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Abstract. Maintenance and management of a manufacturing process
involve the collection and processing of the machine data. Integral data
from a running machine is to be gathered first to accomplish the effective
management of the machine in an industry. This collected data provides
the current status of the machine and eventually helps in predicting
the machine failures beforehand. These sequences of events are called
predictive maintenance of a machine. The approach of device discovery
helps to predict the machine failures in a better way by transmitting the
machine data to edge devices. In the proposed work, machine failures
are predicted with the help of aptly designed detection engines. These
engines confirm the machine failures by comparing the current status of
the machine data with the set of pre-defined rules. Therefore, a machine
is serviced right before any unexpected failure and thereby stops the
unusual crash-down of a device.

Keywords: Device discovery · failure detection · ontology · predictive mainte-
nance · industrial internet of things.

1 Introduction

Industrial Internet of Things (IIoT) is an applied domain of Internet of Things
(IoT) whose primary purpose is to provide an efficient management system for
Industrial applications. It works on the principle of building systems by adopting
a network of devices that are embedded with sensors to retrieve necessary data
and use the same to monitor the industrial equipment for effective and efficient
management. For example an IIoT application designed and implemented for
the textile industry, monitors the spindles used for weaving and advice when to
change or service them before they breakdown [11].
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Predictive maintenance system has to deal with risks and significant chal-
lenges (that are explained in subsequent sections) that prevent it from the effec-
tive operation. Thus, questions like “What if the service done to any equipment
is carried out way too earlier than it is required?” have to be addressed. It is
a demanding task for a predictive maintenance system to determine the exact
time for replacement or assistance of the devices [22].

Device discovery aims to search for an object that closely matches a given
query to complete a required function. Many parameters like the location of the
device, network identity document (ID), protocol, etc, are required to identify a
device [14]. The implementation process of device discovery strategy in industries
improves reliability of the devices, communication, time complexity, etc, leading
to a better outcome in the production process [2]. It is complex task to locate
a device due to the presence of a large number of devices and heterogeneity
among them. The issue of scalability also arises when a large number of devices
are available to perform the same task in different ways and still produce the
same output (continuous monitoring of devices and performance analysis is to
be cross-checked for every such device in order to select the optimal one). This
process consumes a huge amount of time due to the large size of the network
and complex relationship among them [21].

1.1 Motivations

Predictive Maintenance is the most recently researched topic which explains how
to increase the lifespan of equipment used in any industry. The study of existing
work reveals that fault monitoring and condition of the machinery is supervised
so that unpredicted breakdown is averted. Device discovery approach enables
the detection of physical connections around so that the devices can commu-
nicate with each other to build a social relationship. They have a set of rules
according to which the devices are standardized [13]. There are multiple draw-
backs in the current system of device discovery some of which includes increased
power consumption. Moreover, these prevailing criteria of device discovery are
not applicable for ultra-dense networks [8].

The proposed predictive maintenance model is based on the set of rules that
are already defined and stored in the database. When the sensor gives the sur-
rounding readings, it is mapped with the rules present in the database. These
rules define the failure conditions and are defined in simple if-else clauses.

1.2 Contributions

The contributions of this paper are as follows.

– Ontology Model for PdM : We have developed an ontological model for PdM.
This model is designed based on the generic features of the machine and its
failure and helps to monitor the system through semantic technologies. We
also demonstrate a use case example and its application.
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– Reference Architecture: A reference architecture is laid out that depicts the
predictive maintenance of each device and these devices are regulated using
edgent components.

1.3 Organization

The rest of paper is systematically organised as follows. The background work
and literature are surveyed in Section 2. Use case scenario description is specified
in the subsequent Section 3. Nextly, in Section 4 with the help of system architec-
ture, our approach of resource discovery for predictive maintenance is explained.
Sequentially, the experimental setup is shown along with dataset description
and implementations in Section 5. This also includes evaluations, results and
discussions. Lastly, we conclude in Section 6.

2 Literature Survey

In this section, we describe some of the most recent works in the IIoT for predic-
tive maintenance and device discovery techniques, in their respective subsections.

2.1 Related Works on IIoT

Rapid advancements in the manufacturing techniques and development have led
to the increased use of computational methods to overcome challenges such as
productivity, management, and effective resource utilization. A recent paper [1]
briefed about the use of IIoT healthcare applications for context-sensitive access
to the information. Similarly Liao et al. [10] systematically reviewed the insights
and literature of IIoT which finds the root cause of product failure along with
inclusion-exclusion criteria. Jeschke et al. [7] describes the use of IIoT in the
manufacturing of cyber systems and other applications. They concluded that an
increase in adaptability and robustness plays a major role in the cyber-physical
system for smart factories. In the following paragraphs, we review a few recent
publications that address the predictive maintenance issue in IIoT.

Huynh et al. [5] proposed a parametric predictive maintenance decision-
making framework that involves no risks for maintenance. It provides generic
and flexible maintenance along with improved performance model. However,
the methodology is applicable to a single system only causing sub optimal re-
sults with limited resources (that promote in high inspection cost). Likewise,
Wang et al. [20] implemented a predictive maintenance system based on event-
log analysis. The most prominent feature of the selection method used for model
construction that can be customized and optimized for any kind of equipment.
False alarm rate of the system is not handled efficiently in this work which leads
to wastage of human labor and replacement cost without the display of system
error log.

Vianna and Yoneyama [19] worked on optimization techniques for redun-
dant systems in aircraft subjected to numerous wear profiles. The operation cost
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estimates and identification of future degradation (is the most favourable gain
whereas the unfavourable opinion is that) the technique does not incorporate
troubleshooting tasks while planning.

2.2 Device Discovery Techniques

A device discovery technique aims to locate an appropriate device matching the
requirements based on various properties of the devices, relationship with other
devices, etc [15, 16]. In the following paragraphs, we present a survey on such
recent techniques for device discovery in IoT.

Suntholap et al. [18] demonstrated the intelligent device discovery in IoT for
the domain of robot society. The system is fast, scalable and makes use of a
set of criteria for device ranking such that, it measures the device’s degree of
social relationship, clustering coefficient and betweenness among them. However,
concerns like how to standardize the expression of computing requirements are
not considered.

Ngu et al. [12] surveyed on middle-ware available for the IoT. Their work is
broadly focused on enabling technologies using middleware and its related issues.
The advantage is that it supports heterogeneity among the IoT devices and is a
lightweight platform. But, the system is dependent on the context and forces the
users to create their IoT applications according to that context only. Ishino et
al. [6] discovered relay mobile device with proximity services for user-provided
IoT networks. These services are feasible with reduced traffic and improve the
existing crowdsourcing based application which can be reused. However, these
services are more than the number of user equipment along with their deployment
environment and thus the system is not scalable.

Device discovery system proposed by Epstein et al. [4] includes a data storage
medium that is used for storing clustering data structure. But, the security of
this data is not addressed by the proposed work. Although the system includes
a processor for device identification helps with decision making, there is an issue
of complexity over-heading in hardware system architecture.

Lakshmanan et al. [9] worked on the concept of methods and systems for
device detection and authorization in IoT framework. The proposed methodology
builds a time schedule of proximity events and ranks them according to the
assigned weighting factor of every device. However, interrelated proximity events
do not consider the dynamic factors where a device’s attributes can change
abruptly for several devices.

The concept of energy efficient device discovery was proposed by Sharma et
al. [17] for reliable communication in IoT which is based on 5G. The system pro-
vides energy, offloading and fault tolerance models. Due to the extra amount of
energy that is spent to evaluate percentage packet loss energy expenses increase.
Device-to-Device (D2D) communication technologies is explained by Bello et
al. [3] with a major focus on network layer interoperation in the IoT. Scalable
integration and interoperability in D2D technology is an added advanced fea-
ture but the TCP/IP protocol stack is limited for future implementations of
D2D communication.
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3 Use-case Scenario and Predictive Maintenance
Ontology

In this section, we outline the research challenges in predictive maintenance of
devices in IIoT in detail with the help of relevant use cases and examples. These
expected results benefit the stakeholders by improvising the life expectancy of
the equipment. For each such failure, we construct a rule and design a Predictive
failure Detection Engine (PDE) to analyze the present condition of the machine
and thus, aid in its predictive maintenance. The data obtained from the sensors
is fed to a processing unit PDE, that identifies the failure condition based on a
certain set of rules. The output of the same is further processed by the Predictive
maintenance Detection Engine(PmDE) to decide on the failure of the machine.

3.1 Boiler

A boiler is a most commonly used machine to generate steam in industries that
manufacture automobiles, locomotives etc. These boiler machines play a crucial
role in the functioning of the industries and their sudden unexpected failure may
lead to heavy financial loss and also pose a threat to the safety of the workers.
Figure 1 depicts the boiler’s PmDE.

Some of the root causes for failure of a boiler tank are high-temperature
creeps, substantial tube well thinning or graphitization of matrix probe. There
can be one or more than one such conditions that cause failure. Every condition is
sensed and detected by using and processing data gathered from various sensors
that are connected to the boiler tank.

We have designed rules for boiler tank failure based on these conditions as
follows. We formulate two rules for temperature creep and wall-thinning of the
boiler to detect an early failure. Firstly, the boiler failure Rule 1 (R1) says,

BoilerFcDEF1

CreepPmDE

BurstPmDE

Us1

Ps1

DepositPmDE

Us2

Us3

V alvePmDEIRs1

F2

TubewallPmDE

ErosionPmDE Fs1

DepositPmDE

Us2

Us3

SurgePmDE

Fs2

Fs3

TubeLeakPmDE Us4

Fig. 1. Boiler Predictive Maintenance Engine



6 S. Pattar et al.

IF ((waterLevel > maxWaterLevel) AND (waterPressure < minPressureLevel))

OR ((sediment > maxSedimentLevel) AND (limescale > maxLimescaleLevel))

OR (fillValve == broken)

THEN

tempretureCreep == true

When the water level and the water pressure inside the boiler tank exceeds
a given threshold value then a boiler can burst. Similarly, another condition like
sediment/limescale deposit can be monitored with the help of deposit-sensors.
Also if the boiler tank has a broken fill-valve, the possibility of temperature creep
is also present. Secondly, the boiler failure Rule 2 (R2) is expressed as:

IF (waterVelocity > maxWaterVelocity)

OR ((sediment > maxSedimentLevel) AND (limescale > maxLimescaleLevel))

OR ((steamFlow <= minRate) AND (firingRate >= max ))

OR (tubeLeak == true)

THEN

substantialTubeWallThininng == true

Here, the conditions are erosion, deposit, surge and tube leak that detect
the substantial tube wall thinning and boiler tube blocking state. If the water
velocity is exceeding the maximum velocity inside the tank, then erosion of the
tank occurs. The condition for failure due to deposit is similar to that of previous
rule condition i.e., limescale/sediment deposit. Surge refers to the water flow rate
inside the boiler tank. When a boiler is started and water begins to rush inside
the tank, that flow rate of water is referred to as firing rate. Whereas the tube
leak condition can alone determine the wall thinning of a boiler tank. Hence, we
can derive to the conclusion that these conditions lead to the boiler tank failure
scenario. To detect the malfunctioning or failure of the boiler, we construct a
PmDE to process the data obtained from various sensors that are installed at/on
the boiler machine.

IF (tempCreep == true)

OR (tubewallThinning == true)

THEN

boilerFailure == true

3.2 Predictive Maintenance Ontology

Predictive Maintenance Ontology (PMO) gives a backbone architecture for the
entire model by defining structures. These defined structures assist the PMO to
detect machine failures. The conditions that cause a machine to fail are prede-
fined and protocols are set such that the failure can be predicted. PMO ontology
is extremely necessary because it builds the system model by taking semantic
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knowledge as its basic foundation. Semantic knowledge is a domain-oriented lan-
guage which takes the conceptual ideas and frames a semantic model upon which
an ontology can be constructed. PMO not only defines the failure conditions of a
machine but also predicts the failure and instructs how to avoid such conditions.

The components of PMO includes machines, failures, failureConditions, pre-
dictive Maintenance Detection Engine (PmDE) and Failure Condition Detection
Engine (FcDE), as shown in Figure 2. PMO is constructed with respect to In-
dustrial domain, specifically considering the use cases of elevators, turbines, and
boilers. The detection engines (DE) utilize the knowledge from other compo-
nents to derive to a conclusion and thereby deciding the machine failure. For
example, the boiler machine FcDE detects the conditions where there are pos-
sibilities for a boiler to fail. To detect these failure conditions, the FcDE uses
data from failureConditions which is another component of PMO.

Fig. 2. PMO Architecture

Multiple classes, sub-classes, properties etc are defined in the PMO. Classes
are related to one another by defining relationship properties between them.
Machine class defines the three use cases considered, failure class includes the
types of failure for every instance of machine class. Nextly, the failureCondition
class holds the scenarios which can cause a breakdown. A sensor class is imple-
mented which has several subclasses. These comprise all the sensors required in
PMO to monitor the current condition of a machine. There are two DEs en-
forced as classes and they’re FcDE and PmDE. FcDE detects the failure of a
machine due to some context or component failure whereas PmDE predicts the
maintenance required by a machine through FcDE. Machine measurements are
characterized in another class and their bounds specify the range of machine
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attribute measurements. Set of data items are captured and are transferred to
the users sequentially and continuously at certain intervals of time. These set of
data items are illustrated in the data stream class.

Object property characteristics show the attributes of a particular object.
There are several functions available that give a better framework for the defined
object properties like functional, transitive, reflexive, etc. The object properties
denote a connotation between two classes. For example, failure conditions cause
failure. Here, failure conditions and Failure are two different classes and causes
is the object property defined with failure condition as domain and failure as a
range. There can be one/more object properties between any two classes, hence
to distinguish uniquely, the functional characteristics are provided. Every object
property in the PMO is defined with a specific domain and range (which happens
to be class again).

Data properties are the attributes that define a class. For example, sensor
attributes in a data property that defines the sensor class and the information
like sensitivity, linearity, accuracy, range etc can be derived for a particular
sensor instance. These are listed in Table 1.

Table 1. PMO Ontology Details

Domain
Object

Property
Range Description

– PmDE
– FcDE dependsOn

– FcDE
– Failure

Condition

Failure depends on failure condi-
tion.

Machine
Failure

hasFC
Failure
Condition

Machine fails on meeting one of its
failure condition.

Failure hasFDE

– Failure
Condition

– FcDE
Failures are detected using detect-
ing engines.

Measurement
Bounds

isDefinedFor

– Machine
Measurements

– Machine

Limiting bounds are defined for
measuring every parameter of ma-
chine.

Machine
Measure-
ments

isUsedBy FcDE
Failure condition detection engine
uses machine measurements.
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4 PdM Architecture

In this section, we discuss the architecture designed for the discovery techniques
of devices for industrial internet using predictive analytic mechanism.

4.1 Overview of Architecture

The PM architecture can be explicitly explained based on a layered architec-
ture as shown in Figure 3. This architecture comprises four layers, each with
specific functionality. Here, the layered architecture focuses on the processing
of edgent components. The PM architecture includes four layers: Sensor Layer
(SL), Topology Layer (TL), Provider Layer (PL), Application Layer (AL). The
sensor layer lies at the bottom part of the architecture. It holds the collection
of sensors that are embedded on the machine to monitor its working condition.
These sensors collect the information about its surrounding environment and
a set of data is taken for consideration. These data collected from the sensor
layer is given to the second layer in architecture i.e., topology layer that cre-
ates a specific data stream out of the data collected from the sensor layer based
on the failure conditions that are to be monitored by the experts. These data
streams are fed above by the provider layer which is responsible for handling the
execution of failure prediction and failure detection of the machine.

Sensors Machines Edge Devices

Data Streams PMO

Predictive Maintenance
Detection Engine (PmDE)

Failure Condition
Detection Engine (FcDE)

GUI User Groups

                                    Physical Layer

                           Topology Layer

                            Provider Layer

                            Application Layer

Fig. 3. PdM Component Architecture

Firstly, the physical layer consists of a hub, a machine and a group of edge de-
vices. These three components are embedded and interconnected to one another
in the physical layer itself. The machine components are further embedded with
respective sensors to read the machine environment conditions. Secondly, the
topology layer includes a set of databases that stores the data stream values and
a PMO database that backlogs the populated datastreams. Thirdly, the provider
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layer frames four different data containers namely FcDE database (FcDE-DB),
PmDE database (PmDE-DB), Rule-Set database (RS-DB) and Processed Data
Stream (PDS-DB) database. The FcDE-DB holds the prediction results, RS-
DB comprises of well-defined rules that determine machine failure, the PDS-DB
incorporates the processed data stream from the previous layer. Finally, the com-
ponents of application layer are the more relevant real world. The three main
components of the application layer are users group, enterprises that use our
application and lastly the repair consultant/handyman.

4.2 Workflow

The real-time sensors planted within the machine environment, reads the values
to fetch its surrounding area conditions. Every stream is stored, pre-processed
and populated into the PMO-DB. It encompasses all of the processed data stream
values and sends the same to the provider layer. The FcDE-DB excavates the
failure condition of a machine and compares the data with the input data streams
whereas the PmDE-DB detects a fault in a machine by correlating the processed
input data stream with pre-defined set of rules from RS-DB. The result of PmDE
is given to the enterprise via the user interface in the application layer.

4.3 Example

Fault Detection in Boiler Machine is describes as example. There are two main
conditions for a boiler machine to fail. It can fail either if there is creep in
temperature of boiler machine or due to the substantial wall thinning. The cir-
cumstances that lead to temperature creep of a boiler machine are tank-burst,
tank-deposit or broken-fill-valve. On the other hand, we have the boiler machine
failure due to substantial wall thinning condition. There are four cases that mar-
gin the wall thinning conditions i.e., tank-erosion, tank-deposit, tank-surge, and
tank-tube-leak. Correspondingly, the erosion-FcDE, deposit-FcDE, surge-FcDE
and leak-FcDE are devoted failure condition detection engines.

As mentioned earlier the sensors nested within a boiler machine are ultra-
sonic sensors, pressure sensors, infra-red sensors, and flow sensors. These dedi-
cated FcDEs are fed with the corresponding data streams like the tempCreepDS
(temperature creep data stream) and thinWallDS( wall thinning data stream).
The tempCreepDS is further populated with burstDS, depositDS, and valveDS.
Likewise, the thinWallDS is colonized with erosionDS, depositDS, surgeDS, and
leakDS. The respective sensors for these, collect the datasets and send the data
to PMO-DB. In turn, the PMO-DB compiles the rules set and analyzes the ma-
chine condition measurements, measurement bounds and hence PmDE gives the
output in terms of fault detection.
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5 Experiments and Results

5.1 Dataset Description

For the use-case boiler machine, we have taken nine sensors into consideration
which measures required environmental parameters. We collected the sensor data
from internet. These data sets are fed into the PdM machines in the form of input
data.

5.2 Implementation and Experimental Setup

Fig. 4. Result Evaluations

we analyzed the proposed failure detection engines and compared the obser-
vations with old result statistics. Firstly, we created detection engines for every
use case as shown in Figure 4 and made use of reference PMO architecture . In
order to detect the failure we require the sensor readings that are fit into the use
case machines. Using edgent technology we get specific data streams from every
sensor for e.g., Temperature sensor gives temperature reading of boiler every 1
to 2 ms in the form of data streams. Similarly all the sensors that are involved
in the process of failure detection of boiler, are activated and data streams are
collected and then fed into detection engines.

As shown in Figure 5 the number of failures grows when the machine is used
for a longer period of time. Here, the proposed model of predictive maintenance
is not being implemented. Therefore, the boiler machine failures are increasing
linearly. In similar conditions when the proposed model of PdM is implemented,
the results are shown in Figure 6. Here, the number of failures are relatively less
when compared.
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6 Conclusions

This paper proposes a novel and efficient yet simple way of predicting a machine’s
failure beforehand. The set of rules are to standardize the conditions of machine
parts. If the machine parts performance does not match the rule standards,
the probability of machine failing is discovered. Apparently, these predictive
maintenance engines are set up exclusive to a machine and hence is effective as
there’s no redundancy of data.
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