
A Deadline and Budget Constrained Scheduling
Algorithm for eScience Applications on Data Grids

Srikumar Venugopal and Rajkumar Buyya

Grid Computing and Distributed Systems (GRIDS) Laboratory,
Department of Computer Science and Software Engineering,

The University of Melbourne, Australia
{srikumar, raj}@cs.mu.oz.au

Abstract. In this paper, we present an algorithm for scheduling of distributed
data intensive Bag-of-Task applications on Data Grids that have costs associated
with requesting, transferring and processing datasets. The algorithm takes into ac-
count the explosion of choices that result due to a job requiring multiple datasets
from multiple data sources. The algorithm builds a resource set for a job that
minimizes the cost or time depending on the user’s preferences and deadline and
budget constraints. We evaluate the algorithm on a Data Grid testbed and present
the results.

1 Introduction

Multi-institutional scientific projects in domains such as high energy physics, astron-
omy and bioinformatics are increasingly generating data in the range of Tera Bytes
(TB) which is replicated at various sites for improving reliability and locality. Grid
computing [1] has made it possible to aggregate heterogeneous, geographically dis-
tributed compute and storage resources for executing large-scale applications in such
eScience [2] projects. Data Grids [3] are instances of Grids where access and man-
agement of distributed data resources have equal or higher priority than computational
requirements. A well-cited example of a Data Grid is the one being set up for processing
the output of the ATLAS experiment at the Large Hadron Collider(LHC) at CERN [4].

The execution of data-intensive applications involves requirements for discovering,
processing, storing and managing large distributed datasets and is guided by factors
such as cost and speed of accessing, transferring and processing data. There may be
multiple datasets involved in a computation, each replicated at multiple locations that
are connected to each other and to the compute resources by networks with varying cost
and capability. Consequently, this explosion of choices makes it difficult to identify the
most optimal resources for retrieving and performing the required computation on the
selected datasets.

In large collaborations that form Data Grids, there can be a lot of pressure on the net-
work, storage and processing elements. This can lead to overloading of resources and
appearance of network ”hot spots” as is commonly observed in the World Wide Web [5].
Previous work has suggested a computational economy metaphor for resource manage-
ment within computational grids [6]. Resource providers price their goods to reflect sup-
ply and demand in order to make a profit or to regulate consumption. On the consumer

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 60–72, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Deadline and Budget Constrained Scheduling Algorithm 61

side, users specify their deadlines for completing their jobs, the budget available to them
and their preference for the cheapest or the fastest processing according to their needs
and priorities. While such strategies have been proposed and evaluated for computational
grids [7], no study has yet been made for similar requirements on Data Grids.

In this paper, we introduce an algorithm for scheduling a Bag-of-Tasks(BoT) ap-
plication on a set of geographically distributed, heterogeneous compute and data re-
sources. Each of the tasks within the application depends on multiple datasets that may
be distributed anywhere within the grid. Also, there are economic costs associated with
the movement and processing of datasets on the distributed resources. The algorithm
minimizes either the overall cost or the time of execution depending on the user’s pref-
erence subject to two user-defined constraints - the deadline by which the processing
must be completed and the overall budget for performing the computation.

The rest of this paper is organised as follows. In Section 2, we survey previous
work in data-intensive Grid scheduling. We extend the notion of user-driven deadline
and budget constrained scheduling within computational grids to data grids in Section
3. In Section 4, the proposed algorithm is evaluated on a real Grid testbed and the results
are reported. Finally, we conclude our paper and outline future work.

2 Related Work

Several approaches have been proposed to schedule data-intensive applications on dis-
tributed resources. In [8], the authors evaluate various heuristics for parameter-sweep
jobs which have files as input. They introduce a new heuristic, XSufferage, that takes
into account file locality by scheduling jobs to those clusters where the files have al-
ready been transferred for a previous job. Takefusa, et. al [9] explore various combi-
nations of scheduling and replication algorithms and come to the conclusion that for
large files, moving computation close to the source of data is the best strategy. Ran-
ganathan and Foster [10] have simulated job scheduling and data scheduling algorithms
and recommend that it is best to decouple data replication from the job scheduling.
In Chameleon [11], the scheduling strategy executes a job on one site while taking
into account computation and communication costs. Kim and Weissman [12] explore
a Genetic Algorithm-based approach for decomposing and scheduling a parallel data-
intensive application. In previous work [13], we have proposed an adaptive algorithm
that schedules jobs while minimizing data transfer. It evaluates all known replica loca-
tions of the file and submits the job to the compute resource which is located closest
to one of the replica locations. However, in the case of applications having to deal
with data from multiple sources, the problem is executing the application such that it
is optimal with respect to all the data sources rather than a single source as has been
considered in the works presented before.

The problem of scheduling BoT applications on distributed systems is a very well-
studied one [14][8][15]. Deadline and budget constrained scheduling algorithms for
compute-intensive BoT applications were proposed and evaluated in [7]. In this paper,
we extend the same notion to data-intensive BoT applications in the following manner.
This paper proposes a detailed cost model for distributed data-intensive applications
that builds on the models for system costs (processing and transferring overheads) pre-

62 S. Venugopal and R. Buyya

viously discussed in [12][11][16] and takes into account expenses for storage, transfer
and processing of data. It then proposes a new algorithm based on the Min-Min heuris-
tic described in [14] that takes into account the deadline and budget constraints of the
users and produces a schedule that minimises either cost or time depending on their re-
quirements. The proposed algorithm also explicilty deals with the explosion of choices
in scheduling Data Grid applications as is mentioned in the previous section. While
this is similar in intent to the work presented in [17], there is a lot of difference in the
methodologies. In [17], the search space is pruned by grouping resources into collec-
tions and then sorting the collections in the order decided by a certain performance
metric. As will be shown later, within our algorithm, the resource sets are created in an
incremental fashion and the search space is limited to only those resources that minimze
the objective function.

3 Scheduling

Fig. 1 shows a typical Data Grid environment which is composed of storage resources,
or data hosts, which store the data and compute resources which run the jobs that exe-
cute upon the data. This is based on the scenarios drawn up for users of the production
Data Grid projects such as LHC Grid [18]. It is possible that the same resource may
contain both storage and computation capabilities. For example, it could be a super-
computing center which has a Mass Storage Facility attached to it. The datasets may
be replicated at various sites within this data grid depending on the policies set by the
administrators of the storage resources and/or the producers of data. The scheduler is
able to query a data directory such as a Replica Catalog [19] or the SRB [20] Metadata
Catalog for information about the locations of the datasets and their replicas. We asso-
ciate economic costs with the access, transfer and processing of data. The processing
cost is levied upon by the computational service provider, while the transfer cost comes
on account of the access cost for the data host and the cost of transferring datasets from
the data host to the compute resource through the network.

Fig. 1. An economy-based data grid environment

A Deadline and Budget Constrained Scheduling Algorithm 63

We consider a job (equivalent to a task in a BoT) as the atomic unit of computation
within this model. Each job requires one or more datasets as input. Each dataset is avail-
able through one or more data hosts. The steps for submitting a job to the grid shown
in Fig. 1 are as follows: The scheduler gathers information about the available compute
resources through a resource information service (1) and about the data through the data
directory (2). It then makes decision on where to submit the job based on the availability
and cost of the compute resource, the minimization preference and the location, access
and transfer costs of the data required for the job (3). The job is dispatched to selected
the remote compute resource (4) where it requests for the dataset from the replica lo-
cation selected by the scheduler (5 & 6). After the job has finished processing (7), the
results are sent back to the scheduler host or another storage resource which then up-
dates the data directory(8). This process is repeated for all the jobs within the set. Here,
only resources that meet minimum requirements of the application such as architec-
ture(instruction set), operating system, minimum free memory and storage threshold
are considered as suitable candidates for job execution.

We consider, therefore, a set of N independent jobs J = {j1, j2, . . . , jN} which
have to be scheduled on M computational resources R = {r1, r2, . . . , rM}. Typ-
ically, N � M . Each job j, j ∈ J requires a subset Fj = {fj1, fj2, . . . , fjK}
of a set of datasets, F , which are each replicated on a subset of P data hosts,D =
{d1, d2, . . . , dP }. For f ∈ F , Df ⊆ D is the set of data hosts on which f is replicated.

The time taken to execute a job is the sum of the execution time and the times taken
to transfer each of the datasets required for the job from their respective data hosts to
the compute node. If the execution time for job j on compute resource r is denoted by
tjr and the transfer time for a dataset fj ∈ Fj from a location dfj ∈ Dfj to compute
resource r is denoted by tfjr, then the total time required for executing the job j is
given by tj = tjr +

∑
fj∈Fj

tfjr where tfjr is the sum of the response time of dfj and
the time taken for the actual data movement. We define response time as the difference
between the time when the request was made to the data host and the time when the
first byte of the file was received at the compute resource. It is an increasing function of
the load on the data host. The time taken for the data movement is the size of the data
divided by the available bandwidth between the data host and the compute resource.
While we have considered a case of sequential data transfer in this model, it can be
modified to consider a parallel data transfer model as presented in [12].

To calculate the economic cost of executing the job, we denote the economic cost of
executing the job j on the compute resource r by ejr and cost of transferring the dataset f
by efjr. Therefore, the total execution cost for job j is given by ej = ejr +

∑
fj∈Fj

efjr

where efjr is the sum of access cost, which is the price levied by the data host for serving
the requested dataset and network transfer cost dependent on the size of the file and the
cost of transferring unit data from data host to compute resource . The access cost can
be an increasing function of either the size of the requested dataset or the load on the
data host or both. This cost regulates the size of the dataset being requested and the
load which the data host can handle. The cost of the network link may increase with
the Quality of Service(QoS) being provided by the network. For example, in a network
supporting different channels with different QoS as described in [21], a channel with a
higher QoS may be more expensive but the data may be transferred faster.

64 S. Venugopal and R. Buyya

We associate two constraints with the schedule, the deadline by which the entire
set must be executed (denoted by TDeadline) and the maximum budget, Budget, for
processing the jobs.The deadline constraint can therefore be expressed in terms of job
execution time as max(tj) ≤ TDeadline, ∀ j ∈ J . The budget constraint can be ex-
pressed as

∑
J ej ≤ Budget.

3.1 Algorithm

Depending on the user-provided deadline, budget and scheduling preference, we can
have two objective functions, viz:

– Cost minimization We try to execute the jobs in the schedule that causes least
expense while keeping the execution time within the deadline provided.

– Time minimization Here, the jobs are executed in the fastest time possible with
the budget for the execution acting as the constraint.

In both cases the same algorithm can be applied to solve the different objective func-
tions. This is done by means of a switch Min which allows us to change the deci-
sion variables depending on the minimization chosen within the algorithm. We define
a function fmin that returns the smallest value within a set of values, A, depending on
the minimization applied. Formally,

fmin(Min, CV ar, TV ar, A) =

⎧
⎪⎪⎨

⎪⎪⎩

min(CV ar, A)
if Min = Cost
min(TV ar, A)

if Min = T ime

Here, CV ar and TV ar represents variables deal with cost and time respectively. The
functions min(CV ar, A) and min(TV ar, A) will return the element of A with the
smallest value of CV ar and TV ar respectively. Hence, by changing the value of Min
we can determine the objective function to be minimized by the algorithm. Conse-
quently, Min is a parameter to the scheduling algorithm.

The listing for the algorithm is given in Figure 2. JU , JA, JC and JF are sub-
sets of the set of jobs J consisting of jobs in Unsubmitted, Active, Completed and
Failed states respectively. Jobs initially are in the Unsubmitted state, once they are
submitted, they become Active and finally end up being Completed or Failed. The
scheduling algorithm exits if all jobs are in the final states or if the deadline or budget
constraints are violated. The initial part of the loop does bookkeeping. At every polling
interval, we update the performance data of the compute resources and calculate the al-
location for the current polling interval. For each data resource, we update the network
conditions between itself and the computational resources. Then, we sort the compu-
tational resources either by the cost of the network link or the bandwidth between the
compute resource and the data host depending on the minimization required. The rest
of the algorithm is in two parts : the first part maps the jobs to the selected compute
resources depending on selected minimization objective (cost or time) while the sec-
ond dispatches the jobs while enforcing the deadline and budget constraints. These are
described as follows:

A Deadline and Budget Constrained Scheduling Algorithm 65

while J �= JC ∪ JF OR Tcurrent < TDeadline OR Budget spent < Budget do1
Update Budget spent by taking into account the jobs completed in the last2
interval;
for each r ∈ R do3

Calculate performance data on the basis of resource performance in previous4
polling interval;

end5
for each d ∈ D do6

Based on current network values, sort R in the increasing order of7
Cost(Linkdr) or 1/BW (Linkdr)) depending on whether Min is Cost or
T ime;
Maintain this list as Rd;8

end9
MAPPING SECTION;10
for j ∈ JU do11

Sj , T empj ← {};12
for fj ∈ Fj do13

Select {r, dfj
} such that, depending on Min, either efjr or tfjr is14

minimised;
if Sj = {} then15

Sj ← Sj ∪ {r, dfj
};16

Tempj ← Sj ;17

end18
else19

Sj ← (Sj − {rprev}) ∪ {r, dfj
};20

Tempj ← Tempj ∪ {dfj
};21

end22
Sj ← fmin(Min, ej , tj , {Sj , T empj});23
Tempj ← Sj ;24
rprev ← r ∈ Sj ;25

end26

end27
DISPATCHING SECTION;28
Sort JU in the ascending order of ej or tj depending on Min;29
Expected Budget ← Budget spent;30
for j ∈ JU do31

Take the next job j ∈ JU in sorted order;32
r ← r ∈ Sj ;33
if r can be allocated more jobs then34

if Min = Cost AND (TCurrent + tj) < TDeadline then35
if (Expected Budget + ej) ≤ Budget then submit j to r;36
else stop dispatching and exit to main loop37

end38
if Min = T ime AND Expected Budget + ej ≤ Budget then39

if (TCurrent + tj) < TDeadline then submit j to r;40
else stop dispatching and exit to main loop41

end42
Expected Budget = Expected Budget + ej ;43
Remove j from JU ;44

end45

end46
Wait for the duration of the polling interval;47

end48

i d d f dli d d i d b d h d li f

Fig. 2. Pseudo-code for Deadline and Budget Constrained Cost-based Scheduling of Data Inten-
sive Applications.

66 S. Venugopal and R. Buyya

Mapping: We require one compute resource to execute the job and one data host each
for every dataset required by the job. That is, for each job j, we create a resource
set Sj = {rj , dj1, dj2, . . . , djK} that represents the compute and data resources to
be accessed by the job in execution. However, if we try all possible combinations of
compute and data resources for each job, this results in a O(N(MP)K) mapping where
K is the maximum number of datasets for each job.

We, therefore, decrease the complexity by making a choice at each step within the
mapping section. For a job, we iterate through the list of datasets it requires. For each
dataset, we pick the combination of a compute resource and a data host that returns
the lowest value for expected transfer cost(efjr) or time(tfjr) depending on either cost
or time minimization. This is done in O(P) time as for each data host, we only have
to pick the first compute resource out of its sorted list of compute resources. Then we
create two resource sets, Sj and Tempj, the former with the current selected compute
and data resources and the latter with the current selected data resource but with the
compute resource selected in the previous iteration, rprev (lines 15 - 22) . Then, we
compare the two sets on the basis of the expected cost or execution time and select the
resource set which gives us the minimum value (line 23). This procedure ensures that
the choice of the compute resource and the resource set so formed at the end of each
iteration is better than those selected in all previous iterations. For N jobs, therefore,
the above mapping loop runs in O(NKP) time.

Dispatching: In the dispatching section, we first sort all the job in the ascending or-
der of the value of the minimization function for their respective combinations. Then,
starting with the job with the least cost or least execution time, we submit the jobs to
the compute resources selected for them in the mapping step if the allocation for the re-
sources as determined in the initial part has not been exhausted. For cost minimization,
we see if the deadline is violated by checking whether the current time(TCurrent) plus
the expected execution time exceeds TDeadline (line 35). If so, the job goes back into
the unsubmitted list in the expectation that the next iteration will produce a better com-
bination. If Budget is exceeded by the current job then we stop dispatching any more
jobs and return to the main loop since the rest of the jobs in the list will have higher
cost (lines 36-37). For time minimization, we check if the budget spent (including the
budget for all the jobs previously submitted in current iteration) plus the budget for the
current job exceeds Budget. If the deadline is violated by the current job then we stop
dispatching and return to the main loop.

4 Experiments and Results

We have implemented the scheduling algorithm presented in Section 3 within the Grid-
bus Broker [13]. The testbed resources used in our experiments is detailed in Table
1. The cost per sec denotes the rate for performing a computation on the resource in
Grid Dollars (G$). It can be seen that some of the resources were also used to store the
replicated data and therefore, were performing the roles of both data hosts and com-
pute resources. The average available bandwidth between the compute resources and
the data hosts is given in Table 2. We have used NWS (Network Weather Service) [22]

A Deadline and Budget Constrained Scheduling Algorithm 67

Table 1. Resources within Belle testbed used for evaluation and their costing

Organization Resource details Role Compute
Cost(G$
/sec)

Total Jobs
Done

TimeCost
Dept. of Computer
Science, University of
Melbourne

belle.cs.mu.oz.au
4 Intel 2.6 GHz CPU, 2 GB RAM,
70 GB HD, Linux

Broker Host, Data
Host, Compute
resource, NWS
Server

6 94 2

School of Physics,
University of Mel-
bourne

fleagle.ph.unimelb.edu.au
1 Intel 2.6 Ghz CPU, 512 MB
RAM, 70 GB HD, Linux

Replica Catalog
host, Data host,
NWS sensor

N.A.∗ – –

Dept. of Computer
Science, University of
Adelaide

belle.cs.adelaide.edu.au
4 Intel 2.6 GHz CPU, 2 GB RAM,
70 GB HD, Linux

Data host, NWS
sensor

N.A. ∗ – –

Australian National
University, Canberra

belle.anu.edu.au
4 Intel 2.6 GHz CPU, 2 GB RAM,
70 GB HD, Linux

Data Host, Com-
pute resource, NWS
sensor

6 2 4

Dept of Physics, Uni-
versity of Sydney

belle.physics.usyd.edu.au
4 Intel 2.6 GHz CPU(1 avail), 2
GB RAM, 70 GB HD, Linux

Data Host, Com-
pute resource, NWS
sensor

2 2 119

Victorian Partnership
for Advanced Com-
puting, Melbourne

brecca-2.vpac.org
180 node cluster (only head node
utilised)

Compute resource,
NWS sensor

4 27 0

∗Not used as a compute resource but only as a data host

for measuring the network bandwidths between the computational and the data sites.
We have used only the performance data and not the bandwidth forecasts provided by
NWS. It has been shown that NWS measurements with 64 KB probes cannot be corre-
lated with large data transfers[23][24]. However, we consider the NWS measurements
are indicative of the actual available bandwidth in our case. In the future, we hope to use
regression models for more accurate measurements as has been shown in [23][24] .The
broker itself was extended to consider the price of transferring data over network links
between the compute resources and the data hosts while scheduling jobs. In our experi-
ments, although we have artificially assigned data transmission costs shown in Table 3,
they can be linked to real costs as prescribed by ISPs (Internet Service Providers). Dur-
ing scheduling, data movement cost and time were explicitly taken into account when
data and compute services were hosted on different resources.

Within the performance evaluation, we wanted to capture various properties and
scenarios of Data Grids and applications. Accordingly we devised a synthetic applica-
tion application that requests K datasets that are located on distributed data sources and
are registered within a replica catalog. The datasets are specified as Logical File Names
(LFNs) and resolved to the actual physical locations by the broker at runtime. The ap-
plication then processes these datasets and produces a small output file (of the order
of KB). In this particular evaluation, the datasets are files registered within the catalog.
There are 100 files of size 30 MB each, distributed between the data hosts listed in
Table 1. The BoT application here is a parameter-sweep application consisting of 125

68 S. Venugopal and R. Buyya

Table 2. Avg. Available Bandwidth between
Data Hosts and Compute Resources as reported
by NWS(in Mbps)

Compute Resources
Data Hosts UniMelb

CS
ANU UniSyd VPAC

ANU 6.99 – 10.242 6.33
Adelaide 3.45 1.68 2.29 6.05
UniMelb
Physics

41.05 6.53 2.65 20.57

UniMelb
CS

– 6.96 4.77 36.03

UniSyd 4.78 12.57 – 2.98

Table 3. Network Costs between Data Hosts
and Compute Resources (in G$/MB)

Compute Resources
Data Hosts UniMelb

CS
ANU UniSyd VPAC

ANU 34.0 0 31.0 38.0
Adelaide 36.0 34.0 31.0 33.0
UniMelb
Physics

40.0 32.0 39.0 35.0

UniMelb
CS

0 30.0 36.0 33.0

UniSyd 33.0 35.0 0 37.0

0

20

40

60

80

100

120

140

belle.cs.mu.oz.au

belle.anu.edu.au

belle.cs.adelaide.edu.au

fleagle.ph.unimelb.edu.au

belle.physics.usyd.edu.au

Data Hosts

N
u

m
b

er
 o

f
R

eq
u

es
ts

Fig. 3. Distribution of file access

Table 4. Summary of Evaluation Results

Minimiz-
ation

Total
Time
(mins.)

Compute
Cost (G$)

Data Cost
(G$)

Total
Cost (G$)

Cost 80 31198.27 39126.65 70324.93
Time 54 76054.90 43821.64 119876.55

jobs, each job an instance of the application described before requiring 3 files (that is,
K = 3 for all the jobs in this evaluation). Fig. 3 gives the distribution of the number of
requests for data made by the jobs versus the data hosts. The distribution is the same for
both cost and time minimization. The datasets were transferred in sequence, that is, the
transfer of one dataset was started after the previous had completed. The computation
times for the jobs were randomly distributed within 60-120 seconds.

There are two measures of performance that we are interested in: the first is the rela-
tive usage of the computational resources under cost and time minimization which indi-
cates how the choice of minimization criteria impacts resource selection and the second,
is the distribution of jobs with respect to the computational and data transfer costs and
times incurred within each minimization which tells us the how effective the algorithm
was in producing the cheapest or the fastest schedule. The experiments were carried out
on 29th November 2004 between 6:00 p.m. and 10:00 p.m. AEDT. The deadline and
budget values for both cost and time minimization were 2 hours and 500,000 G$ re-
spectively. Table 4 shows the summary of the results that were obtained. The total time
is the wall clock time taken from the start of the scheduling procedure up to the last
job completed. All the jobs completed successfully in both the experiments. The aver-
age costs per job incurred during cost and time minimization are 562.6 G$ and 959 G$
with standard deviations of 113 and 115 respectively. Mean wall clock time taken per
job(including computation and data transfer time) was 167 secs for cost minimization
and 135 secs for time minimization with standard deviations 16.7 and 19 respectively.

A Deadline and Budget Constrained Scheduling Algorithm 69

0

20

40

60

80

100

120

140

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Polling Interval (every 40s)

N
u

m
b

er
o

f
jo

b
s

belle.cs.mu.oz.au belle.anu.edu.au belle.physics.usyd.edu.au brecca-2.vpac.org

(a) cost minimization scheduling

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Polling Intervals(every 40s)

N
u

m
b

er
o

f
Jo

b
s

belle.cs.mu.oz.au belle.anu.edu.au belle.physics.usyd.edu.au brecca-2.vpac.org

(b) time minimization scheduling

Fig. 4. Cumulative number of jobs completed vs time

As expected, cost minimization scheduling produces minimum computation and
data transfer expenses whereas time minimization completes the experiments in the
least time. The graphs in Figs. 4 and 4 show the number of jobs completed versus
time for the two scheduling strategies for data grids. Since the computation time was
dominant, within cost minimization, the jobs were executed on the least economically
expensive compute resource. This can be seen in Fig. 4 where the compute resource
with the least cost per sec, the resource at University of Sydney, was chosen to execute
95% of the jobs. Since a very relaxed deadline was given, no other compute resource
was engaged by the scheduler as it was confident that the least expensive resource alone
would be able to complete the jobs within the given time. Within time minimization, the
jobs were dispatched to the compute resources which promised the least execution time
even if they were expensive as long as the expected cost for the job was less than the
budget per job. Initially, the scheduler utilised two of the faster resources, the Univer-
sity of Melbourne Computer Science(UniMelb CS) resource and the VPAC resource.
However, as seen from Fig. 3, 26.67% of the requests for datasets were directed to
the UniMelb CS resource. A further 6.67% were directed to the resource in UniMelb
Physics. Hence, any jobs requiring one of the datasets located on either of the above
resources were scheduled at the UniMelb CS resource because of the low data transfer
time. Also, the UniMelb CS resource had more processors. Hence, a majority of the
jobs were dispatched to it within time minimization.

Figs. 5(a) and 5(b) show the distribution of the jobs with respect to the compute and
data costs respectively. For cost minimization, 95% of the jobs have compute costs less
than or equal to 400 G$ and data costs between 250 G$ to 350 G$. In contrast, within
time minimization, 91% of the jobs are in the region of compute costs between 500
G$ to 700 G$ and data costs between 300 G$ to 400 G$. Hence, in time minimization,
more jobs are in the region of high compute costs and medium data costs. Thus, it can
be inferred that the broker utilized the more expensive compute and network resources
to transfer data and execute the jobs within time minimization.

Figs. 6(a) and 6(b) show the distribution of the jobs with respect to the total execu-
tion time and the total data transfer time for cost minimization and time minimization
respectively. The execution time excludes the time taken for data transfer. It can be seen
that within time minimization 6(b) the maximum data transfer time was 35s as com-

70 S. Venugopal and R. Buyya

20

10
0

18
0

26
0

34
0

42
0

50
0

58
0

66
0

74
0

82
0

90
0

98
0

20

200

380

560

740
920

0

5

10

15

20

25

30

35
N

u
m

b
er

 o
f

Jo
b

s

Compute Cost(G$)

D
at

a
C

o
st

(G
$)

(a) cost minimization scheduling

20

10
0

18
0

26
0

34
0

42
0

50
0

58
0

66
0

74
0

82
0

90
0

98
0

20

200

380

560

740

920

0

5

10

15

20

25

30

35

40

N
u

m
b

er
 o

f
Jo

b
s

Compute Cost(G$)

D
at

a
C

o
st

(G
$)

(b) time minimization scheduling

Fig. 5. Distribution of jobs against compute and data costs

0

20 40 60 80

10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

0

35

70

105

140

175

210

245

0

5

10

15

20

25

30

35

N
u

m
b

er
 o

f
Jo

b
s

Execution Time (secs)

To
ta

l D
at

a
Tr

an
sf

er
 T

im

(a) cost minimization scheduling

0

15 30 45 60 75 90

10
5

12
0

13
5

15
0

16
5

18
0

19
5

21
0

22
5

24
0

0

35

70

105

140

175

210
245

0

5

10

15

20

25

N
u

m
b

er
 o

f
jo

b
s

Execution time(secs)

To
ta

l D
at

a
tr

an
sf

er
 ti

m
e(

se
c

(b) time minimization scheduling

Fig. 6. Distribution of jobs against execution time and data transfer time

pared to 75s for cost minimization. Also, there are more jobs within time minimization
that have had transfer time less than 10s which implies that the jobs were scheduled
close to the source of the data. Therefore, from the results, it can be seen that given cost
or time minimization, the algorithm presented in this work does minimize the objective
function for upto 90% of the set of jobs.

5 Conclusion and Future Work

We have presented here a model for executing jobs on data grids which takes in to ac-
count both processing and data transfer costs. We have also presented an algorithm which
greedily creates a resource set, consisting of both compute and data resources, that
promises the least cost or least time depending on the minimization chosen. We have pre-
sented empirical results obtained from evaluating the algorithm on a Data Grid testbed.

A Deadline and Budget Constrained Scheduling Algorithm 71

We plan to conduct further evaluations to conclusively state that the algorithm mini-
mizes its objective functions. We also plan to evaluate the algorithm with a testbed with
different levels of replication of data and with varying resource prices.

References

1. Foster, I., Kesselman, C.: The Grid: Blueprint for a Future Computing Infrastructure. Morgan
Kaufmann Publishers (1999)

2. Hey, T., Trefethen, A.E.: The UK e-Science Core Programme and the Grid. Journal of Future
Generation Computer Systems(FGCS) 18 (2002) 1017–1031

3. Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., Tuecke, S.: The data grid: Towards an
architecture for the distributed management and analysis of large scientific datasets. Journal
of Network and Computer Applications 23 (2000) 187–200

4. Lebrun, P.: The Large Hadron Collider, A Megascience Project. In: 38th INFN Eloisatron
Project Workshop on Superconducting Materials for High Energy Colliders, Erice, Italy
(1999)

5. Mahajan, R., Bellovin, S.M., Floyd, S., Ioannidis, J., Paxson, V., Shenker, S.: Controlling
high bandwidth aggregates in the network. Computer Communications Review 3 (2002)

6. Buyya, R., Giddy, J., Abramson, D.: A Case for Economy Grid Architecture for Service-
Oriented Grid Computing. In: 10th IEEE International Heterogeneous Computing Workshop
(HCW 2001), In conjunction with IPDPS 2001, San Francisco, California, USA (April 2001)

7. Buyya, R., Giddy, J., Abramson, D.: An Evaluation of Economy-based Resource Trading
and Scheduling on Computational Power Grids for Parameter Sweep Applications. In: The
Second Workshop on Active Middleware Services (AMS 2000), Pittsburgh, USA (2000)

8. Casanova, H., Legrand, A., Zagorodnov, D., Berman, F.: Heuristics for Scheduling Param-
eter Sweep Applications in Grid environments. In: 9th Heterogeneous Computing Systems
Workshop (HCW 2000), Cancun,Mexico, IEEE CS Press (2000)

9. Takefusa, A., Tatebe, O., Matsuoka, S., Morita, Y.: Performance Analysis of Scheduling
and Replication Algorithms on Grid Datafarm Architecture for High-Energy Physics Appli-
cations. In: Proceedings of the 12th IEEE international Symposium on High Performance
Distributed Computing(HPDC-12), Seattle, USA, IEEE CS Press (2003)

10. Ranganathan, K., Foster, I.: Decoupling Computation and Data Scheduling in Distributed
Data-Intensive Applications. In: Proceedings of the 11th IEEE Symposium on High Per-
formance Distributed Computing (HPDC), Edinburgh, Scotland, IEEE Computer Society
(2002)

11. Park, S.M., Kim, J.H.: Chameleon: A Resource Scheduler in a Data Grid Environment. In:
Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the
Grid, 2003 (CCGrid 2003), Tokyo, Japan, IEEE CS Press (2003)

12. Kim, S., Weissman, J.: A GA-based Approach for Scheduling Decomposable Data Grid
Applications. In: Proceedings of the 2004 International Conference on Parallel Processing
(ICPP 04), Montreal, Canada, IEEE CS Press (2003)

13. Venugopal, S., Buyya, R., Winton, L.: A Grid Service Broker for Scheduling Distributed
Data-Oriented Applications on Global Grids. In: Proceedings of the 2nd Workshop on Mid-
dleware in Grid Computing (MGC 04) : 5th ACM International Middleware Conference
(Middleware 2004), Toronto, Canada (2004)

14. Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., Freund, R.F.: Dynamic Mapping of a
Class of Independent Tasks onto Heterogeneous Computing Systems. Journal of Parallel and
Distributed Computing(JPDC) 59 (1999) 107–131

72 S. Venugopal and R. Buyya

15. Beaumont, O., Legrand, A., Robert, Y., Carter, L., Ferrante, J.: Bandwidth-Centric Allocation
of Independent Tasks on Heterogeneous Platforms. In: Proceedings of the 2002 International
Parallel and Distributed Processing Symposium(IPDPS ’02), Fort Lauderdale, California,
USA, IEEE CS Press (2002)

16. Stockinger, H., Stockinger, K., Schikuta, E., Willers, I.: Towards a Cost Model for Dis-
tributed and Replicated Data Stores. In: 9th Euromicro Workshop on Parallel and Distributed
Processing PDP 2001, Mantova, Italy, IEEE Computer Society Press (2001)

17. Dail, H., Casanova, H., Berman, F.: A Decoupled Scheduling Approach for the GrADS Envi-
ronment. In: Proceedings of the 2002 IEEE/ACM Conference on Supercomputing (SC’02),
Baltimore, USA, IEEE CS Press (2002)

18. Hoschek, W., Jaen-Martinez, F.J., Samar, A., Stockinger, H., Stockinger, K.: Data manage-
ment in an international data grid project. In: Proceedings of the First IEEE/ACM Interna-
tional Workshop on Grid Computing(GRID ’00), Bangalore, India, Springer-Verlag, Berlin
(2000)

19. Vazhkudai, S., Tuecke, S., Foster, I.: Replica Selection in the Globus Data Grid. In: Proceed-
ings of the First IEEE/ACM International Conference on Cluster Computing and the Grid
(CCGRID 2001), Brisbane, Australia (2001)

20. Baru, C., Moore, R., Rajasekar, A., Wan, M.: The SDSC Storage Resource Broker. In: Procs.
of CASCON’98, Toronto, Canada (1998)

21. Hui, T., Tham, C.: Reinforcement learning-based dynamic bandwidth provisioning for qual-
ity of service in differentiated services networks. In: Proceedings of IEEE International
Conference on Networks (ICON 2003), Sydney, Australia (2003)

22. Wolski, R., Spring, N., Hayes, J.: The Network Weather Service: A Distributed Resource
Performance Forecasting Service for Metacomputing. Journal of Future Generation Com-
puting Systems 15 (1999) 757–768

23. Vazhkudai, S., Schopf, J.: Using Regression Techniques to Predict Large Data Transfers.
International Journal of High Performance Computing Applications 17 (2003) 249–268

24. Faerman, M., Su, A., Wolski, R., Berman, F.: Adaptive Performance Prediction for Dis-
tributed Data-Intensive Applications. In: Proceedings of the 1999 IEEE/ACM Conference
on Supercomputing (SC’99), Portland, Oregon, USA, IEEE CS Press (1999)

	Introduction
	Related Work
	Scheduling
	Algorithm

	Experiments and Results
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

