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Abstract

Large-scale computing environments, such as TeraGrid,

Distributed ASCI Supercomputer (DAS), and Grid’5000,

have been using resource co-allocation to execute applica-

tions on multiple sites. Their schedulers work with requests

that contain imprecise estimations provided by users. This

lack of accuracy generates fragments inside the schedul-

ing queues that can be filled by rescheduling both local

and multi-site requests. Current resource co-allocation so-

lutions rely on advance reservations to ensure that users

can access all the resources at the same time. These co-

allocation requests cannot be rescheduled if they are based

on rigid advance reservations. In this work, we investigate

the impact of rescheduling co-allocation requests based

on flexible advance reservations and processor remapping.

The metascheduler can modify the start time of each job

component and remap the number of processors they use

in each site. The experimental results show that local jobs

may not fill all the fragments in the scheduling queues and

hence rescheduling co-allocation requests reduces response

time of both local and multi-site jobs. Moreover, we have

observed in some scenarios that processor remapping in-

creases the chances of placing the tasks of multi-site jobs

into a single cluster, thus eliminating the inter-cluster net-

work overhead.

1 Introduction

One of the promises of Grid Computing is to enable the

execution of applications across multiple sites. These ap-

plications can be bag-of-tasks, workflows or parallel appli-

cations based on message passing paradigm. While bag-

of-tasks do not require all the resources to be available

at the same time, some phases of workflows and parallel

applications do require simultaneous access to resources

spread over multiple sites—problem known as resource co-

allocation [7].

Large-scale computing environments, such as TeraGrid,

Distributed ASCI Supercomputer (DAS), and Grid’5000,

are using resource co-allocation to execute applications on

multiple sites. TeraGrid has deployed Generic Universal

Remote (GUR) [32] and Highly-Available Resource Co-

allocator (HARC) [18], the DAS project has developed

KOALA [19], and Grid’50001 relies on the OAR(Grid)

scheduler [5] to allow the execution of applications requir-

ing co-allocation. Semiconductor processing [28] and com-

putational fluid dynamics [9] are some examples of appli-

cations that have been used on multi-site environments.

Some of the reasons for requiring resource co-allocation

are [27]: (i) applications may require certain computing

power or different resources that are not available in a sin-

gle site; or (ii) users may want to reduce the response time

of their applications by using resources from multiple sites.

Researchers have also investigated how co-allocation can

reduce the job response time by merging fragments of mul-

tiple scheduling queues considering the network overhead

associated with the execution [4, 11, 14].

Most of the current resource co-allocation solutions rely

on advance reservations [8,10,13,18,23]. Although advance

reservations are important to guarantee that resources are

available at the expected time, they reduce resource utiliza-

tion due to the inflexibility introduced in scheduling other

jobs around the reserved slots [27]. To overcome this prob-

lem, many researchers are working with flexible (or elastic)

advance reservations, i.e. requests that have relaxed time

intervals [12, 16, 20, 24, 25]. Nevertheless, the use of these

flexible advance reservations for resource co-allocation has

been barely explored [15].

By introducing flexibility to the advance reservations

of co-allocation requests, schedulers can hence reschedule

them to increase system utilization and improve response

time of both local and multi-site jobs. This is particu-

1Grid’5000 had approximately 6000 co-allocation requests in 2.5 years,

i.e. an average of 200 requests per month. Data collected from Grid Work-

loads Archive: http://gwa.ewi.tudelft.nl/pmwiki
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larly necessary due to the wrong estimations provided by

users [17, 29, 31].

Little research has been devoted to resource co-

allocation with rescheduling support [1, 2]. Therefore

the primary contribution of this paper is a resource co-

allocation model based on flexible advance reservations

and processor remapping, which allows the rescheduling

of multi-site parallel jobs (Sections 3 and 4). The flexi-

ble advance reservations are used to shift the start time of

the job components, whereas the processor remapping al-

lows multi-site jobs to change the number of processors and

clusters they use. These changes make it possible to remap

multi-site jobs to a single cluster, thus eliminating unnec-

essary network overhead. The secondary contribution is

the evaluation of scheduling co-allocation requests consid-

ering both user-estimated and actual runtimes, as well as

response time guarantees for local and multi-site requests

(Section 5). Current research on co-allocation assumes ac-

curate estimation of application runtimes and does not pro-

vide users with response time guarantees once they receive

their scheduling time slots.

We have evaluated our model and scheduling strategies

with extensive simulations and analyzed several metrics to

have a better understanding of the improvements achieved

here. We also discuss issues on deploying the model on real

environments. It is important to highlight that some of the

ideas proposed in this work can be directly applied to the

co-allocation of other resources such as network links, as

well as scheduling of parallel phases in workflows.

2 Problem Description

A metascheduler books resources across multiple au-

tonomous sites to execute parallel jobs. Each site has its

own scheduling queue and policies to manage both local

and external requests. As resource providers rely on inac-

curate runtime estimations, they must update their queues to

produce better schedules. Therefore, they may also need to

modify parts of a co-allocation request, named sub-requests

or sub-jobs. However, all these sub-requests must be syn-

chronized, i.e. starting at the same time, otherwise the par-

allel applications cannot be executed.

Computing environment. The resources considered are

space-shared high performance computing (HPC) ma-

chines, e.g. clusters or massively parallel processing (MPP)

machines, M = {m1,m2, ...mk}, where k is the total num-

ber of machines. Each machine mi ∈ M has a set of pro-

cessors, R = {r1, r2, ...rn} where n is the total number

of processors in a given machine mi. For simplicity, we

assume that all the processors R in a given machine mi

are homogenous—which is a reasonable assumption con-

sidering that most of the parallel machines are composed

of homogeneous processors. The machines in M can be

heterogeneous. We consider that there is a network inter-

connecting these machines, which can be either exclusive

or shared in an open environment such as the Internet.

Resource Management Systems. These systems, also

named local schedulers, schedule both local and exter-

nal requests in a machine mi. We do not assume that

a metascheduler has complete information about the lo-

cal schedulers. In our scenario, rather than publishing the

complete scheduling queue to the metascheduler, the lo-

cal schedulers may want to only publish certain time slots

to optimize local system usage. Moreover, in our com-

puting environment schema the resource providers have no

knowledge about one another. The scheduling management

policy we use here is FIFO with conservative backfilling,

which provides completion time guarantees once users re-

ceive their scheduling time slots [31].

Application model. We investigate resource co-allocation

for parallel applications requiring simultaneous access to

resources from multiple sites. We consider applications

that are mainly compute-intensive. Data-intensive applica-

tions have different requirements, and therefore we do not

consider them in this work. To co-allocate resources, we

consider the worst-case scenario in terms of starting time,

i.e. all application processes must start exactly at the same

time. This is mainly required by parallel applications with

data exchange among the processes. These applications

have a delay when using inter-cluster communication. The

metascheduler decomposes a request to execute a parallel

application into k sub-requests, where each sub-request is

sent to a machine mi. Note that, in some cases, the user

may want to incorporate some constraints to decompose the

request.

Metrics. Our main aim is to optimize job response time, i.e.

the difference between the submission time of the user re-

quest and its completion time. We also evaluate system uti-

lization, number of machines used by each job, number of

jobs that received resources before expected, among other

metrics.

3 Flexible Resource Co-Allocation Model

The flexible resource co-allocation (FlexCo) model pro-

posed here is inspired by existing work on flexible advance

reservations [12, 16, 20, 21, 24, 25]. A request, or a multi-

site job, following this model can have relaxed start and

completion times, and the flexibility to define the number

of processors used in each machine. A FlexCo request is

composed of sub-requests that are submitted to different

machines. Each sub-request may have a different number

of resources with different capabilities. The following pa-

rameters and notations represent a multi-site job j based on

the FlexCo model:
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Figure 1. Operations of a FlexCo request.

• Rmk

j : number of processors required in each machine

mi, where k is the total number of sub-requests of the

job j;

• T s
j : job start time—determined by the scheduler;

• T e
j : job execution time;

• T x
j : job estimated execution time;

• T r
j : job ready time—minimum start time determined

by the user;

• T c
j : job completion time—defined as T s

j + T e
j ;

• T xo
j : job estimated network overhead when using mul-

tiple sites.

A FlexCo request has two operations (Figure 1): (i) Start

time shifting: changes the start time according to the re-

laxed time interval—the change must be the same for all

sub-requests; and (ii) Processor remapping: changes the

number of required resources of two or more sub-requests.

Combining both operations is also important for the sched-

uler. In Figure 1, we observe that after using the processor

remapping operation, it is possible reduce job response time

by shifting the sub-requests. Note that the schedulers per-

form these operations while jobs are waiting for resources,

and not during runtime. The idea here is to redefine the

request specifications, not to migrate jobs.

Start Time Shifting (Shift): finding a common time slot

may be difficult for users, hence once they commit the co-

allocation based on advance reservations, they will not be

willing to change it. The modification of the start time may

be useful for one resource provider in order to fill a fragment

in the scheduling queue. If the other resource providers are

also willing to shift the advance reservations to start earlier,

the users will also have benefits. Note that this operation is

not application dependent in the sense that it is only a shift

on the start time of the user application.

Processor Remapping (Remap): A user requiring a cer-

tain number of resources tends to decompose the request

statically according to the available providers at a certain

time. Therefore users may not be able to reduce the start

time of their applications when resources become available.

To overcome this problem, Remap allows automatic remap-

ping of the processors once the sub-requests are queued.

This operation is application dependent since the through-

put offered by each resource provider may influence the

overall application performance. Thus, users may also want

to incorporate restrictions on how the metascheduler should

map and remap their requests. Branch-and-bound-based

solvers for optimization problems are an example of appli-

cation that is flexible to deploy and hence can have ben-

efits from this operation. For network demanding appli-

cations, this operation allows the reduction of the number

of resource providers required by a co-allocation request,

which has a direct impact on the network utilization.

4 Scheduling of Multi-Site Requests

The scheduling of a multi-site request consists in finding

a free common time slot that meets the job requirements in

a set of machines. We consider the scheduling to be on-line,

where users submit jobs to resource providers over time and

their schedulers make decisions based on only currently ac-

cepted jobs. The scheduling involves the manipulation of

time slots, which are data structures composed of four val-

ues: (i) tsid: identification; (ii) tss: start time; (iii) tsc:

completion time; and (iv) tsn: number of resources avail-

able in this time slot.

4.1 Initial scheduling

The metascheduler performs the initial scheduling of an

external request by following these four steps:

1. Ask the resource providers for the list of available time

slots, TS = {ts1, ts2, ..., tsn}, where n is the number

of time slots.

2. Find the earliest common start time T s
j that meets the

request constraints, such as number of resources, start

time, and completion time.

3. Generate a list of sub-requests.

4. Submit the sub-requests to the resource providers ac-

cordingly.
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In order to find the common start time T s
j , the

metascheduler verifies the values of T s
j according to the list

of available time slots TS and gets the maximum number

of resources available in each machine mi starting at time

T s
j that fits the job. Note that if the number of resources

available in a particular mi is greater than or equal to Rj ,

there is no need to consider the network overhead T xo
j since

the job will be submitted to a single machine mi.

When generating the list of sub-requests, the metasched-

uler could follow different approaches. For example, it

could try to decompose the multi-site jobs evenly in order

to maintain the same load in each resource provider. In our

approach, the metascheduler allocates as many processors

as possible from a single resource provider per request. Ev-

ery time a new external job arrives, the metascheduler uses

the next-fit approach to give priority to the next resource

provider. The idea behind the second approach is to in-

crease the chances of fitting some multi-site jobs in a single

site over time due to the rescheduling.

4.2 Rescheduling

As described in the previous subsection, the initial

scheduling of a multi-site job involves manipulation and

transfer of time slots over the network. In order to resched-

ule multi-site jobs, one must consider the cost-benefit of

transferring and manipulating time slots to optimize the

schedule. Therefore, our approach is to reschedule a multi-

site job only when the resource provider is not able to find

a local job that fills the fragment generated due to the early

completion of a job. The local schedulers use Algorithm 1

to reschedule jobs whenever a job completes before its esti-

mated time. The rescheduling is based on the compressing

method described by Weil and Feitelson [31], which con-

sists in bringing the jobs to the current time according to

their estimated start times, not their arrival times (Lines 3-

5, 11-14). This avoids the violation of the completion time

of jobs given by the original schedule. When implementing

the algorithm, one could keep a list of jobs sorted accord-

ing to start time instead of sorting them when rescheduling

(Line 2).

Once the metascheduler receives a notification for

rescheduling a multi-site job ji from the resource provider

(Line 8), it performs the rescheduling in a similar way as

described in the initial scheduling procedures (Section 4.1).

The main differences are that (i) for the Shift operation, the

metascheduler asks for time slots only from those resource

providers which hold the sub-requests of the multi-site job

ji; and (ii) for the Remap operation the metascheduler con-

tacts other resource providers rather than only the original

ones. In addition, for this latter operation, the metasched-

uler may remove sub-requests from resource providers.

When deploying the model, a service, which we call here

Algorithm 1: Pseudo-code for rescheduling jobs,

which is executed on the local schedulers when a job

completes before the expected time.

coallocRescheduled← false1

Sort Qw | {T s
1
≤ T s

2
... ≤ T s

n}, where n is number of2

jobs in the waiting queue

for ∀ji ∈ Qw do3

if ji is local job then4

Schedule job with backfilling5

while there are idle resources do6

for ∀ multisite jobs ji in Qw do7

Contact metascheduler to reschedule ji8

if T c
ji
≤ previousT c

ji
then9

coallocRescheduled← true10

if coallocRescheduled = true then11

for ∀ji ∈ Qw do12

if ji is local job then13

Schedule job with backfilling14

the metascheduler, has to be available to access the informa-

tion of multi-site jobs such as total number of required pro-

cessors and location of resource providers holding the sub-

requests. An alternative is to associate to each sub-request a

list of the resource providers holding the other sub-requests.

The first approach brings the simplicity to the middleware

of the local schedulers since they need to negotiate and keep

track of only a single entity, i.e. the metascheduler. How-

ever, such a centralized entity becomes a bottleneck. The

second approach has opposite advantages and drawbacks.

5 Evaluation

In order to see the effects of a long-term usage of our

model, we decided to evaluate it by means of simulations.

We have used our event-driven simulator, named PaJFit

(Parallel Job Fit) [21], which we have extended to sup-

port multi-site environments and FlexCo requests. We used

real traces from supercomputers available at the Parallel

Workloads Archive2 to model the user applications. We

compared the use of Shift and Shift with Remap opera-

tions against the co-allocation model based on rigid ad-

vance reservations, which provides response time guaran-

tees but suffers from high fragmentation inside the resource

provider’s scheduling queues. This section presents a de-

tailed description of the environment setup and metrics fol-

lowed by the results and our analysis.

2Parallel Workloads Archive:

http://www.cs.huji.ac.il/labs/parallel/workload
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Table 1. Summary of workloads.

Location Procs Jobs Actual—Estimated Load

Cluster 1 430 10,757 60%—225%

Cluster 2 240 4,722 65%—138%

Cluster 3 128 4,686 88%—376%

External 798 170 10%—35%

External 798 339 30%—77%

5.1 Experimental configuration

Wemodeled an environment composed of 3 clusters with

their own scheduler and load, and one metascheduler which

receives external jobs that can be executed in either a sin-

gle or multiple clusters. For the local jobs we used the

traces: 430-node IBM SP2 from The Cornell Theory Cen-

ter (CTC SP2v2.1), 240-procs AMDAthlonMP2000+ from

High-Performance Computing Center North (HPC2N v1.1)

in Sweden, 128-node IBM SP2 from The San Diego Super-

computer Center (SDSC SP2 v3.1). For the external jobs

we used the trace of a larger machine, the San Diego Su-

percomputer Center Blue Horizon with 1,152 processors:

144-node IBM SP, with 8 processors per node, considering

jobs requiring at least 128 processors (SDSC BLUE v3.1).

We simulated 45 days of these traces. In order to evaluate

our model under different conditions, we varied the exter-

nal load on the system by changing the arrival times of the

external jobs.3 Table 1 summarizes the workload charac-

teristics. We can observe that the estimated load is much

higher than the actual load due to the wrong user estima-

tions. More details on the workloads can be found at the

Parallel Workloads Archive.

For the network overhead of multi-site jobs, as there is

no trace available with such information, we have assigned

to each job a random value defined by a Poisson distribu-

tion with λ=20. A study by Ernemann et al. [11] shows that

co-allocation is advantageous when the penalty for network

overhead is up to approximately 25%. Therefore, we lim-

ited the network overhead under this value.

We evaluated the system utilization and response time,

i.e. the difference between the job completion time and

submission time. In addition, we analyzed the behavior

of multi-site jobs due to the rescheduling. We investigated

these metrics according to the runtime estimation precision

of all jobs in the system, which we varied from the origi-

nal value defined in the workload to 20% plus the original

value: e.g. if a job requests 10 minutes and it takes 6 min-

utes, we evaluate the execution with 6, 7, and 8 minutes.

The metrics are also a function of the external load.

3To vary the load we used a strategy similar to that described by

Shmueli and Feitelson to evaluate their backfilling strategy [26], but we

fixed the time interval and included more jobs from the trace.
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5.2 Results and analysis

In order to evaluate the response time, we have sepa-

rated the results for local and external jobs, Figures 2 and

3 respectively. We observe that rescheduling multi-site jobs

brings benefits for both local and external jobs. Local jobs

have more benefit because they can better fill the gaps in the

head of the scheduling queue due to their characteristics, i.e.

many jobs required less time and fewer processors. By us-

ing co-allocation based on rigid advance reservations, some

local jobs may not be placed at the head of the scheduling

queue since they would overlap with the advance reserva-

tions. Therefore, the benefit for local jobs is mainly due

to those jobs that had this problem, and therefore, by shift-

ing the multi-site jobs, some local jobs could be shifted as

well. We can also observe from these results that in most

scenarios, Shift+Remap provides better schedules than only

the Shift operation. That is because of the higher flexibility
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the Shift+Remap gives to the scheduler and by the fact that

some multi-site jobs can be remapped to a single cluster.

Filling the gaps using FlexCo requests has a direct im-

pact on the system utilization, as can be observed in Figure

4. For system utilization we can see that Shift+Remap con-

sistently provides better results than only shifting the re-

quests, reaching its peek in an improvement of over 10%

in relation to co-allocation based on rigid advance reser-

vations. For both response time and system utilization we

observe that the higher the imprecision on runtime estima-

tions, the better the benefit of rescheduling multi-site jobs.

To better understand what happens with the multi-site

jobs, we measured the number of jobs remapped to a single

cluster due to the rescheduling. From Figure 5 we observe

that approximately 20% of multi-site jobs, that otherwise

would use inter-cluster communication, were migrated to a

single cluster. Different from the utilization and response

time, this metric does not present a smooth behavior. That

is because moving jobs to a single site is highly dependent

on the characteristics and packing of the jobs.

Figure 6 and 7 illustrate the total number of clusters used

by the external jobs. We observe that when the external

load is only 10% more jobs can be moved to a single clus-

ter. However, when the system has a higher load, it is more

difficult to find big spaces in a single cluster. Moreover, in

this second case, multi-site jobs may end up accessing frag-

ments of more sites to reduce their response time.

Figure 8 illustrates the percentage of multi-site jobs that

were initially submitted to more than one site and that

were able to access the resources before expected due to

rescheduling. We observe that this improvement occurs for

almost all multi-site jobs for all scenarios. Both operations

helped to improve the schedule of multi-site jobs, however,

as we have already showed, Shift+Remap provides a higher

impact on the improvement.

The experimental results presented in this section

demonstrate that local jobs are not able to fill all the frag-

ments in the scheduling queues and therefore co-allocation

jobs need to be rescheduled. The more the users are im-

precise with their estimations the more important is the

rescheduling. That is because the need for the rescheduling

increases with the number and size of the fragments gener-

ated by the wrong estimations in the head of the scheduling

queues.

6 Related Work

Czajkowski et al. [6] focus on failures of co-allocation

requests. Different from our work, they do not use advance

reservations due to the lack of support of the local resource

managers at that time. They rely on a solution based on the

current availability of the resources and queue-time estima-

tions of the resource providers. Later, Czajkowski et al. [7]

propose an approach in which users could modify their co-

allocation requests via add, delete, and substitute opera-

tions. Resources could be classified in categories, required,

interactive and optional, in order to simplify the manage-

ment of resource failures. Their work does not consider the

rescheduling of multi-site jobs without user interaction.

Foster et al. [13] propose the Globus Architecture for

Reservation and Allocation (GARA), which aims to pro-
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vide a platform with support for quality of service guaran-

tees through advance reservations. Their work focuses more

on middleware aspects rather than on scheduling optimiza-

tions.

Alhusaini et al. [1,2] investigate the mapping of indepen-

dent tasks requiring co-allocation on distributed resources

in order to minimize schedule length. Their solution is

based on a two-phase approach. The first phase is off-line

planning where the scheduler assigns tasks to resources as-

suming that all applications hold all the required resources

for their entire execution. The second phase is run-time

adaptation where the scheduler makes decisions according

to the actual computation and communication costs, which

may be different from the estimated costs used in the first

phase. Applications may release some resources before the

completion of the execution. Similar to our work, they con-

sider the wrong estimation of job requirements and the need

of a rescheduling phase to overcome this problem. How-

ever, they assume that each task to be mapped is known

a priori and that all the resources are exclusive for the co-

allocation tasks, i.e. there are no local jobs competing for

resources.

MacLaren et al. [18] discuss the problem of resource co-

allocation, in particular focusing on fault tolerance, and pro-

pose a system called HARC (Highly-Available Robust Co-

allocator). Their system uses a two-phase approach based

on advance reservations to handle the distributed transaction

problem. Similar to our approach, the scheduler does not

have access to the scheduling queue of the resource man-

agers but asks for free time slots. The system supports the

creation of a reservation, cancellation, modification of num-

ber of requested CPUs and time of the reservation. Never-

theless, they do not address issues such as finding an opti-

mal schedule or managing the reservations once they have

been made. Therefore, we see HARC as a middleware that

provides services that can be used to deploy the policies de-

scribed in this paper.

Azzedin et al. [3] propose a co-allocation mechanism

that does not rely on advance reservations. Their schema,

called synchronous queuing (SQ), synchronizes the sub-

tasks at the scheduling cycles (or more often), by speeding

them up or slowing them down. One of the main problems

of this approach is the co-allocation skew, i.e. time dif-

ference between the fastest running and the slowest running

subtask, may be long. Therefore, resources would not be ef-

fectively utilized. In addition, depending on the application

and computing environment, it is not possible to modify the

execution speed of sub-tasks. The strategies presented in

this paper can overcome the limitations Azzedin et al. men-

tioned about using advance reservations for co-allocation.

Bucur and Epema [4] investigate scheduling policies and

different queuing structures for resource co-allocation in

multi-cluster systems. They evaluate the differences of hav-

ing a single global scheduler, only local schedulers and both

structures together, as well as different priorities for local

and external. Their work does not use advance reservations.

Therefore, it is not possible to give completion time guaran-

tees to the users requiring co-allocation and local resources

may be idle until all the co-allocation requirements are sat-

isfied.

7 Conclusions and Further Work

In this paper, we have shown the impact of reschedul-

ing co-allocation requests in environments where resource

providers deal with inaccurate runtime estimations. As lo-

cal jobs are not able to fill all the fragments in the schedul-

ing queues, the co-allocation requests should not be based

on rigid advance reservations. Our flexible co-allocation

(FlexCo) model relies on shifting of advance reservations

and processor remapping. These operations allow the

rescheduling of co-allocation requests, therefore overcom-

ing the limitations of existing solutions in terms of response

time guarantees and fragmentation reduction.

Regarding the rescheduling operations, Shift provides

good results against the rigid-advance-reservation-based

co-allocation and is not application dependent since it only

changes the start time of the applications. Shift with Remap

provides even better results but is application dependent

since it also modifies the amount of work submitted to each

site. Parallel applications that have flexible deployment

requirements, such as branch-and-bound-based solvers for

optimization problems, can have benefits from the Remap

operation. In our experiments we showed that depending

on the system load, Remap can reduce the number of clus-

ters used by multi-site requests. In the best case, a job ini-

tially mapped to multiple sites can be remapped to a single

site, thus eliminating unnecessary network overhead, which

is important for network demanding parallel applications.

As future work we will explore the use of system-

generated predictions rather than user runtime estimates

[22, 30]. As user estimations are usually very impre-

cise, system-generated predictions may reduce the need for

rescheduling. However, this hypothesis needs to be veri-

fied. We will also consider requests with underestimated

usage times.
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