moved to a target device, all other

modules are also moved. Their investigation suggests that if
an application performance is the worst on a fog device,
probably, due to a greater number of connected users, its
migration to the cloud datacentre is performance efficient.
Moreover, network traffic is reduced.

Guerrero et al. [32] suggested a decentralised placement
policy that runs popular and most widely used applications
closer to the end-users (closeness or proximity). The popu-
larity of the applications is computed through statistical dis-
tributions of their access rate i.e., service request rate
(denoted by �). For each device, the algorithm analyses � of
every service and migrate the lower requested services to
upper devices (in edge-ward fashion). Their experimental
evaluation suggests that such a placement method signifi-
cantly improves the network usage and service latency of
the most widely used and popular applications. However,
the existing trade-off between the network usage and
applications’ latencies (delays) is not investigated.

Taneja et al. [33] suggested an application placement policy
that puts various modules of the fog application on suitable
resources. The proposed policy first sorts all the network
nodes and application modules in ascending order of their
capacities and requirements, respectively. Then it searches for
most efficient nodes that could meet the module require-
ments; and themodule is run. Their research suggests that the
proposed allocation scheme could significantly reduce the
network usage and improve application latency as compared
to traditional cloud allocation policy. Moreover, overall
energy consumption varies with respect to the number of fog
devices in the infrastructure. For a small number of fog devi-
ces, traditional cloud allocation policies could beat fog place-
ment. However, energy consumption of the proposed
placement strategy could be optimised for a large number of
IoT and fog devices.

Skarlat et al. [34] have modelled the service placement
problem in fog as integer linear programming – find the opti-
mal mapping between services (applications) and computa-
tional resources; to optimise fog utilisationwhilemeetingQoS
requirement, particularly, deadlines. Moreover, services are
prioritised based on their deadlines.When a service request is
received at a particular node, the application is placed on it;
and if cannot be accommodated there, then it is placed either:
(i) in the same fog colony [34]; (ii) on the closest neighbouring
nodes (fog colony); or (iii) on the cloud (in an edge-ward fash-
ion). The experimental results show that the proposedmethod

TABLE 8
Average Application Delays (in Seconds) the�Denotes Standard

DeviationOver the Average [MinimumValues are ’Best’]

Policy epcAware-NC epcAware-SC

EEGTBG VSOT EEGTBG VSOT

cloud-only 18.7�1.1 17.8�1.3 23.8�1.9 20.1�2.2
——————————————————————-

edge-ward 13.6�2.4 15.1�2.1 16.7�2.3 15.9�1.8
30.0�3.3 29.9�2.8 24.6�2.6 23.2�2.6

TABLE 9
Generalisation of Experimental Results With Migrations
[� Denotes Standard Deviation After the Mean Values]

Alloc. Providers utility ($) Energy R

Policy IaaS SaaS NaaS (KWh) (hours)

Edge-ward (200 servers - E5507, E5645, E5-2651), 150 Apps

P1 787.12 4.48 8.72 9,839.0�102 63.78�1.2
P2 770.07 4.34 8.76 9,625.9�88.4 61.99�1.3
P3 762.51 4.06 8.83 9,531.3�63.8 58.30�3.5
Edge-ward (800 servers - E5430, E5-2650, E5-2670), 300 Apps

P1 4,294.8 6.3 18.03 58,280.5�51.8 98.32�2.7
P2 4,614.9 6.3 18.2 57,677.2�119 89.87�4.8
P3 4,622.8 6.16 18.24 53,684.5�195 89.88�5.9

ZAKARYA ETAL.: EPCAWARE: A GAME-BASED, ENERGY, PERFORMANCE AND COST-EFFICIENT RESOURCE MANAGEMENT TECHNIQUE FOR... 1645

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 05:59:15 UTC from IEEE Xplore. Restrictions apply.

could utilise the fog landscape for approximately 70 percent of
services and could reduce the execution cost up to 35 percent
as compared to execution in the cloud only approach.

Brogi et al. [35], [36] have proposed a software prototype
“FOGTORCH” that could deploy applications over the fog
infrastructure such that all hardware, software and QoS
requirements (i.e., bandwidth, latency) are fulfilled. A smart
agriculture application has been modelled [36]; and a 3-layer
fog infrastructure has been suggested for its deployment.
Empirical evaluation of the proposed prototype shows that it
could successfully return all eligible deployments (resource
provision) for several optimisation scenarios, requirements
and needs. Tuli et al. [30] proposed HealthFog, a framework
which integrates deep learningmethodswithin the fog infra-
structure to run health monitoring system i.e., heart disease
analysis using IoT devices.

Plachy et al. [37] have discussed dynamic service place-
ment in mobile edge clouds. Mobility of a fog user is pre-
dicted, and, instead of migrating the application (running
inside a virtual machine), an alternative network path is
selected to connect user at the target. Experimental results
show a minimum 10 percent improvement in response time
(delay). Furthermore, a service placement technique, based
on predicted future costs of its placement, is also presented.
To model user mobility, service migration between cloud-
lets, and, cloud datacentre is also investigated in [38]. Sev-
eral prediction models are suggested to estimate the cost of
running and migrating a particular service. Both, off-line
and on-line service placement problems are solved using
various placement algorithms.

Various techniques for migrating (live) services in fog
infrastructure are proposed and evaluated in [39]. To mini-
mise the migration time of an application, a three-layer
architecture is presented; where an idle copy of the applica-
tion is stored at an intermediate layer. Before migrating the
memory states of the application from any source, the appli-
cation idle copy is migrated first. Later on, only memory
pages are copied, that could significantly reduce the migra-
tion time. Moreover, a comparison of VM and container-
based service migration is also elaborated. Mahmud et al.
[29] proposed a profit-aware service placement policy for
resource provisioning in fog infrastructure. Their outcomes
suggest that cloudlet instances are approximately 20 percent
expensive than the cloud instances. However, service
migrations and user mobility are not considered.

Urgaonkar et al. [40] have also discussed various strategies
formigrating services, inmobile edge clouds, in order tomini-
mise operational costs. The “never migrate” policy places
each application at a particular cloudlet with no reconfigura-
tion that may happen due to user mobility. User requests are
always routed to the original location of the application. In the
“always migrate” policy, user requests are routed to the clos-
est cloudlet with reconfiguration, in such a way that queues
with the largest backlogs are served first. Moreover, if the
arrival rate of requests at a particular cloudlet exceed its
capacity, they are routed towards the cloud (in an edge-ward
fashion). The “myopic” policy accounts for reconfiguration,
transmission and routing costs; and takes appropriate migra-
tion decision such that the sum of these costs could be mini-
mised. The work presented in [40], assume the user mobility
as a Markovian process that is solved using Markov Decision
Process (MDP) technique. However, as mentioned in [41],

users’ mobility cannot be accurately predicted. A mobility-
aware dynamic service placement technique (heuristic based
on the Markov approximation) is presented in [41], that
accounts for: (i) costs of migrating services; and (ii) the trade-
off between performance and operational cost.

Gillam et al. [42] have also discussed VMs, containers and
code/functions (Function as a Service – FaaS) in order to exp-
lore edge computing for on-vehicle and off-vehicle computa-
tion that will be needed to support connected and automated/
autonomous driving. Tominimise end-to-end latency, the aut-
hors suggest that it is essential that computation should be
more local to vehicles. However, vehicle mobility will create
opportunities for application/code migration, and with nota-
ble exception of [39], it is rarely discussed. Zafari et al. [7] mod-
elled the resource allocation problem in MECs and, in
particular, when various edge cloud service providers share
their extra resourceswith each other.Moreover, various service
providers have their own utility functions which they want
to improve through coalition. To solve thismulti-objective opti-
misation problem, a cooperative game theoretic approach is
proposed which suggests that service providers can increase
their utilities through resource sharing. The same idea has been
implemented in clouds [11], where datacentre resources are
shared among various IaaS providers that have their own
objectives. In both cases, it is ensured that each provider allo-
cates only required services to their native users first. After
that, free and unused resources, if available, are shared with
other IaaS providers. Compared to our approach, the players
are always IaaS providers (therefore, same objectives), ormulti-
ple but solved individually, whilewe account for various kinds
of players i.e., IaaS, SaaS and NaaS (therefore, multiple objec-
tiveswhich often conflictwith each other).

Ahmed et al. [43] used game theory for scheduling tasks in
a multi-core system such that energy consumption is mini-
mised, and performance is ensured. Similarly, Khan et al. [19]
studied various game-theoretical methods for resource allo-
cation in multi-agent computational grids. The work in [12]
extends [19] in order to optimise grid energy consumption
and workload performance through game-based resource
allocation techniques. All these proposals consider, only, a
single service provider; and have ignored allocation when
services are offered by various providers, in particular, hav-
ing conflicting goals. Moreover, service migrations are not
taken into account. Li et al. [8] formulated the task offloading
problem in MEC system as a non-cooperative game; where
each player can selfishly minimise his own pay-off through
using an appropriate strategy. Moreover, they proposed vari-
ous algorithms to find the Nash equilibrium. Table 10
describes summary of the related work. We believe, informa-
tion in this table will help our readers to quickly identify
gaps for further research, investigation and improvement.

7 CONCLUSIONS AND FUTURE WORK

MEC is an evolving paradigm that combines computational,
storage and communication (network) capacities at the edge of
the network through datacentres, in an elastic infrastructure.
MECs have potentials to accommodate and run various appli-
cation types such as: (i) throughput-oriented that need huge
computational capacity and network bandwidth; and (ii)
latency-oriented applications that need low latency communi-
cation and computation in user’ proximity. Usually, the

1646 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 05:59:15 UTC from IEEE Xplore. Restrictions apply.

computational capacity in edge locations and the wireless
access aremanaged either distinctly or by a single player. Nev-
ertheless, bringing the full potential of MECs entails that edge
locations, IaaS, and wireless networks are to be managed in
concert. In this paper, we modelled the resource allocation
problem in MECs as a non-cooperative game. Further,
resource reallocation decisions were taken into account at the
IaaS layer and modelled as semi-cooperative game. We, then,
proposed a bidding-based resource allocation and consolida-
tion technique “epcAware” in order to effectively place vari-
ous applications across various service providers. Empirical
evaluation of the proposed algorithm suggests that it is able to
manage resources energy, performance and, therefore, cost-
efficiently. Furthermore, our proposed approach could reduce
up to 11.95 percent energy, and approximately 17.86 percent
user costs at non-significant loss in performance. Moreover,
IaaS can reduce up to 20.27 percent energy bills and NaaS can
increase their costs savings up to 18.52 percent as compared to
othermethods.

This emerging technology has still a research gap for
identifying the locations where such small datacentres
should be installed. For example, potentially these can be
deployed in universities, hospitals, mobile base stations
and/or shopping malls – where their operation and man-
agement is more affective or possible. Once installed, what
kind of services should they host and how the available
resources should be allocated to customers’ applications.
Similarly, if mobility is involved, then how the available
resources or running services should be managed or
migrated among small datacentres (cloudlets), and geo-
graphic areas. The aim of our further research would be to
investigate and answer these kinds of questions from
a geographic area perfective – while accounting for resource
and energy costs variations. We believe energy is often hard
to quantify in MECs and needs further investigation. Albeit,
iFogSim-based simulators make use of it, but in practice

and reality assessing benefit in terms of energy is often very
challenging. However, execution time and cost of resource
use is much easier to quantify and measure. The first objec-
tive would be to investigate, where cloudlets should be
deployed such that service agility and performance is
guaranteed. Our second objective would be to study the
resource allocation and placement policies in order to
decrease energy and network usage, while performance
and user costs are not affected. The third objective would be
to propose a novel management framework, in order to effi-
ciently manage resources using hierarchical or distributed
schedulers instead of a single scheduler. Moreover, in the
future, we will reconsider the aforementioned problem for
further investigation (co-operative game), and mathematical
proof for finding a Nash equilibrium [21].

The supposition that network is limited by the speed of
the network interface at each device could be non-essentially
tolerable, albeit bottlenecks can often exist elsewhere [14],
[15]. More specifically, for NaaS providers the topology of
the network may be very important as well, as building vir-
tual networks, virtual network functions (VNFs), and run-
ning the SDN (software defined network) controls are
complex tasks. We believe this modelling would be a differ-
ent research topic for itself; and, therefore, leave it for future
investigation and research.

ACKNOWLEDGMENTS

This work was supported, in part, by the Abdul Wali Khan
University Mardan, Pakistan and, in part, by an Australian
Research Council (ARC) Discovery Project. The authors are
thankful to Dr. Luiz F. Bittencourt, from the University of
Campinas (UNICAMP), Brazil, for helping us to set-up
essential simulation platform. They also thank Prof. Erik
Elmorth from Umea University, Sweden for his comments
on the research problem. Hashim Ali contributed equally to
this work.

TABLE 10
Summary of the Related Work, Closest to epcAware, With Respect to Various Evaluation Criteria

Related Work

Parameters [5] [9] [32] [33] [34] [35] [30] [37] [40] [8] [29] epcAware

Cloud @ @ @ @ @ @ @
Platform Fog @ @ @ @ @ @ @ @ @ @ @ @

IoT @ @ @ @ @ @

IaaS @ @ @ @ @ @ @ @ @ @ @
Provider SaaS @ @ @

NaaS @ @ @ @ @ @

Energy @ @ @ @
Performance @ @ @ @ @ @ @ @ @ @ @

Evaluation Migration cost @ @
metrics User costs @ @ @ @

Co-location @ @
Deadline @

Single party @ @ @ @ @ @ @ @ @ @
Placement Bi parties @

Multi parties @

Allocation @ @ @ @ @ @ @ @ @
Management Migration @ @
policy Allocation+Migration @ @ @ @

Game-theoretic @ @

ZAKARYA ETAL.: EPCAWARE: A GAME-BASED, ENERGY, PERFORMANCE AND COST-EFFICIENT RESOURCE MANAGEMENT TECHNIQUE FOR... 1647

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 05:59:15 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. Lebre, J. Pastor, A. Simonet, and F. Desprez, “Revising Open-
Stack to operate fog/edge computing infrastructures,” in Proc.
IEEE Int. Conf. Cloud Eng., 2017, pp. 138–148.

[2] M. Abderrahim,M. Ouzzif, K. Guillouard, J. Francois, and A. L�ebre,
“A holistic monitoring service for fog/edge infrastructures: A fore-
sight study,” in Proc. IEEE 5th Int. Conf. Future Internet Things Cloud,
2017, pp. 337–344.

[3] M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet Things J., vol. 3, no. 6, pp. 854–864,
Dec. 2016.

[4] M. Ali et al., “Edge enhanced deep learning system for large-scale
video stream analytics,” in Proc. IEEE 2nd Int. Conf. Fog Edge Com-
put., 2018, pp. 1–10.

[5] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya,
“iFogSim: A toolkit for modeling and simulation of resource man-
agement techniques in the internet of things, edge and fog com-
puting environments,” Softw.: Practice Experience, vol. 47, no. 9,
pp. 1275–1296, 2017.

[6] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
Format+ schema,” Google Inc., Mountain View, CA,USA, Tech. Rep.,
2011. [Online]. Available: https://github.com/google/cluster-data

[7] F. Zafari, J. Li, K. K. Leung, D. Towsley, and A. Swami, “A game-
theoretic approach to multi-objective resource sharing and alloca-
tion in mobile edge,” in Proc. Technol. Wireless Edge Workshop,
2018, pp. 9–13.

[8] K. Li, “A game theoretic approach to computation offloading
strategy optimization for non-cooperative users in mobile edge
computing,” IEEE Trans. Sustain. Comput., to be published,
doi: 10.1109/TSUSC.2018.2868655.

[9] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and
M. Parashar, “Mobility-aware application scheduling in fog comp-
uting,” IEEECloud Comput., vol. 4, no. 2, pp. 26–35,Mar./Apr. 2017.

[10] M. Zakarya and L. Gillam, “Energy and performance aware
resource management in heterogeneous cloud datacenters,” PhD
dissertation, University of Surrey, 2017. [Online]. Available:
http://epubs.surrey.ac.uk/841959/

[11] F. Zafari, K. K. Leung, D. Towsley, P. Basu, and A. Swami, “A game-
theoretic framework for resource sharing in clouds,” 2019, arXiv:
1904.00820. [Online]. Available: https://arxiv.org/abs/1904.00820

[12] S. U. Khan and I. Ahmad, “A cooperative game theoretical tech-
nique for joint optimization of energy consumption and response
time in computational grids,” IEEE Trans. Parallel Distrib. Syst.,
vol. 20, no. 3, pp. 346–360, Mar. 2009.

[13] Q. He et al., “A game-theoretical approach for user allocation in
edge computing environment,” IEEE Trans. Parallel Distrib. Syst.,
vol. 31, no. 3, pp. 515–529, Mar. 2020.

[14] P. Costa, M. Migliavacca, P. Pietzuch, and A. L. Wolf, “NaaS: Net-
work-as-a-service in the cloud,” in Proc. 2nd USENIX Workshop Hot
Topics Manage. Internet Cloud Enterprise Netw. Serv., 2012. [Online].
Available: https://dl.acm.org/doi/proceedings/10.5555/2228283

[15] J. Moura and D. Hutchison, “Game theory for multi-access edge
computing: Survey, use cases, and future trends,” IEEE Commun.
Surveys Tuts., vol. 21, no. 1, pp. 260–288, First Quarter 2019.

[16] A. A. Khan, M. Zakarya, and R. Khan, “H2 – A hybrid heterogeneity
aware resource orchestrator for cloud platforms,” IEEE Syst. J.,
vol. 13, no. 4, pp. 3873–3876, Dec. 2019.

[17] Z. Xiong, Y. Zhang, D. Niyato, P. Wang, and Z. Han, “When
mobile blockchain meets edge computing,” IEEE Commun. Mag.,
vol. 56, no. 8, pp. 33–39, Aug. 2018.

[18] H. Zhang, Y. Zhang, Y. Gu, D. Niyato, and Z. Han, “A hierarchical
game framework for resource management in fog computing,”
IEEE Commun. Mag., vol. 55, no. 8, pp. 52–57, Aug. 2017.

[19] S. U. Khan and I. Ahmad, “Non-cooperative, semi-cooperative,
and cooperative games-based grid resource allocation,” in Proc.
20th Int. Parallel Distrib. Process. Symp., 2006, pp. 10 pp.-.

[20] W. Cai, F. Chi, X. Wang, and V. C. Leung, “Toward multiplayer
cooperative cloud gaming,” IEEE Cloud Comput., vol. 5, no. 5,
pp. 70–80, Sep./Oct. 2018.

[21] P. S. Pillai and S. Rao, “Resource allocation in cloud computing
using the uncertainty principle of game theory,” IEEE Syst. J.,
vol. 10, no. 2, pp. 637–648, Jun. 2016.

[22] K. Metwally, A. Jarray, and A. Karmouch, “A distributed auction-
based framework for scalable IaaS provisioning in geo-data cen-
ters,” IEEE Trans. Cloud Comput., to be published, doi: 10.1109/
TCC.2018.2808531.

[23] H. Zhang, F. Guo, H. Ji, and C. Zhu, “Combinational auction-
based service provider selection in mobile edge computing
networks,” IEEE Access, vol. 5, pp. 13 455–13 464, 2017.

[24] M. Zakarya and L. Gillam, “An energy aware cost recovery
approach for virtual machine migration,” in Proc. Int. Conf. Econ.
Grids Clouds Syst. Serv., 2016, pp. 175–190.

[25] T. C. Ferreto, M. A. S. Netto, R. N. Calheiros, and C. A. F. De Rose,
“Server consolidationwithmigration control for virtualized data cen-
ters,” Future Gener. Comput. Syst., vol. 27, no. 8, pp. 1027–1034, 2011.

[26] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and
R. Buyya, “CloudSim: A toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provi-
sioning algorithms,” Softw.: Pract. Exper., vol. 41, no. 1,
pp. 23–50, 2011.

[27] F. Xu, F. Liu, and H. Jin, “Heterogeneity and interference-aware vir-
tual machine provisioning for predictable performance in the
cloud,” IEEETrans. Comput., vol. 65, no. 8, pp. 2470–2483, Aug. 2016.

[28] A. Beloglazov and R. Buyya, “Managing overloaded hosts for
dynamic consolidation of virtual machines in cloud data centers
under quality of service constraints,” IEEE Trans. Parallel Distrib.
Syst., vol. 24, no. 7, pp. 1366–1379, Jul. 2013.

[29] R.Mahmud, S.N. Srirama,K. Ramamohanarao, andR. Buyya, “Profit-
aware application placement for integrated fog–cloud computing
environments,” J. Parallel Distrib. Comput., vol. 135, pp. 177–190, 2020.

[30] S. Tuli et al., “HealthFog: An ensemble deep learning based smart
healthcare system for automatic diagnosis of heart diseases in
integrated IoT and fog computing environments,” Future Gener.
Comput. Syst., vol. 104, pp. 187–200, 2020.

[31] A. A. Khan, M. Zakarya, R. Buyya, R. Khan, M. Khan, and O. Rana,
“An energy and performance aware consolidation technique for
containerized datacenters,” IEEE Trans. Cloud Comput., to be pub-
lished, doi: 10.1109/TCC.2019.2920914.

[32] C. Guerrero, I. Lera, and C. Juiz, “A lightweight decentralized ser-
vice placement policy for performance optimization in fog
computing,” J. Ambient Intell. Humanized Comput., vol. 10, no. 6,
pp. 2435–2452, 2019.

[33] M. Taneja and A. Davy, “Resource aware placement of IoT appli-
cation modules in fog-cloud computing paradigm,” in Proc. IFIP/
IEEE Symp. Integr. Netw. Service Manage., 2017, pp. 1222–1228.

[34] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “Towards QoS-
aware fog service placement,” in Proc. IEEE 1st Int. Conf. Fog Edge
Comput., 2017, pp. 89–96.

[35] A. Brogi and S. Forti, “QoS-aware deployment of IoT applications
through the fog,” IEEE Internet Things J., vol. 4, no. 5, pp. 1185–1192,
Oct. 2017.

[36] A. Brogi, S. Forti, and A. Ibrahim, “How to best deploy your fog
applications, probably,” in Proc. IEEE 1st Int. Conf. Fog Edge Com-
put., 2017, pp. 105–114.

[37] J. Plachy, Z. Becvar, and E. C. Strinati, “Dynamic resource allocation
exploiting mobility prediction in mobile edge computing,” in Proc.
IEEE 27th Annu. Int. Symp. Pers. Indoor Mobile Radio Commun., 2016,
pp. 1–6.

[38] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung,
“Dynamic service placement for mobile micro-clouds with pre-
dicted future costs,” IEEE Trans. Parallel Distrib. Syst., vol. 28,
no. 4, pp. 1002–1016, Aug. 2017.

[39] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, “Live
service migration in mobile edge clouds,” IEEE Wireless Commun.,
vol. 25, no. 1, pp. 140–147, Feb. 2018.

[40] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung,
“Dynamic service migration and workload scheduling in edge-
clouds,” Perform. Eval., vol. 91, pp. 205–228, 2015.

[41] T. Ouyang, Z. Zhou, and X. Chen, “Followme at the edge: Mobility-
aware dynamic service placement for mobile edge computing,”
IEEE J. Sel. Areas Commun., vol. 36, no. 10, pp. 2333–2345, Oct. 2018,
doi: 10.1109/JSAC.2018.2869954.

[42] L. Gillam, K. Katsaros, M. Dianati, and A. Mouzakitis, “Exploring
edges for connected and autonomous driving,” in Proc. IEEE Conf.
Comput. Commun. Workshops, 2018, pp. 148–153.

[43] I. Ahmad, S. Ranka, and S. U. Khan, “Using game theory for
scheduling tasks on multi-core processors for simultaneous opti-
mization of performance and energy,” in Proc. 22nd IEEE Int.
Symp. Parallel Distrib. Process., 2008, pp. 1–6.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1648 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 05:59:15 UTC from IEEE Xplore. Restrictions apply.

https://github.com/google/cluster-data
http://dx.doi.org/10.1109/TSUSC.2018.2868655
http://epubs.surrey.ac.uk/841959/
https://arxiv.org/abs/1904.00820
https://dl.acm.org/doi/proceedings/10.5555/2228283
http://dx.doi.org/10.1109/TCC.2018.2808531
http://dx.doi.org/10.1109/TCC.2018.2808531
http://dx.doi.org/10.1109/TCC.2019.2920914
http://dx.doi.org/10.1109/JSAC.2018.2869954

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

