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Abstract: Computational grids that couple geographically distributed resources are becoming the de-facto 
computing platform for solving large-scale problems in science, engineering, and commerce. Software to 
enable grid computing has been primarily written for Unix-class operating systems, thus severely limiting 
the ability to effectively utilize the computing resources of the vast majority of Windows-based desktop 
computers. Addressing Windows-based enterprise grid computing is particularly important from the 
software industry’s viewpoint where interest in grids is emerging rapidly. Microsoft’s .NET Framework has 
become near-ubiquitous for implementing commercial distributed systems for Windows-based platforms, 
positioning it as the ideal platform for developing peer-to-peer or enterprise grid computing environments. 
This chapter introduces design requirements of enterprise grid systems and discusses various middleware 
technologies that meet them. It presents a .NET-based Grid framework, called Alchemi developed as part 
of the Gridbus project. Alchemi provides the runtime machinery and programming environment required to 
construct enterprise grids and develop grid applications. It allows flexible application composition by 
supporting an object-oriented application programming model in addition to a file-based job model. Cross-
platform support is provided via a web services interface and a flexible execution model supports dedicated 
and non-dedicated execution by grid nodes. 

  

Keywords: Peer-to-peer computing, enterprise computing, grid computing, Web services, .NET, and grid 
application programming. 

1 Introduction 
The idea of metacomputing [2] is very promising as it enables the use of a network of many independent 
computers as if they were one large parallel machine, or virtual supercomputer at a fraction of the cost of 
traditional supercomputers. While traditional virtual machines (e.g. clusters) have been designed for local 
area networks, the exponential growth in Internet connectivity allows this concept to be applied on a much 
larger scale. This, coupled with the fact that desktop PCs (personal computers) in corporate and home 
environments are heavily underutilized – typically only one-tenth of processing power is used – has given 
rise to interest in harnessing these unused CPU cycles of desktop PCs connected over the Internet [20]. 
This new paradigm has been dubbed as peer-to-peer (P2P) computing [18], which is being recently called 
enterprise desktop grid computing [17]. 
 
Although the notion of desktop grid computing is simple enough, the practical realization of a peer-to-peer 
grid poses a number of challenges. Some of the key issues include: heterogeneity, resource management, 
failure management, reliability, application composition, scheduling and security [13]. Further, for wide-
scale adoption, desktop grid computing infrastructure must also leverage the power of Windows-class 
machines since the vast majority of desktop computers run variants of the Windows operating system. 
 
However, there is a distinct lack of service-oriented architecture-based grid computing software in this 
space. To overcome this limitation, we have developed a Windows-based desktop grid computing 
framework called Alchemi implemented on the Microsoft .NET Platform. The Microsoft .NET Framework 
is the state of the art development platform for Windows and offers a number of features which can be 
leveraged for enabling a computational desktop grid environment on Windows-class machines. 
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Alchemi was conceived with the aim of making grid construction and development of grid software as easy 
as possible without sacrificing flexibility, scalability, reliability and extensibility. The key features 
supported by Alchemi are: 

� Internet-based clustering [21][22] of Windows-based desktop computers; 
� dedicated or non-dedicated (voluntary) execution by individual nodes; 
� object-oriented grid application programming model (fine-grained abstraction); 
� file-based grid job model (coarse-grained abstraction) for grid-enabling legacy applications and 
� web services  interface supporting the job model for interoperability with custom grid middleware 

e.g. for creating a global, cross-platform grid environment via a custom resource broker 
component. 

 
The rest of the chapter is organized as follows. Section 2 presents background information on P2P and grid 
computing and Section 3 discusses a basic architecture of enterprise desktop Grid system along with 
middleware design considerations. Section 4 introduces desktop grids and discusses issues that must be 
addressed by a desktop grid. Section 4 briefly presents various enterprise grid systems along with their 
comparison to our Alchemi middleware. Section 5 presents the Alchemi desktop grid computing 
framework and describes its architecture, application composition models and its features with respect to 
the requirements of a desktop grid solution. Section 6 deals with the system implementation and presents 
the lifecycle of an Alchemi-enabled grid application demonstrating its execution model. Section 6 presents 
the results of an evaluation of Alchemi as a platform for execution of applications written using the 
Alchemi API. It also evaluates the use of Alchemi nodes as part of a global grid alongside Unix-class grid 
nodes running Globus software. Finally, we conclude the chapter with work planned for the future. 

2 Background 
In the early 1970s when computers were first linked by networks, the idea of harnessing unused CPU 
cycles was born [34]. A few early experiments with distributed computing—including a pair of programs 
called Creeper and Reaper—ran on the Internet's predecessor, the ARPAnet. In 1973, the Xerox Palo Alto 
Research Center (PARC) installed the first Ethernet network and the first fully-fledged distributed 
computing effort was underway. Scientists at PARC developed a program called “worm” that routinely 
cruised about 100 Ethernet-connected computers.  They envisioned their worm migrating from machine to 
another harnesses idle resources for beneficial purposes. The worm would roam throughout the PARC 
network, replicating itself in each machine's memory. Each worm used idle resources to perform a 
computation and had the ability to reproduce and transmit clones to other nodes of the network. With the 
worms, developers distributed graphic images and shared computations for rendering realistic computer 
graphics. 

Since 1990, with the maturation and ubiquity of the Internet and Web technologies along with 
availability of powerful computers and system area networks as commodity components, distributed 
computing scaled to a new global level. The availability of powerful PCs and workstations; and high-speed 
networks (e.g., Gigabit Ethernet) as commodity components has lead to the emergence of clusters [35] 
serving the needs of high performance computing (HPC) users. The ubiquity of the Internet and Web 
technologies along with the availability of many low-cost and high-performance commodity clusters within 
many organizations has prompted the exploration of aggregating distributed resources for solving large 
scale problems of multi-institutional interest. This has led to the emergence of computational Grids and 
P2P networks for sharing distributed resources. The grid community is generally focused on aggregation of 
distributed high-end machines such as clusters whereas P2P community is looking into sharing low-end 
systems such as PCs connected to the Internet for sharing computing power  (e.g., SETI@Home) and 
contents (e.g., exchange music files via Napster and Gnuetella networks). Given the number of projects and 
forums [36][37] started all over the world in early 2000, it is clear that the interest in the research, 
development, and deployment of Grid and P2P computing technologies, tools, and applications is rapidly 
growing. 

3 Desktop Grid Middleware Considerations 
Figure 1 shows the architecture of a basic desktop grid computing system. Typically, users utilize the API’s 
and tools to interact with a particular grid middleware to develop grid applications. When they submit grid 
application for processing, units of work are submitted to a central controller component which co-
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ordinates and manages the execution of these work units on the worker nodes under its control. There are a 
number of considerations that must be addressed for such a system to work effectively. 
 

Security Barrier - Resource Connectivity behind Firewalls  

Firstly, worker nodes and user nodes must be able to connect to the central controller over the Internet or 
LAN and the presence of firewalls and/or NAT servers must not affect the deployment of a desktop grid. 
 
Unobtrusiveness - No Impact on Running User Applications 
The execution of grid applications by worker nodes must not affect running user programs.  
 
Programmability - Computationally Intensive Independent Work Units 

As desktop grid systems span across high latency of the Internet environment, applications with a high ratio 
of computation to communication time are suitable for deployment and are thus typically embarrassingly 
parallel.  
 
Reliability – Failure Management 

The unreliable nature of Internet connections also means that such systems must be able to tolerate 
connectivity disruption or faults and recover from them gracefully. In addition, data loss must be 
minimized in the event of a system crash or failure. 
 
Scalability – Handle Large Users and Participants 
Desktop grid systems must be designed to support the participation of a large number of anonymous or 
approved contributors ranging from hundreds to millions. In addition, the system must support a number of 
simultaneous users and their applications. 
 
Security – Protect both Contributors and Consumers 
Finally, the Internet is an insecure environment and strict security measures are imperative. Specifically, 
users and their programs must only be able to perform authorized activities on the grid resources. In 
addition, users/consumers must be safeguarded against malicious attacks or worker nodes. 
 

 

Figure 1. Architecture of a basic desktop grid. 

 
Internet 

User uses API’s and tools 
to create and run grid 
applications. 

Central controller 
allocates units of 
computation to workers 
and stores results. 

Workers execute units of 
computation and return results to 
central controller. 

 
Internet 
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4 Representative Desktop Grid Systems 
In addition to its implementation based on a service-oriented architecture using state-of-the-art 
technologies, Alchemi has a number of distinguished features when compared to related systems. Table 2 
shows a comparison between Alchemi and some related systems such as Condor, SETI@home, Entropia, 
GridMP, and XtermWeb.  
 
Alchemi is a .NET-based framework that provides the runtime machinery and programming environment 
required to construct desktop grids and develop grid applications. It allows flexible application composition 
by supporting an object-oriented application programming model in addition to a file-based job model. 
Cross-platform support is provided via a web services interface and a flexible execution model supports 
dedicated and non-dedicated (voluntary) execution by grid nodes. 
 
Condor [19] system is developed by the University of Wisconsin at Madison. It can be used to manage a 
cluster of dedicated or non-dedicated compute nodes. In addition, unique mechanisms enable Condor to 
effectively harness wasted CPU power from otherwise idle desktop workstations. Condor provides a job 
queuing mechanism, scheduling policy, workflow scheduler, priority scheme, resource monitoring, and 
resource management. Users submit their serial or parallel jobs to Condor, Condor places them into a 
queue, chooses when and where to run the jobs based upon a policy, carefully monitors their progress, and 
ultimately informs the user upon completion. It can handle both Windows and UNIX class resources in its 
resource pool. Recently Condor has been extended (see Condor-G [38]) to support the inclusion of Grid 
resources within a Condor pool. 
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Table 2. Comparison of Alchemi and some related desktop grid systems. 

 
The Search for Extraterrestrial Intelligence (SETI) project [9][14], named SETI@Home, based at the 
University of California at Berkeley is aimed at doing good science in such a way that it engages and 
excites the general public. It developed a desktop grid system that harnesses hundreds and thousands of 
PCs across the Internet to processing a massive amount of astronomy data captured daily by the Arecibo 
telescope in Puerto Rico. Its worker software runs as a screen saver on contributor computers. It is designed 
to work on heterogeneous computers running Windows, Mac, and variants of UNIX operating systems. 
Unlike other desktop systems, the worker module is designed as application specific software as it supports 
processing of astronomy application data only. 
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Entropia [17] facilitates a Windows desktop grid system by aggregating the raw desktop resources into a 
single logical resource. Its core architecture is centralized in which a central job manager administers 
various desktop clients.  The node manager provides a centralized interface to manage all of the clients on 
the Entropia grid, which is accessible from anywhere on the enterprise network. 
 
XtermWeb [16] is a P2P [15][18] system developed at the University of Paris-Sud, France. It implements 
three distinct entities, the coordinator, the workers and the clients to create a so-called XtermWeb network. 
Clients are software instances available for any user to submit tasks to the XtermWeb network. They 
submit tasks to the coordinator, providing binaries and optional parameter files and permit the end user to 
retrieve results. Finally, the workers are software parts spread among volunteer hosts to compute tasks. 
 
The Grid MP (MP) [23] is developed by United Devices whose expertise is mainly drawn through the 
recruitment of key developers of SETI@Home and Distributed.Net enterprise grid system. Like other 
systems, it supports harnessing and aggregation compute resources available on their corporate network. It 
basically has a centralized architecture, where a Grid MP service acting as a manager accepts jobs from the 
user, schedules them on the resources having pre-deployed Grid MP agents. The Grid MP agents can be 
deployed on clusters, workstations or desktop computers. Grid MP agents receive jobs and execute them on 
resources, advertise their resource capabilities on Grid MP services and return results to the Grid MP 
services for subsequent collection by the user. 

 

 

Figure 2. A layered architecture for a desktop grid computing environment. 

 

5 Alchemi Desktop Grid Framework 
Alchemi’s layered architecture for a desktop grid computing environment is shown in Figure 2. Alchemi 
follows the master-worker parallel computing paradigm [31] in which a central component dispatches 
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independent units of parallel execution to workers and manages them. In Alchemi, this unit of parallel 
execution is termed ‘grid thread’ and contains the instructions to be executed on a grid node, while the 
central component is termed ‘Manager’. 
 
A ‘grid application’ consists of a number of related grid threads. Grid applications and grid threads are 
exposed to the application developer as .NET classes / objects via the Alchemi .NET API. When an 
application written using this API is executed, grid thread objects are submitted to the Alchemi Manager 
for execution by the grid. Alternatively, file-based jobs (with related jobs comprising a task) can be created 
using an XML representation to grid-enable legacy applications for which precompiled executables exist. 
Jobs can be submitted via Alchemi Console Interface or Cross-Platform Manager web service interface, 
which in turn convert them into the grid threads before submitting then to the Manager for execution by the 
grid. 

5.1 Application Models 

Alchemi supports functional and well as data parallelism. Both are supported by each of the two models for 
parallel application composition – grid thread model and grid job model. 

5.1.1 Grid Thread Model 

Minimizing the entry barrier to writing applications for a grid environment is one of Alchemi’s key goals. 
This goal is served by an object-oriented programming environment via the Alchemi .NET API which can 
be used to write grid applications in any .NET-supported language. 
 
The atomic unit of independent parallel execution is a grid thread with many grid threads comprising a grid 
application (hereafter, ‘applications’ and ‘threads’ can be taken to mean grid applications and grid threads 
respectively, unless stated otherwise). The two central classes in the Alchemi .NET API are GThread and 
GApplication, representing a grid thread and grid application respectively. There are essentially two parts 
to an Alchemi grid application. Each is centered on one of these classes: 
 

� “Remote code”: code to be executed remotely i.e. on the grid (a grid thread and its dependencies) 
and 

� “Local code”: code to be executed locally (code responsible for creating and executing grid 
threads). 

 
A concrete grid thread is implemented by writing a class that derives from GThread, overriding the void 
Start() method, and marking the class with the Serializable attribute. Code to be executed remotely is 
defined in the implementation of the overridden void Start() method. 
 
The application itself (local code) creates instances of the custom grid thread, executes them on the grid 
and consumes each thread’s results. It makes use of an instance of the GApplication class which 
represents a grid application. The modules (.EXE or .DLL files) containing the implementation of this 
GThread-derived class and any other dependency types that not part of the .NET Framework must be 
included in the Manifest of the GApplication instance. Instances of the GThread-derived class are 
asynchronously executed on the grid by adding them to the grid application. Upon completion of each 
thread, a ‘thread finish’ event is fired and a method subscribing to this event can consume the thread’s 
results. Other events such as ‘application finish’ and ‘thread failed’ can also be subscribed to. Thus, the 
programmatic abstraction of the grid in this manner described allows the application developer to 
concentrate on the application itself without worrying about "plumbing" details. 
 
Appendix A shows the entire code listing of a sample application for multiplying pairs of integers. 

5.1.2 Grid Job Model 

Traditional grid implementations have offered a high-level, abstraction of the "virtual machine", where the 
smallest unit of parallel execution is a process. In this model, a work unit is typically described by 
specifying a command, input files and output files. In Alchemi, such a work unit is termed ‘job’ with many 
jobs constituting a ‘task’. 
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Although writing software for the “grid job” model involves dealing with files, an approach that can be 
complicated and inflexible, Alchemi’s architecture supports it for the following reasons: 

� grid-enabling existing applications; and 
� interoperability with grid middleware that can leverage Alchemi via the Cross Platform Manager 

web service 

 
Tasks and their constituent jobs are represented as XML files conforming to the Alchemi task and job 
schemas. Figure 3 shows a sample task representation that contains two jobs to execute the Reverse.exe 
program against two input files. 
 
<task> 

  <manifest> 

    <embedded_file name="Reverse.exe" location="Reverse.exe" /> 

  </manifest> 

   

  <job id="0"> 

    <input> 

      <embedded_file name="input1.txt" location="input1.txt" /> 

    </input>  

    <work run_command="Reverse.exe input1.txt > result1.txt" /> 

    <output> 

      <embedded_file name="result1.txt"/> 

    </output>   

  </job> 

 

  <job id="1"> 

    <input> 

      <embedded_file name="input2.txt" location="input2.txt" /> 

    </input>  

    <work run_command="Reverse input2.txt > result2.txt" /> 

    <output> 

      <embedded_file name="result2.txt"/> 

    </output>   

  </job> 

</task>   

Figure 3. Sample XML-based task representation. 

 
Before submitting the task to the Manager, references to the ‘embedded’ files are resolved and the files 
themselves are embedded into the task XML file as Base64-encoded text data. When finished jobs are 
retrieved from the Manager, the Base64-encoded contents of the ‘embedded’ files are decoded and written 
to disk. 
 
It should be noted that tasks and jobs are represented internally as grid applications and grid threads 
respectively. Thus, any discussion that applies to ‘grid applications’ and ‘grid threads’ applies to ‘grid 
tasks’ and ‘grid jobs’ as well. 

5.2 Distributed Components 

Four types of nodes (or hosts) take part in desktop grid construction and application execution (see Figure 
4). An Alchemi desktop grid is constructed by deploying a Manager node and deploying one or more 
Executor nodes configured to connect to the Manager. One or more Users can execute their applications on 
the cluster by connecting to the Manager. An optional component, the Cross Platform Manager provides a 
web service interface to custom grid middleware. The operation of the Manager, Executor, User and Cross 
Platform Manager nodes is described below. 

5.2.1 Manager 

The Manager provides services associated with managing execution of grid applications and their 
constituent threads. Executors register themselves with the Manager, which in turn monitors their status. 
Threads received from the User are placed in a pool and scheduled to be executed on the various available 
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Executors. A priority for each thread can be explicitly specified when it is created or submitted. Threads are 
scheduled on a Priority and First Come First Served (FCFS) basis, in that order. The Executors return 
completed threads to the Manager which are subsequently collected by the respective users. A scheduling 
API is provided that allows custom schedulers to be written. 
 
The Manager employs a role-based security model for authentication and authorization of secure activities. 
A list of permissions representing activities that need to be secured is maintained within the Manager. A list 
of groups (roles) is also maintained, each containing a set of permissions. For any activity that needs to be 
authorized, the user or program must supply credentials in a form of a user name and password and the 
Manager only authorizes the activity if the user belongs to a group that contains the particular permission. 
 

 

Figure 4. Distributed components and their relationships. 

As discussed previously, failure management plays a key role in the effectiveness of a desktop grid. 
Executors are constantly monitored and threads running on disconnected Executors are rescheduled. 
Additionally, all data is immediately persisted to disk so that in the event of a crash, the Manager can be 
restarted into the pre-crash state. 

5.2.2 Executor 

The Executor accepts threads from the Manager and executes them. An Executor can be configured to be 
dedicated, meaning the resource is centrally managed by the Manager, or non-dedicated, meaning that the 
resource is managed on a volunteer basis via a screen saver or explicitly by the user. For non-dedicated 
execution, there is one-way communication between the Executor and the Manager. In this case, the 
resource that the Executor resides on is managed on a volunteer basis since it requests threads to execute 
from the Manager. When two-way communication is possible and dedicated execution is desired the 
Executor exposes an interface so that the Manager may communicate with it directly. In this case, the 
Manager explicitly instructs the Executor to execute threads, resulting in centralized management of the 
resource where the Executor resides. Thus, Alchemi’s execution model provides the dual benefit of: 
 

� flexible resource management i.e. centralized management with dedicated execution vs. 
decentralized management with non-dedicated execution; and 

� flexible deployment under network constraints i.e. the component can be deployment as non-
dedicated where two-way communication is not desired or not possible (e.g. when it is behind a 
firewall or NAT/proxy server). 

 
Thus, dedicated execution is more suitable where the Manager and Executor are on the same Local Area 
Network while non-dedicated execution is more appropriate when the Manager and Executor are to be 
connected over the Internet. 
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Threads are executed in a sandbox environment defined by the user. The CAS (Code Access Security) 
feature of .NET are used to execute all threads with the AlchemiGridThread permission set which can be 
specified to a fine-grained level by the user as part of the .NET Local Security Policy.  
 
All grid threads run in the background with the lowest priority. Thus any user programs are unaffected 
since they have higher priority access to the CPU over grid threads. 

5.2.3 User 

Grid applications are executed on the User node. The API abstracts the implementation of the grid from the 
user and is responsible for performing a variety of services on the user’s behalf such as submitting an 
application and its constituent threads for execution, notifying the user of finished threads and providing 
results and notifying the user of failed threads along with error details. 

5.2.4 Cross-Platform Manager 

The Cross-Platform Manager is a web services interface that exposes a portion of the functionality of the 
Manager in order to enable Alchemi to manage the execution of grid jobs (as opposed to grid applications 
utilizing the Alchemi grid thread model). Jobs submitted to the Cross-Platform Manager are translated into 
a form that is accepted by the Manager (i.e. grid threads), which are then scheduled and executed as normal 
in the fashion described above. In addition to support for the grid-enabling of legacy applications, the 
Cross-Platform Manager allows custom grid middleware to interoperate with and leverage Alchemi on any 
platform that supports web services. 

5.3 Security 

Security plays a key role in an insecure environment such as the Internet. Two aspects of security addressed 
by Alchemi are: (a) allow users to perform authorized operations whether they are system related or 
resource related operations and (b) allow authorized or non-authorized users to contribute resources. 
 

 
Figure 5. Role-based security in Alchemi. 

 
The problem of allowing users to only perform activities they are authorized to do is addressed using the 
role-based authorization model. All security-sensitive activities on the Manager are protected in this 
manner. The Manager can be configured to support anonymous or non-anonymous Executors. Figure 5 
shows the operation of various Alchemi components to enforce security as indicated below. 
 
0: The Alchemi administrator configures user, group and permission data in addition to allowing 
anonymous/non-anonymous Executors. 
1: A user or program connects to the Manager, supplies security credentials and requests a particular 
activity. 
2, 3, 4: The Manager authenticates the user and authorizes the user for the activity. This process is skipped 
if anonymous Executors are allowed. 
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Information about permission, groups and users is maintained in the Alchemi database in the prm, grp and 
usr tables respectively. Figure 6 shows the relationships between these tables. 
Each activity on the Manager is associated with a particular permission. The following permissions are 
defined: 

• ExecuteThread (activities related to thread execution, e.g. getting  a thread to execute, returning its 
results)  

• ManageOwnApp (activities related to the ownership of a particular application, e.g. creating an 
application, getting its finished threads) 

• ManageAllApps (activities related to the ownership of all applications in the system e.g. getting a 
list of all applications along with statistics) 

• ManageUsers (activites related to user management, e.g. adding users, changing passwords, 
changing group membership) 

 
Figure 6. Relationships between security-related database tables. 

 
Users belong to a particular group, with each group containing a set of permissions. The following groups 
are defined: 

• Users (ManageOwnApp) 

• Executors (ExecuteThread) 

• Administrators (ManageOwnApp, ManageAllApps, ExecuteThread, ManageUsers) 
 

For any activity that needs to be authorized, the user or program must supply credentials in a form of a user 
name and password and the Manager only authorizes the activity if the user belongs to a group that 
contains the particular permission. Figure 7 shows the process of authentication and authorization. 
 
The second aspect of security that Alchemi addresses is the protection of the machine hosting the Executor 
from malicious code. This is solved by the creation of a “sandbox” environment in which the Executor runs 
grid threads. This environment can be defined by the user. The CAS (Code Access Security) feature of 
.NET is used to execute all threads with the AlchemiGridThread permission set which can be specified to a 
fine-grained level by the user as part of the .NET Local Security Policy.  
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Figure 7. Authorization flow. 
 

6 Alchemi Design and Implementation 
Figure 8 and Figure 9  provide an overview of the implementation by way of a deployment diagram and 
class diagram (showing only the main classes without attributes or operations) respectively. 

6.1 Overview 

The .NET Framework offers two mechanisms for execution across application domains  – Remoting and 
web services (application domains are the unit of isolation for a .NET application and can reside on 
different network hosts). 
 
.NET Remoting allows a .NET object to be “remoted” and expose its functionality across application 
domains. Remoting is used for communication between the four Alchemi distributed grid components as it 
allows low-level interaction transparently between .NET objects with low overhead (remote objects are 
configured to use binary encoding for messaging). 
 
Web services were considered briefly for this purpose, but were decided against due to the relatively higher 
overheads involved with XML-encoded messages, the inherent inflexibility of the HTTP protocol for the 
requirements at hand and the fact that each component would be required to be configured with a web 
services container (web server). However, web services are used for the Cross-Platform Manager’s public 
interface since cross-platform interoperability was the primary requirement in this regard.  
 
The objects remoted using .NET Remoting within the four distributed components of Alchemi, the 
Manager, Executor, Owner and Cross-Platform Manager are instances of GManager, GExecutor, 
GApplication and CrossPlatformManager respectively. 
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It should be noted that classes are named with respect to their roles vis-à-vis a grid application. This 
discussion therefore refers to an ‘Owner’ node synomymously with a ‘User’ node, since the node where the 
grid application is being submitted from can be considered to “own” the application.  
 
“The prefix ‘I’ is used in type names to denote an interface, whereas ‘G’ is used to denote a ‘grid node’ 
class. GManager, GExecutor, GApplication derive from the GNode class which implements generic 
functionality for remoting the object itself and connecting to a remote Manager via the IManager interface. 
 
 

 

Figure 8. Alchemi architecture and interaction between its components. 

 
The Manager executable initializes an instance of the GManager class, which is always remoted and exposes 
a public interface IManager. The Executor executable creates an instance of the GExecutor class. For non-
dedicated execution, there is one-way communication between the Executor and the Manager. Where two-
way communication is possible and dedicated execution is desired, GExecutor is remoted and exposes the 
IExecutor interface so that the Manager may communicate with it directly. The Executor installation 
provides an option to install a screen saver, which initiates non-dedicated execution when activated by the 
operating system. 
 
The GApplication object in Alchemi API communicates with the Manager in a similar fashion to 
GExecutor. While two-way communication is currently not used in the implementation, the architecture 
caters for this by way of the IOwner interface.  
 
The Cross-Platform Manager web service is a thin wrapper around GManager and uses applications and 
threads internally to represent tasks and jobs (the GJob class derives from GThread) via the public 
ICrossPlatformManager interface. 
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Figure 9. Main classes and their relationships. 

6.2 Grid Application Lifecycle 

To develop and execute a grid application the developer creates a custom grid thread class that derives from 
the abstract GThread class. An instance of the GApplication object is created and any dependencies 
required by the application are added to its DependencyCollection. Instances of the GThread-derived class 
are then added to the GApplication’s ThreadCollection.  

 
The lifecycle of a grid application is shown in Figure 10 and Figure 11, showing simplified interactions 
between the Owner and Executor nodes respectively and the Manager. 
 
The GApplication serializes and sends relevant data to the Manager, where it is persisted to disk and 
threads scheduled. Application and thread state is maintained in a SQL Server / MSDE database. 
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Figure 10. Simplified interaction between Owner and Manager nodes. 

Non-dedicated executors poll for threads to execute until one is available. Dedicated executors are directly 
provided a thread to execute by the Manager. 
 
Threads are executed in .NET application domains, with one application domain for each grid application. 
If an application domain does not exist that corresponds to the grid application that the thread belongs to, 
one is created by requesting, desterilizing and dynamically loading the application’s dependencies. The 
thread object itself is then desterilized, started within the application domain and returned to the Manager 
on completion. 
 
After sending threads to the Manager for execution, the GApplication polls the Manager for finished 
threads. A user-defined GThreadFinish delegate is called to signify each thread’s completion and once all 
threads have finished a user-defined GApplicationFinish delegate is called. 
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Figure 11. Simplified interaction between Executor and Manager nodes. 

7 Alchemi Performance Evaluation 
In this section, first we demonstrate the suitability of Alchemi to support the execution of applications 
created using Alchemi Grid Threads interface on a standalone desktop grid. Next, we treat an Alchemi 
desktop setup as one of the Grid nodes within a global Grid environment and use its job model and Web 
services interface to submit jobs for processing on it. This will be carried our by a Grid resource broker 
having an ability to interoperate with different low-level Grid middleware and schedule applications on 
distributed Grid nodes. 

7.1 Standalone Alchemi Desktop Grid 

Testbed 

The testbed is an Alchemi cluster consisting of six Executors (Pentium III 1.7 GHz desktop machines with 
512 MB physical memory running Windows 2000 Professional). One of these machines is additionally 
designated as a Manager. 

Test Application & Methodology 

The test application is the computation of the value of Pi to n decimal digits. The algorithm used allows the 
computation of the p’th digit without knowing the previous digits [29]. The application utilizes the Alchemi 
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grid thread model. The test was performed for a range of workloads (calculating 1000, 1200, 1400, 1600, 
1800, 2000 and 2200 digits of Pi), each with one to six Executors enabled. The workload was sliced into a 
number of threads, each to calculate 50 digits of Pi, with the number of threads varying proportionally with 
the total number of digits to be calculated. Execution time was measured as the elapsed clock time for the 
test program to complete on the Owner node.  

Results 

Figure 12 shows a plot between thread size (the number of decimal places to which Pi is calculated to) and 
total time (in seconds taken by the all threads to complete execution) with varying numbers of Executors 
enabled. 
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Figure 12. A plot of thread size vs. execution time on a standalone Alchemi cluster. 

At a low workload (1000 digits), there is little difference between the total execution time with different 
quantity of Executors. This is explained by the fact that the total overhead (network latency and 
miscellaneous overheads involved in managing a distributed execution environment) is in a relatively high 
proportion to the actual total computation time. However, as the workload is increased, there is near-
proportional difference when higher numbers of executors are used. For example, for 2200 digits, the 
execution time with six executors (84 seconds) is nearly 1/5th of that with one executor (428 seconds). This 
is explained by the fact that for higher workloads, the total overhead is in a relatively lower proportion to 
the actual total computation time. 

7.2 Alchemi as Node of a Cross-Platform Global Grid 

Testbed 

A global grid was used for evaluating Alchemi as a potential low-level Grid middleware with the Gridbus 
Grid Service Broker managing global grid resources (see Figure 13). The Windows Desktop Grid node is 
grid-enabled using Alchemi middleware whereas other nodes running Linux OS are Grid-enabled using 
Globus middleware (Globus 2.4) [7]. The Gridbus Broker developed in Java was running on Linux PC 
loaded with JVM (Java Virtual Machine), Globus and Alchemi Client Side Interfaces. For details on 
testbed setup and software confirgration see Figure 13 and Table 1. The Gridbus resource brokering 
mechanism obtains the users’ application requirements and evaluates the suitability of various resources. It 
then schedules the jobs to various resources in order to satisfy those requirements. 
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Figure 13. Testbed Setup and Software configuration. 

Test Application & Methodology 

For the purpose of evaluation, we used an application that calculates mathematical functions based on the 
values of two input parameters. The first parameter X, is an input to a mathematical function and the second 
parameter Y, indicates the expected calculation complexity in minutes plus a random deviation value 
between 0 to 120 seconds—this creates an illusion of small variation in execution time of different 
parametric jobs similar to a real application. A plan file modeling this application as a parameter sweep 
application using the Nimrod-G parameter specification language [12] is shown in Figure 14. The first part 
defines parameters and the second part defines the task that is to be performed for each job. As the 
parameter X varies from values 1 to 100 in step of 1, this plan file would create 100 jobs with input values 
from 1 to 100.  
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Table 1. Grid resources and jobs processed. 
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Figure 14. Parametric job specification. 

Results 

The results of the experiment shown in Figure 15 show the number of jobs completed on different Grid 
resources at different times. The parameter calc.$OS directs the broker to select appropriate executables 
based a target Grid resource architecture. For example, if the target resource is Windows/Intel, it selects 
calc.exe and copies to the grid node before its execution. It demonstrates the feasible to utilizing Windows-
based Alchemi resources along with other Unix-class resources running Globus. 
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Figure 15. A plot of the number of jobs completed on different resources versus the time. 

8 Summary and Future Work 
We have discussed a .NET-based grid computing framework that provides the runtime machinery and 
object-oriented programming environment to easily construct desktop grids and develop grid applications. 
Its integration into the global cross-platform grid has been made possible via support for execution of grid 
jobs via a web services interface and the use of a broker component. 
 
We plan to extend Alchemi in a number of areas. Firstly, support for additional functionality via the API 
including inter-thread communication is planned. Secondly, we are working on support for multi-clustering 
with peer-to-peer communication between Managers. Thirdly, we plan to support utility-based resource 
allocation policies driven by economic, quality of services, and service-level agreements. Fourthly, we are 

#Parameter definition  

parameter X integer range from 1 to 100 step 1; 

parameter Y integer default 1; 

#Task definition 

task main 

        #Copy necessary executables depending on node type 

        copy calc.$OS node:calc 

        #Execute program with parameter values on remote node 

        node:execute ./calc $X $Y 

        #Copy results file to use home node with jobname as extension 

        copy node:output ./output.$jobname 
endtask 
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investigating strategies for adherence to OGSI (Open Grid Services Infrastructure) standards by extending 
the current Alchemi job management interface. This is likely to be achieved by its integration with .NET-
based low-level grid middleware implementations (e.g., University of Virginia’s OGSI.NET [33]) that 
conform to grid standards such as OGSI (Open Grid Services Infrastructure) [25][32]. Finally, we plan to 
provide data grid capabilities to enable resource providers to share their data resources in addition to 
computational resources.   
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Alchemi software and its documentation can be downloaded from the following web site: 
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Appendix A - Sample Application Employing the Grid Thread Model 
 
using System; 

using Alchemi.Core; 

 

namespace Alchemi.Examples.Tutorial 

{ 

    [Serializable] 

    public class MultiplierThread : GThread 

    { 

        private int _A, _B, _Result; 

     

        public int Result 
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        { 

            get { return _Result; } 

        } 

 

        public MultiplierThread(int a, int b) 

        { 

            _A = a; 

            _B = b; 

        } 

 

        public override void Start() 

        { 

            if (Id == 0) { int x = 5/Id; } // divide by zero 

            _Result = _A * _B; 

        } 

    } 

     

    class MultiplierApplication 

    { 

        static GApplication ga; 

         

        [STAThread] 

        static void Main(string[] args) 

        { 

            Console.WriteLine("[enter] to start grid application ..."); 

            Console.ReadLine(); 

       

            // create grid application 

            ga = new GApplication(new GConnection("localhost", 9099)); 

 

            // add GridThread module (this executable) as a dependency 

            ga.Manifest.Add(new ModuleDependency(typeof(MultiplierThread).Module)); 

 

            // create and add 10 threads to the application 

            for (int i=0; i<10; i++) 

            { 

                // create thread 

                MultiplierThread thread = new MultiplierThread(i, i+1); 

 

                // add thread to application 

                ga.Threads.Add(thread); 

            } 

 

            // subscribe to events 

            ga.ThreadFinish += new GThreadFinish(ThreadFinished); 

            ga.ThreadFailed += new GThreadFailed(ThreadFailed); 

            ga.ApplicationFinish += new GApplicationFinish(ApplicationFinished); 

            // start application 

            ga.Start(); 

            Console.ReadLine(); 

        } 

        static void ThreadFinished(GThread th) 

        { 

            // cast GThread back to MultiplierThread 

            MultiplierThread thread = (MultiplierThread) th; 

            Console.WriteLine( "thread # {0} finished with result '{1}'", 

                thread.Id, thread.Result); 

        } 

        static void ThreadFailed(GThread th, Exception e) 

        { 

            Console.WriteLine( 

                "thread # {0} finished with error '{1}'", th.Id, e.Message); 

        } 

        static void ApplicationFinished() 

        { 

            Console.WriteLine("\napplication finished"); 

            Console.WriteLine("\n[enter] to continue ..."); 

        } 

    } 

} 

 


