Cost-based Scheduling for Data-Intensive Applications on Global Grids

Srikumar Venugopal and Rajkumar Buyya
Grid Computing and Distributed Systems (GRIDS) Laboratory
Department of Computer Science and Software Engineering
The University of Melbourne, Australia
Email:{srikumar,raj} @cs.mu.oz.au

Abstract

We present an algorithm for scheduling distributed data
intensive Bag-of-Task applications on Data Grids that have
costs associated with requesting, transferring and process-
ing datasets. We evaluate the algorithm on a Data Grid
testbed and present the results.

1 Introduction

Data Grids [2] have evolved to tackle the challenges
of accessing, processing and managing large distributed
datasets that are posed by distributed data-intensive applica-
tions in areas such as high-energy physics, astronomy and
bioinformatics. In Data Grids, there can be a lot of pres-
sure on the data infrastructure (i.e., network and storage el-
ements). This can lead to overloading of resources and ap-
pearance of network “hot spots” as is commonly observed
in the World Wide Web. Pricing resources to reflect supply
and demand in order to regulate their usage has been ex-
plored in previous work [1]. In such a scenario, scheduling
strategies will have to take into account resources of vary-
ing capabilities with varying execution, transfer and storage
costs. While such strategies have been proposed and eval-
vated for computational grids, no study has yet been made
for similar requirements in Data Grid environments.

In this paper, we introduce an algorithm for cost-based
scheduling for a data-intensive Bag-of-Tasks(BoT) applica-
tion on a Data Grid. Each of the tasks within the appli-
cation depends on mutiple datasets that may be available
from multiple data sources. The algorithm minimizes ei-
ther the overall cost or the time of execution depending on
the user’s preference subject to two user-defined constraints
- the deadline by which the processing must be completed
and the overall budget for performing the computation. In
doing so, it is guided by factors such as cost and speed of
accessing, transferring and processing data.

2 Scheduling

Figure 1 shows a typical Data Grid environment which is
composed of storage resources, or data hosts, which store

Data Scheduler 3,

Repl @
(Reply
Query

Query

Data Directory

Information Service <
Update SR
\ <~ W)

N
e Update \ | S <
-

ANERN S o
L \ \Update ~

~ A
. <
/ VN TS
,’ JbSbt \\ *
ob Submi N
WAN '\

-
7 [JobResults @) \ N
®

s 0 N
— — - N S
TR\ ey
B B .. ata Transfer N
© N\
Data Request
—)
Data Host $ (%]

Compute Resource
and a Dat a Host

e

Compute Resource
Data Host

Figure 1. A cost-based Data Grid environment

the data and compute resources which run the jobs that ex-
ecute upon the data. The datasets may be replicated at var-
ious sites within this data grid depending on the policies
set by the administrators of the storage resources and/or the
producers of data. The scheduler is able to query a data di-
rectory for information about the locations of the datasets
and their replicas. We associate economic costs with the
access, transfer and processing of data. The processing cost
is levied upon by the computational service provider, while
the transfer cost comes on account of the access cost for the
data host and the cost of transferring datasets from the data
host to the compute resource through the network.

A job (equivalent to a task in a BoT) is the atomic unit
of computation within this model. Each job requires one
or more datasets as input. Each dataset is available through
one or more data hosts. The steps for submitting a job to the
grid shown in Fig. 1 are as follows: The scheduler gathers
information about the available compute resources (1) and
about the datasets and data hosts (2). It then makes decision
on where to submit the job (3). The job is dispatched to
the selected remote compute resource (4) where it requests
for the datasets from the replica locations selected by the
scheduler (5 & 6). After the job has finished processing (7),
the results are sent back to the scheduler host or another
storage resource(8). This process is repeated for all the jobs

within the BoT.

We have two objective functions here, either to produce
the least expensive execution within deadline or to finish
the execution in the least time possible within the budget.
A detailed listing of the proposed algorithm is given in [3].
The algorithm is in two parts described below:

Map jobs to resources: For each job, we build a resource
set that consists of one compute resource for executing the
job and one data resource for each dataset requested by the
job. We iterate through the list of datasets requested by the
job. For each dataset, we pick the combination of a com-
pute resource and a data host that returns the lowest value
for expected transfer cost or time depending on the mini-
mization. Then we see if our choice of compute resource is
better when the data hosts selected for previous datasets are
considered. This procedure ensures that the choice of the
compute resource and the resource set so formed at the end
of each iteration is better than those selected in all previous
iterations.

Dispatch jobs: In the dispatching section, starting with
the job with the least cost or least execution time, we sub-
mit the jobs to the compute resources selected for them in
the mapping step if the allocation for the resources has not
been exhausted. We also check if the deadline or budget
constraints are being violated while submitting a job.

3 Experiments and Results

We have implemented the scheduling algorithm pre-
sented in Section 2 within the Gridbus Broker. The exper-
imental setup used in our evaluation is summarized in Fig-
ure 2. It consists of an Australia-wide Data Grid consisting
of IBM eServer machines in Melbourne, Adelaide, Sydney
and Canberra along with a cluster and a PC in Melbourne.
Each of these played the roles of a compute resource or a
data host or both and were assigned different usage costs.
We also assigned costs to the network links between these
machines and took into consideration the available band-
width while scheduling. Table 1 shows the summary of the
results that were obtained for a set of 125 jobs with a 2 hour
deadline and budget of 500,000 G$. The average costs per
job incurred during cost and time minimization are 562.6
GS$ and 959 G$ with standard deviations of 113 and 115
respectively. Mean wall clock time taken per job (includ-
ing computation and data transfer time) was 167 secs for
cost minimization and 135 secs for time minimization with
standard deviations 16.7 and 19 respectively. As expected,
cost minimization scheduling produces minimum computa-
tion and data transfer expenses whereas time minimization
completes the experiments in the least time. A detailed dis-
cussion about the experimental results in given in [3].

Compute
. 345 | 478 |41.05 | 699
Melb. Uni. (CS) | (36.0) | (33.0) | (40.0) | (34.0)

1.68 | 12.57 | 6.53 6.96

ANU (C[Ga]nberra) (34.0) | (35.0) | (32.0) (30.0)
.) 2.29 265 | 1042 | 4.77
SydneyUl[ﬁzl]. Physics | (31.0) (39.0) | (31.0) | (36.0)
6.05 | 2.98 | 2057 | 6.03 |36.03

VPAC (Melbourne) | (38.0) | (37.0) | (35.0) | (33.0) | (33.0)

[4]

S)
Bu t;cm @\‘ﬁ \ M\;\c ot SRS <
A W0 e
PSRN

Data

Figure 2. Testbed used in evaluation. The
numbers without paranthesis in each cell rep-
resent average available bandwidth of link
while those within are the costs assigned to
links. The square brackets represent cost of
execution per second on that resource. All
costs are in Grid Dollars(G$)

Table 1. Summary of Evaluation Results

Minim- || Total Compute | Data Total
ization || Time(min) Cost(G$) | Cost(G$) | Cost(G$)
Cost 80 31198.27 | 39126.65 | 70324.93
Time 54 76054.90 | 43821.64 | 119876.55

4 Conclusion and Future Work

We have presented here an algorithm for executing jobs
on data grids which takes into account both cost of pro-
cessing and of data transfer and user-defined constraints
such as deadline and budget. The algorithm explicitly deals
with jobs that require multiple datasets from multiple data
sources. We have presented empirical results obtained from
evaluating the algorithm on a Data Grid testbed. We plan to
conduct further evaluations with a testbed with various de-
grees of replication to conclusively state that the algorithm
minimizes its objective functions

References

[1] R. Buyya et al. A Case for Economy Grid Architecture for
Service-Oriented Grid Computing. In Proc. of 10th IEEE
International Heterogeneous Computing Workshop (HCW
2001), San Francisco, California, USA, April 2001.

[2] A. Chervenak et al. The data grid: Towards an architecture
for the distributed management and analysis of large scien-
tific datasets. Journal of Network and Computer Applications,
23(3):187-200, 2000.

[3] S. Venugopal and R. Buyya. An economy-based algorithm for
scheduling data-intensive applications on global grids. Tech-
nical Report GRIDS-TR-2004-11, GRIDS Laboratory, Uni-
versity of Melbourne, Australia, Dec 2004.

