
Procedia Computer Science 00 (2010) 1–10

Procedia Computer
Science

International Conference on Computational Science, ICCS 2010

Jaccard Index based Availability Prediction in Enterprise Grids

Mustafizur Rahman, Md. Rafiul Hassan, Rajkumar Buyya∗

Department of Computer Science and Software Engineering
The University of Melbourne, Victoria 3010, Australia

Abstract

Enterprise Grid enables sharing and aggregation of a set of computing or storage resources connected by enterprise
network, but the availability of the resources in this environment varies widely. Thus accurate prediction of the
availability of these resources can significantly improve the performance of executing compute-intensive complex
scientific and business applications in enterprise Grid environment by avoiding possible runtime failures. In this
paper, we propose a Jaccard Index based prediction approach utilizing lazy learning algorithm that searches for a
best match of a sequence pattern in the historical data in order to predict the availability of a particular machine in the
system. We compare it against three other well known availability prediction techniques using simulation based study.
The experimental results show that our Jaccard Index based prediction approach achieves better prediction accuracy
with reduced computational complexity when compared to other similar techniques.

Keywords: Availability, Data Mining, Forecasting, Enterprise Grid, Jaccard Index

1. Introduction

Over the last decade, the Grid [1] has been emerged as a distributed system for sharing and aggregating geo-
graphically distributed heterogeneous networked resources in order to provide transparent, dependable, pervasive and
consistent computing support to a wide range of applications such as e-Science, e-Business and multimedia applica-
tion. Grids can be classified in many ways, according to their architecture, presence and services. Considering the
presence, Grids are divided into two categories namely, global Grids and enterprise Grids. Global Grids are estab-
lished over the public Internet and characterized by a global presence, comprising highly heterogeneous resources;
whereas enterprise Grids, also known as desktop Grids spread across an enterprise and provide services to the users
within that enterprise.

Enterprise Grid [2] enables the selection, sharing and aggregation of a set of computing or storage resources con-
nected by enterprise network, which is under the jurisdiction of a single commercial enterprise or government, educa-
tional, or other organization. In an enterprise Grid (refer to Fig. 1), the idle CPU cycles of geographically distributed
desktop computers are utilized to run the Grid applications. Therefore, exploiting the unused resources in the enter-
prise Grid environments across the Internet, can deliver massive compute power to investigate complex and demanding
problems in a variety of different scientific fields, such as computational biology, high energy physics, and astronomy.
The most well-known examples of enterprise Grid systems are SETI@Home [3], Entropia [4], XtremWeb [5] and
Aneka [6].

∗Corresponding author. Tel.: +61-03-8344-1344.
Email address: raj@csse.unimelb.edu.au (Rajkumar Buyya)

c© 2010 Published by Elsevier Ltd.

Procedia Computer Science 1 (2010) 2701–2710

www.elsevier.com/locate/procedia

1877-0509 c© 2010 Published by Elsevier Ltd.
doi:10.1016/j.procs.2010.04.304

http://www.elsevier.com/locate/procedia
http://dx.doi.org/10.1016/j.procs.2010.04.304


M. Rahman et al. / Procedia Computer Science 00 (2010) 1–10 2

Servers

Branch Office

Workgroup 2

Workgroup 3

Headquarters

Data Center

Workgroup 1

Application

Figure 1: Enterprise Grid Architecture.

1.1. Motivation

Enterprise Grid systems provide some attractive benefits, such as simplicity, access flexibility, ease of deployment
and ability to utilize non-dedicated resources. However, one of the significant challenges of such Grid systems is
that resources are volatile in nature. The owner of each resource typically exercises ultimate control over the process
running on it, its connectivity to the network, and its reboot cycle. As the resources are non-dedicated as well as
owned and managed by individuals, the availability of resources in the system changes frequently. This limitation
leads to task failure due to the unavailability of the resource; resulting performance degradation of the applications
as well as the task schedulers in the system. Therefore, if it is possible to predict the availability of the enterprise
wide resources with reasonable accuracy, the application scheduler can plan the mapping of tasks to these resources
proactively considering their future availability in order to avoid possible task failures.

Thus, predicting the duration that a machine will run until it restarts (availability duration) is useful to enable
effective resource allocation and application scheduling in enterprise Grid systems. In this paper, we examine the
problem of predicting machine availability in desktop or enterprise Grid systems and describe a methodology for
predicting the availability of enterprise wide resources based on the monitoring data collected from different enterprise
computing environments. With the implementation of our proposed methodology, robust prediction accuracy can be
achieved even in the highly volatile environment, leading to increased scheduling efficiency.

1.2. Problem definition

The machine availability prediction specifies how long a machine is likely to be available or whether it will be
available during a particular period of time. Our goal with this work is to develop a method that can dynamically
predict machine availability for the next lookahead period with high prediction accuracy by minimizing incorrect
predictions.

Let’s consider an enterprise Grid consists of n number of machines. The prediction error, ei for machine i can be
represented as:

ei = Number of incorrect predictions for machine i

If ei is minimized for every machine, the overall prediction accuracy for the system will be increased consequently.
Therefore, the problem of maximizing the availability prediction accuracy of an enterprise Grid system can be formu-
lated as follows:

Minimize Error, E =
∑

1≤i≤n

ei

In order to achieve this goal, we propose Jaccard Index based prediction approach utilizing lazy learning algorithm
that dynamically searches for a best match of a sequence pattern in the historical or training data in order to predict
the availability of a particular machine in the system.

1.3. Contribution

The main contributions of this work include:

2702 M. Rahman et al. / Procedia Computer Science 1 (2010) 2701–2710



M. Rahman et al. / Procedia Computer Science 00 (2010) 1–10 3

• preprocessing of trace data collected from two enterprise Grid computing environments.

• proposing Jaccard Index based novel resource availability prediction technique for enterprise or desktop Grid
systems.

• conducting an extensive simulation based study to prove the effectiveness of the proposed approach using real-
world traces.

• comparison of the proposed approach against three other well known availability prediction techniques.

1.4. Organization

The remaining of the paper is organized as follows. In the next section, existing availability prediction models
and techniques, applied to enterprise Grid systems are described in brief. Section 3 presents the proposed Jaccard
Index based prediction methodology along with examples. Section 4 provides the datasets and parameters used in the
experiments as well as the experimental setups. Simulation results with respect to comparison of proposed approach
against other prediction techniques are discussed in Section 5. Finally, we conclude the paper with the direction for
future work in Section 6.

2. Related Work

The main focus of this section is to compare the novelty of the proposed resource availability prediction technique
with respect to existing approaches. We classify the related research in two main areas:

2.1. Availability Trace

Several research work in the field of distributed systems describe or analyze traces obtained by logging availability
of enterprise Grid resources or individual workstations over time.

A trace containing more than 51,000 machines at Microsoft has been analyzed by Bolosky et al. [7]. This analysis
presents the uptime distribution and available machine count over time as well as the correlations among machine
uptime and CPU load over the period of a week and lifetime.

Rood et al. [8] analyze the data in a four month Condor [9] resource pool trace at the University of Notre Dame in
early 2007. Whereas, Ryu et al. [10] utilize a Condor trace to describe the Fine Grained Cycle Sharing System.

Bhagwan et al. [11] study about 2400 hosts in the Overnet Peer-to-Peer file-sharing system over a period of 7 days.
The authors use a prober to periodically probe the hosts in order to determine whether they are available (if responds
to the probe) in the system or not at that particular time. Similarly, Chun et al. [12] examine PlanetLab all pairs ping
data, consisting of pings sent every 15 minutes between all pairs of 200-400 PlanetLab nodes from January 2004 to
June 2005, and report resource availability distribution and mean time to failure.

In this paper, we utilize two empirically gathered availability traces in order to test the performance of our predic-
tion technique. The first trace has been taken from 51,662 PCs in the Microsoft corporate network, and the second
captured the behavior of 321 nodes in the PlanetLab distributed testbed. Microsoft data spanned the five weeks period
from July 6 to August 9, 1999, whereas PlanetLab data spanned the five weeks period from July 1 to August 4, 2004.

2.2. Prediction model

Ren et al. [13] leverage host CPU utilization and resource contention traces to develop a model for resource
availability prediction. The model utilize state transition based prediction and produce a Markov chain using the
previous days of a resource’s history.

In order to predict successful job execution, Pietrobon and Orlando [14] use a regression based analysis of
past/historical record of job executions. Whereas, Nurmi et al. [15] propose an approach to model machine avail-
ability based on four statistical distributions: Exponential, Pareto, Weibull and Hyper-exponential as well as evaluate
them using goodness-of-fit tests.

On the other hand, we propose Jaccard Index based prediction approach utilizing lazy learning algorithm that
searches for a best match of a sequence pattern in the historical or training data in order to predict the availability of a
particular machine in the system.

M. Rahman et al. / Procedia Computer Science 1 (2010) 2701–2710 2703



M. Rahman et al. / Procedia Computer Science 00 (2010) 1–10 4

(a) A ∪ B (b) A ∩ B

Figure 2: The region of Union and Intersection between two sets A and B.

3. Proposed Methodology for Availability Prediction

In this section, we present our methodology for availability prediction. After analyzing enterprise Grid trace
data, we find that the availability trend in such environment is random in nature and changes continuously; making
it very difficult to identify the underlying distribution of the system. Lazy learning techniques do not require to
build a prior model and do not need to identify the underlying data distribution. Further, lazy learning algorithm is
adaptive in nature and it can dynamically update the training or historical data to generate a prediction. Thus, lazy
learning technique is suitable for predicting the availability of computing machines in enterprise Grid environment
and we propose Jaccard Index based availability prediction approach utilizing lazy learning algorithm. In the next
subsections, first we give a brief description of the concept behind Jaccard Index. Then we discuss about how Jaccard
Index has been utilized in our technique to perform availability prediction using examples and algorithms.

3.1. Jaccard Index

The Jaccard Index (JI), also known as the Jaccard Similarity Coefficient [16] [17], is a measurement that is used
for identifying the degree of similarity and diversity of two data windows. Let us consider two data windows, Xi and
Xj. The coefficient measures the degree of overlap between two windows by computing the ratio of the number of
shared attributes between Xi and Xj. For simplicity, let us consider two sets A and B in place of data windows. As
depicted in Fig. 2, the region of Intersection (A ∩ B) and Union (A ∪ B) between these two sets can be measured
according to set theory. Thus, the Jaccard index is calculated as follows:

Jaccard(A, B) =
A ∩ B
A ∪ B

(1)

To identify the similarity between two data windows, Xi and Xj the Intersection between these windows is obtained
by calculating the cardinality of same value attributes in the windows as depicted in Eq. 2.

�Xi ∩ �Xj =

n∑

k=1

Xki ∩ Xkj , Xki ∈ �Xi and Xkj ∈ �Xj (2)

where,

Xki ∩ Xk j =

⎧⎪⎪⎨⎪⎪⎩
1, if Xki = Xk j ;
0, otherwise.

In standard set theory, the Union of the two sets is the set of all distinct elements in the sets. While calculating the
Jaccard similarity measurement, the Union between two data windows �Xi and �Xj is obtained by using Eq. 3.

�Xi ∪ �Xj =

n∑

k=1

Xki ∪ Xk j , Xki ∈ �Xi ; Xkj ∈ �Xj and Xki ∪ Xkj = 1 (3)

= Dimension of the data window (4)

Thus, the Jaccard similarity measurement or Jaccard Index, Jaccard(�Xi, �Xj) between the two windows �Xi and �Xj

is:

Jaccard(�Xi, �Xj) =
cardinality of Intersection

cardinality of Union
(5)

2704 M. Rahman et al. / Procedia Computer Science 1 (2010) 2701–2710



M. Rahman et al. / Procedia Computer Science 00 (2010) 1–10 5

1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1

0   1   2   3   4   5   6   7   8   9 10 11 12 13 14 15 16 17 Index

Data set 

Historical/Training data Test data

1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1

Data samples – 18

Training data – 9

Test data – 9

Window size – 3

Iteration – 1

Windowfurthest Sample to be predicted (S)

111 001== = 11
JI = 1/3

P = 1

Probable prediction (P1)

1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1Iteration – 2 111 001== = 11
JI = 1/3

P = 1

P2

1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1Iteration – 3 111 001== = 11
JI = 1/3

P = 0

P3

1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1Iteration – 4 110 001== = 000
JI = 0

P = 0

P4

1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1Iteration – 5 100 001== = 11
JI = 1/3

P = 0

P5

1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1Iteration – 6 000 001== = 222
JI = 2/3

P = 1

P6

Maximum JI

Prediction = 1

Windowrecent

Figure 3: Example of Jaccard Index based availability prediction for enterprise Grid resources. Here, operation ′ ==′ calculates the number of
dissimilar data elements in the operators.

3.2. Jaccard Index based Prediction

3.2.1. Jaccard Index Computation
The machine availability trace data that is used for prediction consists of a sequence of zeros and ones, where zero

represents unavailability and one represents availability of a particular machine. For such a binary data the Jaccard
Index (JI) is calculated as follow:

• Given a sequence of training or historical data, we compute most recent and furthest data windows (Windowrecent,
Windowf urthest).

• Then we calculate JI for Windowf urthest with respect to Windowrecent. At this step, the window that has JI equal
to 1 signifies the exact match to Windowrecent.

• Once JI for the first Windowf urthest is calculated, we slide the window to right by one element to get new
Windowf urthest and calculate JI for the new window. This process is continued until the window reaches the
second last elements of training data.

• Then the window for which the highest JI has been calculated is selected and value of the data element just after
this window is considered as the predicted value for the current availability point.

• Once the next data point or availability observation that has been predicted is available, Windowrecent is shifted
right by one element and prediction for the next lookahead period is determined in the same way as mentioned
above.

These steps are further explained in Fig. 3. The example illustrated in this figure considers a data sample of 18
availability observations from enterprise Grid, where 9 are used as historical or training data and rest are used as
test data. Initially, the sequence of training data is divided using a window size of 3 (i.e. each data window has 3
consecutive data elements). The value of each data element can be either 0 or 1. As shown in the figure pointed by
iteration 1, the most recent window (Windowrecent) in the training data consists of the 3 elements, 〈0, 0, 1〉 and the
farthest data window (Windowf urthest) consists of the 3 elements, 〈1, 1, 1〉. Since only one element between these two
windows are similar, according to Eq. 5, the JI for these two data windows is:

M. Rahman et al. / Procedia Computer Science 1 (2010) 2701–2710 2705



M. Rahman et al. / Procedia Computer Science 00 (2010) 1–10 6

Jaccard(�Xi, �Xj) =
1
3

Now, the availability prediction (P) for this window is the value of the data element right after the window, which
is 1. So if JI of this window is the highest in comparison to the subsequent prediction windows, availability prediction
for the first test data element (S ) will be P1 that is 1. Thus, it will be a correct prediction.

In the next iteration, Windowf urthest is shifted towards right by one element and JI for this window with respect to
Windowrecent is P2, which is also 1. In Fig. 3, the maximum JI among all the windows is 2

3 for the data window 〈0, 0, 0〉.
Therefore, the value of next element after this window from the training data, P6 is considered as the predicted value
for S .

3.2.2. Incorporating Voting
The window size for the example shown in Fig. 3 is fixed to 3. However, if the window size is varied, the outcome

for the prediction value can also be varied. Thus in order to improve the prediction accuracy, for a single prediction,
we vary the window size and get a prediction value for the corresponding window size. In that case, a majority voting
among the predicted values is applied to generate a single prediction value.

Let us consider 5 windows of different sizes, Xi, Xj, Xk, Xl and Xp that have the same JI, j. The prediction value,
P of Xi is 1, Xj is 0, Xk is 1, Xl is 1 and Xp is 0. Since, majority of the prediction values are 1 (3 out of 5), we consider
the prediction value in regards to the most recent window Xrecent is 1. In Fig. 3, window size is not changed and hence
no majority voting is applied to generate the prediction. Once the next data point or availability observation that has
been predicted is available, the most recent window is slided towards right by one element to generate prediction for
the next lookahead period. Hence, the method is an online adaptive algorithm that adapts with the newly arrived data.

3.2.3. Computational Complexity
Let us consider, the training data consists of N elements and window size is fixed to W. Then according to

Algorithm 1, in order to predict availability value for a single data point, there will be N − W iterations and JI is
calculated in each iteration. We compare every element of Windowrecent and Windowf urthest for calculating JI. Thus,
the computational complexity of the proposed Jaccard Index based prediction technique is O(NW−W2) for predicting
a single availability observation.

4. Datasets and Experiment Design

4.1. Dataset

In order to determine the real-world applicability of our availability predictor, we test it on two empirically gath-
ered availability traces. The availability behaviors of these two traces are explained in [18]. The first trace has been
taken from 51,662 PCs in the Microsoft corporate network [7] and the second captured the behavior of 321 nodes
in the PlanetLab distributed testbed [19]. Each machine in the Microsoft trace was pinged hourly. In the PlanetLab
traces [20], machines were pinged every 15 minutes, but we sampled every fourth measurement to provide a fair
comparison with the Microsoft data. The lifetimes of PlanetLab nodes were long enough that such sampling did not
distort the underlying availability patterns. Microsoft data spanned the five weeks period from July 6 to August 9,
1999, whereas PlanetLab data spanned the five weeks period from July 1 to August 4, 2004.

For evaluating the predictor on Microsoft and PlanetLab data, initially we use first two weeks of the traces as
historical data, which can also be considered as the train data. We evaluate the accuracy of our predictor using the
remaining three weeks of the availability data. At a sample rate of once an hour, this results in 336 training samples
and 504 testing or evaluation samples. During each hour in the evaluation period, the predictor makes forecast for the
next lookahead interval or sample. After each prediction, the historical/training data is updated by adding this sample
and deleting the least recent sample, while keeping the length fixed. Then the forecast for the next lookahead interval
is performed using the updated training data. This makes the process of forecasting dynamic and improves accuracy,
while minimizing runtime complexity.

2706 M. Rahman et al. / Procedia Computer Science 1 (2010) 2701–2710



M. Rahman et al. / Procedia Computer Science 00 (2010) 1–10 7

Algorithm 1: Predict
Input: Y, ω; The set of examples: Y; Window size: ω
Output: y′: The prediction for the next event
D← Process(Y, ω);
y∗ ← The last data vector inD;
ymatch ← FindJaccard(D, y∗);
y′ ← ymatch+1(1);
Return y′;
function Process (Y, ω);
N← length(Y)-ω + 1;
for i = 1 : N do
D(i)←Y(i : i + ω − 1);

ReturnD;

function FindJaccard(D, y);
N← length(D)-1;
for i = 1 : N do

Index(i)← JaccardIndex(D(i) , y);

Return max(Index);

function JaccardIndex(x, y);
numerator← 0;
denometor← 0;
for j = 1 : ω do

if x( j) = y( j) then
numerator← numerator + 1;

denometor← denometor + 1;

Index← numerator
denometor ;

Return Index;

Algorithm 2: PredictwithVoting

Input: Y,Ω; The set of examples: Y; Window-size list: Ω (ω ∈ Ω)
Output: ypred: The prediction for the next event
y← φ;
N← length(Ω);
for i = 1 : N do

y(i)← Predict(Y, ω(i));

if count(y = 1) > count(y = 0) then
ypred = 1;

else
ypred = 0;

Return ypred;

M. Rahman et al. / Procedia Computer Science 1 (2010) 2701–2710 2707



M. Rahman et al. / Procedia Computer Science 00 (2010) 1–10 8

4.2. Performance Metrics

As a measurement of the performance of our proposed Jaccard Index based availability prediction technique, we
evaluate the following performance metrics:

ACCavg: We measure it as the average prediction accuracy of all the machines. Thus, if an enterprise Grid consists
of n number of machines and prediction accuracy of machine i is Accuracyi, then ACCavg can be expressed as,

ACCavg =

∑
1≤i≤n Accuracyi

n

where,

Accuracyi =
Number of correct predictions for machine i

Number of predictions for machine i
× 100%

ACC95: It is measured as the percentage of machines predicted with greater than 95% accuracy. If there are n
number of machines in an enterprise Grid and

∑
1≤i≤n Accuracyi(95) is the number of machines predicted with greater

than 95% accuracy, then ACC95 can be expressed as,

ACC95 =

∑
1≤i≤n Accuracyi(95)

n
× 100%

where,

Accuracyi(95) =

⎧⎪⎪⎨⎪⎪⎩
1, if prediction accuracy for machine i is greater than 95%;
0, otherwise.

4.3. Experiments

We conduct several experiments to determine the accuracy of our proposed Jaccard Index based availability pre-
diction technique. In the first experiment, we test the performance of proposed technique for PlanetLab trace data
using the above mentioned performance metrics, ACCavg and ACC95. In contrast, Microsoft trace data is utilized in
the second experiment with regard to performance measurements.

Furthermore, we perform the same set of experiments for three other prediction techniques namely, k-nearest
neighbors algorithm, Naive Bayes algorithm and Hybrid predictor. K-Nearest Neighbors algorithm (k-NN) [21] is a
type of instance-based learning or lazy learning technique, where the function is only approximated locally and all
computation is deferred until classification. The Naive Bayes algorithm [21] is also a lazy learning technique that
is based on conditional probabilities. Naive Bayes uses Bayes’ Theorem, a formula that calculates a probability by
counting the frequency of values and combinations of values in the historical data.On the other hand, Hybrid predictor
proposed by Mickens et.al. [18] focuses on dynamically selecting the best predictor for a given availability or uptime
pattern and lookahead period by combining five sub-predictors, namely RightNow, SatCount, History, TwHistory and
Linear predictor. The final output of the Hybrid predictor is selected via tournaments, where tournament counters
determine the best predictor to use for a particular lookahead period. This helps to track fine-grained, per-node uptime
state to estimate future availability, leveraging the most accurate estimation mechanism for each situation.

5. Results and Discussion

Table 1 and Table 3 present the average prediction accuracy for lazy learning based prediction approaches (Jaccard,
k-NN, Naive Bayes) on PlanetLab and Microsoft data respectively. The performances of these lazy techniques against
Hybrid technique with respect to the above mentioned performance metrics are summarized in Table 2 and Table 4.

From Table 1, it is evident that overall prediction accuracy of all the lazy techniques are greater than 99% for
PlanetLab dataset. The reason for such a high prediction accuracy is due to the adaptive nature and non-dependence
on data distribution of lazy algorithms. Lazy algorithms are adaptive since it can dynamically update the training data
to generate a prediction. Further, lazy algorithms find out the similar patterns from the training dataset and generate a
prediction using frequency count among the most similar patterns. Hence, lazy algorithms are not dependent on the
data distribution.

As shown in Table 1, the performance of Naive Bayes is slightly worse than that of k-NN and JI based predictors.
This is because, Naive Bayes generates prediction considering each of the attribute distributions in the training dataset

2708 M. Rahman et al. / Procedia Computer Science 1 (2010) 2701–2710



M. Rahman et al. / Procedia Computer Science 00 (2010) 1–10 9

Table 1: Comparison of overall prediction accuracy for different window sizes (Planet Lab data)
Window size Accuracy (%)

Jaccard k-NN Naive Bayes
3 99.7379 99.7375 99.7357
4 99.7370 99.7357 99.6938
5 99.7370 99.7229 99.6700
6 99.7370 99.7145 99.6215
7 99.7370 99.7113 99.5822
8 99.7370 99.7108 99.5477
9 99.7370 99.7105 99.5122

Table 2: Comparison of best results for each prediction technique (Planet Lab data)
Accuracy (%) Jaccard Voting Jaccard k-NN Naive Bayes Hybrid

ACCavg 99.7445 99.7379 99.7375 99.7357 –
ACC95 100.00 100.00 100.00 100.00 95.60

Table 3: Comparison of overall prediction accuracy for different window sizes (Microsoft data)
Window size Accuracy (%)

Jaccard k-NN Naive Bayes
3 96.7759 96.2526 96.1754
4 96.7759 96.2526 95.8744
5 96.7758 96.2248 95.8744
6 96.7757 96.2248 95.6615
7 96.7757 96.2035 95.6615
8 96.7755 96.1928 95.2871
9 96.7755 96.1928 95.2871

Table 4: Comparison of best results for each prediction technique (Microsoft data)
Accuracy (%) Jaccard Voting Jaccard k-NN Naive Bayes Hybrid

ACCavg 96.8795 96.7759 96.2526 96.1754 –
ACC95 82.2813 81.5941 84.2000 83.87 87.00

Table 5: Comparison of computational complexity for each prediction technique
Jaccard k-NN Naive Bayes Hybrid

O(NW −W2) O(N log N + NW) O(N log N + NW +W) O(M(N3 + N2W ))

and can susceptible to overfitting problem. Interestingly, JI based algorithm performs as good as the other algorithms
with a reduced computational complexity (refer to Table 5). For all the lazy algorithms, we notice that the average
prediction accuracy is decreased with the increase in window size.

The average prediction accuracy for the JI based prediction method on Microsoft data is also slightly better than
k-NN and Naive Bayes (see Table 3). The decreasing performance trend is also evident for lazy algorithms on this
dataset with varying window size. It is worth mentioning that JI based prediction outperforms k-NN and Naive Bayes
while comparing the total number of machines (in percentage) for which the respective method has the prediction
accuracy greater than 95%.

For a further performance evaluation, we compare our prediction accuracy with that of reported by Mickens et
al. [18] using Hybrid method. As shown in Table 2, for lazy algorithms, 100% machines are predicted with more than
95% prediction accuracy in comparison to 95.6% for Hybrid predictor on PlanetLab data. Since, average prediction
accuracy (ACCavg) is not reported in [18], we compare lazy algorithms against Hybrid predictor with respect to
(ACC95).

Table 5 shows the computational complexity of all the availability prediction techniques considered in this paper.
It can be seen that our proposed JI based technique has the least computational complexity in comparison to other lazy
algorithms as well as Hybrid predictor. Hybrid predictor predicts an availability observation using a tournament among
five sub-predictors and yields relatively higher computational complexity. The individual computational complexity
of the five predictors are listed in Table 6.

M. Rahman et al. / Procedia Computer Science 1 (2010) 2701–2710 2709



M. Rahman et al. / Procedia Computer Science 00 (2010) 1–10 10

Table 6: Computational complexity of sub-predictors used in Hybrid predictor
RightNow SatCount History TwiddledHistory Linear

O(1) O(1) O(NW) O(N(2W + 1)) O(N3)

6. Conclusion and Future Work

This paper focuses on presenting an availability prediction technique for computing machines in enterprise Grid
environment. The availability trend in such environment is random in nature and changes continuously. Therefore,
we propose Jaccard Index based availability prediction approach utilizing lazy learning algorithm. We compare our
technique against two state-of-the-art lazy learning algorithms (k-NN, Naive Bayes) and a hybrid predictor using sim-
ulation based study. The experimental results show that proposed Jaccard Index based prediction technique achieves
accuracy of 99.74% for PlanetLab data and 96.87% for Microsoft data with reduced computational complexity when
compared to other prediction techniques..

In future, we endeavor to use this prediction technique to devise an availability-aware Grid application scheduling
approach. This will eventually improve the performance of executing complex scientific and business applications
such as workflows in enterprise Grid environment.

7. References

[1] M. L. Bote-lorenzo, Y. A. Dimitriadis, E. Gmez-snchez, Grid characteristics and uses: A grid definition, in: Proceedings of 1st European
Across Grids Conference, Spain, 2003.

[2] K. Nadiminti, R. Buyya, Enterprise grid computing: State-of-the-art, Technical Report, GRIDS-TR-2005-16, Grid Computing and Distributed
Systems Laboratory, The University of Melbourne.

[3] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, D. Werthimer, Seti@home: An experiment in public-resource computing, Communications
of the ACM 45 (11) (2002) 56–61.

[4] A. Chien, B. Calder, S. Elbert, K. Bhatia, Entropia: Architecture and performance of an enterprise desktop grid system, Journal of Parallel
and Distributed Computing 63 (2003) 597–610.

[5] F. Cappello, S. Djilali, G. Fedak, T. Herault, F. Magniette, V. Neri, O. Lodygensky, Computing on large scale distributed systems: Xtremweb
architecture, programming models, security, tests and convergence with grid, Future Generation Computer Systems 21 (3) (2005) 417–437.

[6] X. Chu, K. Nadiminti, C. Jin, S. Venugopal, R. Buyya, Aneka: Next-generation enterprise grid platform for e-science and e-business appli-
cations, in: Proceedings of 3rd IEEE International Conference on e-Science and Grid Computing (e-Science’07.

[7] W. Bolosky, J. Douceur, D. Ely, M. Theimer, Feasibility of serverless distributed file system deployed on an existing set of pcs, in: Proceedings
of ACM SIGMETRICS, Santa Clara, USA, June 2000.

[8] B. Rood, M. J. Lewis, Multi-state grid resource availability characterization, in: Proceedings of 8th IEEE/ACM International Conference on
Grid Computing (GRID07), Austin, USA, September, 2007.

[9] T. Tannenbaum, D. Wright, K. Miller, M. Livny, Condor - a distributed job scheduler, in: T. Sterling (Ed.), Beowulf Cluster Computing with
Linux, The MIT Press, USA, 2002.

[10] K. Ryu, J. Hollingsworth, Unobtrusiveness and efficiency in idle cycle stealing for pc grids, in: Proceedings of 18th International Parallel and
Distributed Processing Symposium (IPDPS04), Santa Fe, USA, April, 2004.

[11] R. Bhagwan, S. Savage, G. Voelker, Understanding availability, in: Proceedings of 2nd International Workshop on Peer-to-Peer Systems,
Berkeley, USA, February, 2003.

[12] B. Chun, A. Vahdat, Workload and failure characterization on a large-scale federated testbed, Technical Report, IRB-TR-03-040, Intel
Research Berkeley.

[13] X. Ren, R. Eigenmann, Empirical studies on the behavior of resource availability in fine-grained cycle sharing systems, in: Proceedings of
35th International Conference on Parallel Processing, Columbus, USA, August, 2006.

[14] V. Pietrobon, S. Orlando, Performance fault prediction models, Technical Report, CS-2004-3, Department of Computer Science, University
of Venice.

[15] D. Nurmi, J. Brevik, R. Wolski, Modeling machine availability in enterprise and wide-are distributed computing environments, Technical
Report, CS2003-28, UCSB Computer Science.

[16] A. H. Cheetham, J. E. Hazel, Binary (presence-absence) similarity coefficients, Journal of Paleontology 43 (5) (1969) 1130–1136.
[17] A. Andoni, P. Indyk, Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions, Communications of the ACM

51 (1) (2008) 117–122.
[18] J. Mickens, B. Noble, Exploiting availability prediction in distributed systems, in: Proceedings of 3rd Symposium on Networked Systems

Design and Implementation (NSDI06), USA, May 2006.
[19] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Peterson, T. Roscoe, T. Spalink, M. Wawrzoniak, Operating system support

for planetary-scale services, in: Proceedings of 1st USENIX Symposium on Networked Systems Design and Implementation (NSDI’04), San
Francisco, USA, March, 2004.

[20] J. Stribling, All-pairs planetlab ping data, http://www.pdos.lcs.mit.edu/strib/pl app/.
[21] D. W. Aha, Special ai review issue on lazy learning, Artificial Intelligence Review 11.

2710 M. Rahman et al. / Procedia Computer Science 1 (2010) 2701–2710


