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a b s t r a c t

Workload modeling enables performance analysis and simulation of cloud resource manage-

ment policies, which allows cloud providers to improve their systems’ Quality of Service (QoS)

and researchers to evaluate new policies without deploying expensive large scale environ-

ments. However, workload modeling is challenging in the context of cloud computing due

to the virtualization layer overhead, insufficient tracelogs available for analysis, and complex

workloads. These factors contribute to a lack of methodologies and models to characterize ap-

plications hosted in the cloud. To tackle the above issues, we propose a web application model

to capture the behavioral patterns of different user profiles and to support analysis and simu-

lation of resources utilization in cloud environments. A model validation was performed using

graphic and statistical hypothesis methods. An implementation of our model is provided as an

extension of the CloudSim simulator.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Clouds are being used as a platform for various types of applications with different Quality of Service (QoS) aspects, such

as performance, availability and reliability. These aspects are specified in a Service Level Agreement (SLA) negotiated between

cloud providers and customers. The failure to comply with QoS aspects can compromise the responsiveness and availability of

service and incur SLA violations, resulting in penalties to the cloud provider. The development of resource management policies

that support QoS is challenging and the evaluation of these policies is even more challenging because clouds observe varying

demand, their physical infrastructure has different sizes, software stacks, and physical resources configurations, and users have

different profiles and QoS requirements [1]. In addition, reproduction of conditions under which the policies are evaluated and

control of evaluation conditions are difficult tasks.

In this context, workload modeling enables performance analysis and simulation, which brings benefits to cloud providers

and researchers. Thereby, the evaluation and adjustment of policies can be performed without deployment of expensive large

scale environments. Workload models have the advantage of allowing workload adjustment to fit particular situations, controlled
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modification of parameters, repetition of evaluation conditions, inclusion of additional features, and generalization of patterns

found in the application [2], providing a controlled input for researchers. For cloud providers, the evaluation and simulation

of resource management policies allow the improvement of their systems’ QoS. Finally, the simulation of workloads based on

realistic scenarios enables the production of tracelogs, scarce in cloud environments because of business and confidentiality

concerns [3,4].

Workload modeling and characterization is especially challenging when applied in a highly dynamic environment, such as

cloud data centers, for different reasons:(i) heterogeneous hardware is present in a single data center and the virtualization layer

incurs overhead caused by I/O processing and interactions with the Virtual Machine Monitor (VMM); and (ii) complex workloads

are composed of a wide variety of applications submitted at any time, and with different characteristics and user profiles. These

factors contribute to a lack of methodologies to characterize the different behavioral patterns of cloud applications.

To tackle the above issues, a web application model able to capture the behavioral patterns of different user profiles is pro-

posed to support analysis and simulation of resources utilization in cloud environments. The proposed model supports the

construction of performance models used by several research domains. Performance models improve resource management be-

cause they allow the prediction of how application patterns will change. Thus, resources can be dynamically scaled to meet the

expected demand. This is critical to cloud providers that need to provision resources quickly to meet a growing resource demand

by their applications.

In this context, the main contribution of this paper is a model capable of representing resource demand of Web application

supported by different user profiles in a context of cloud environment. The workload patterns are modeled in the form of statis-

tical distributions. Therefore, the patterns fluctuate based on realistic parameters in order to represent dynamic environments.

A model validation is provided through graphical and analytical methods in order to show that the model effectively represents

the observed patterns. A secondary contribution of this paper is the validation and implementation of the proposed model as an

extension of the CloudSim simulator [1], making the model available for the cloud research community.

The rest of the paper is organized as follows: Section 2 presents the challenges and importance of workload modeling in

clouds. Section 3 describes related works. Section 4 details the adopted methodology and how it was achieved. Section 5 presents

and discusses the modeling and simulation results. Section 6 concludes and defines future research directions.

2. Problem statement and motivation

Workload characterization and modeling problems have been addressed over the last years, resulting in models for generation

of synthetic workloads similar to those observed on real systems [2]. The main objective of such models is enabling the behavior

patterns detection on the collected data.

2.1. Challenges of workload modeling in clouds

Workload modeling and characterization is especially challenging when applied in a highly dynamic environment such as a

cloud, for various reasons, as discussed below:

1. Hardware platforms heterogeneity: Information Technology (IT) managers update about 20% to 25% of their platforms every

year [5], resulting in the combination of different hardware in the same data center. Besides, the virtualization layer promotes

an overhead caused by I/O processing and interactions with the Virtual Machine Manager (VMM). This overhead depends on

the hardware platform.

2. Business and confidentiality: due to business and confidentiality reasons, there are few cloud tracelogs available for analysis.

Thus, there is a lack of methodologies to characterize the different behavioral patterns of cloud applications [3,4]. Neverthe-

less, recent efforts in this direction, such as, Google TraceLog [6] and Yahoo!, enable data analysis and characterization for

specific scenarios [7].

3. Workload complexity: the cloud hosts a wide variety of applications submitted at any time, with different characteristics and

user profiles, which have heterogeneous and competing QoS requirements [1]. This leads to complex workloads depending

on users’ behavior and resource consumption. Thus, it is challenging to predict workload patterns over time.

2.2. Importance of workloads modeling in cloud

Workload modeling increases the understanding of typical cloud workload patterns and leads to more informed decisions to

better manage resources [3,7]. From the workload characterization, performance models can be constructed to support research

topics such as energy-efficiency and resource management and to answer important research questions, such as: how are overall

cloud data center utilization levels affected by user behavior? How cloud data center energy efficiency can be improved while

the QoS is maintained?

In addition, workload modeling in cloud computing enables performance analysis and simulation, which brings benefits to

cloud providers and researchers as it allows: (i) the evaluation, through simulation, of resource management policies allowing the

improvement of cloud services’ QoS; (ii) the evaluation of these policies without deployment and execution of the applications

in expensive large-scale environments; and (iii) the simulation of realistic cloud environments with controlled modification,

adjustment, and repetition. The use of simulation models enables the production of tracelogs based on realistic scenarios, filling

the gap previously identified in the cloud computing area [3].
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Table 1

Summary of related work.

Authors Modeling approach Application type Exploratory analysis Parameter estimation GoF test Validation

Chen et al. [4] Distribution analysis MapReduce Yes No No No

Ganapathi et al. [8] Distribution analysis MapReduce No No No No

Kavulya et al. [7] Distribution analysis MapReduce Yes Yes (single) Yes No

Moreno et al. [3] Distribution analysis and cluster MapReduce Yes No No Yes

Grozev and Buyya [9] Analytical model Web No No No Yes

Our proposal Distribution analysis Web Yes Yes (multi) Yes Yes
3. Related work

The conflict of priorities between cloud providers, aiming high resource utilization with low operating costs, and MapRe-

duce applications users addressing small execution time, led to characterization and modeling of this application type [4,7,8].

Chen et al. [4] developed a tool for generation of realistic workloads with the goal of analyzing the tradeoff between latency

and resources utilization. In attempt to obtain resource utilization data, statistical models were used to generate the job stream

processed in the environment provided by Amazon’s Elastic Cloud Computing (EC2). However, the authors do not present infor-

mation concerning the distributions, parameters and Goodness of Fit (GoF) tests. Thus, the reproduction of the model by other

researchers is infeasible.

Ganapathi et al. [8] proposed a model to predict the execution time of MapReduce jobs in order to maximize performance

while minimizing costs. A workload generator based on statistical models was used to guide the prediction. However, the authors

did not consider the full distribution to build the model, instead, the distribution is estimated from the 1st, 25th, 75th and 99th

percentiles, causing information loss that compromises the accuracy of the model.

Kavulya et al. [7] characterized resource utilization patterns and sources of failures to predict job completion times in MapRe-

duce applications. They did not present an analysis of data justifying the distributions used. Furthermore, they use only the

method of Maximum Likelihood Estimation (MLE), which is sensitive to outliers. Our approach uses different estimation methods

and the results show that the estimator has great influence on the predictor accuracy. Kavulya et al. [7] presented Kolmogorov–

Smirnov (KS) values with no critical value. Thus, it is not clear which set of distributions and parameters provide a good fit to the

modeled data.

Most works discussed in this session focus on resource utilization imposed by jobs, tasks, and requests. However, different

types of users directly impact the cloud workload as observed by the cloud provider. In view of this, Moreno et al. [3] and Grozev

and Buyya [9] created models based on resource utilization and users’ behavioral patterns. Moreno et al. [3] proposed a new

approach for characterization of the Google trace log in the context of both user and task in order to derive a model to capture

resource utilization patterns. However, although the model parameters are presented, estimation methods and the results of the

goodness-of-fit tests are omitted. These factors compromise the use of the model by other researchers.

Grozev and Buyya [9] also made use of the Rice University Bidding System (RUBiS) workload and implemented the model

in the CloudSim. The Central Processing Unit (CPU) load is modeled in terms of average number of instructions required by

a user session. However, the average is not robust, which makes it easily influenced by peak usage. Also, the authors adopt a

non-statistical approach for modeling, thus, they did not analyze dispersion and shape measurements, which are relevant for a

statistical workload characterization.

From these related works, we observe that the application characterization and modeling supports researchers and cloud

providers in understanding complex tradeoffs and predicting applications behavior. This understanding leads to more efficient

techniques for resources management. However, the lack of a well-defined methodology, containing steps to achieve distribu-

tions, estimate parameters, and goodness-of-fit tests, prevents reproduction and usage of models. In this scenario, our proposal

consists in a Web application model achieved through a well-defined methodology. A summary of the related work is presented

in Table 1.

4. Material and methods

4.1. Methodology

Fig. 1 presents the methodology [2] used to create the proposed models. This methodology begins with users submitting

requests to cloud environment while the operational metrics are measured and stored in data logs.

After the monitoring and tracing, the user activity and performance modeling is carried out based on three steps: (i) sta-

tistical analysis, which analyzes the data characteristics, determines if some data transformation is necessary and defines the

candidate distributions to represent the model; (ii) parameter estimation, which, given the distribution selected in advance, uses

estimation methods to set the parameters of the model based on the collected samples; and (iii) GoF tests, which are meth-

ods to evaluate whether the distributions and their respective parameters, provide satisfactory approximation to the empirical

data.
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Fig. 1. User activity and performance modeling methodology for analysis and simulation in cloud environments (adapted from [2]).

Table 2

Physical sever and VMs specifications.

Instance name Configuration

RUBiS client m1.small | 2 GB RAM | 1 VCPU | 20 GB Disk

servers m1.medium | 4 GB RAM | 2 VCPU | 40 GB Disk

Physical server 64 GB RAM | 12 VCPU (Xeon 6C E5-2620) | 2.1TB Disk
4.2. Workload

The cloud environment is suitable for interactive real-time applications. However, recent works have been focusing on provi-

sioning and scheduling techniques for batch applications, while cloud resource management in interactive applications has not

received much attention so far [9]. In view of this, we utilize the widely used RUBiS [10] benchmark in order to evaluate the

impact of the user in the resource consumption patterns.

In the context of cloud computing, RUBiS has been employed in the construction of a performance model of a 3-tier applica-

tion in cloud environments [9] and on the evaluation of a Benchmark-as-a-Service platform, enabling the determination of the

bottleneck tier and to tune the application servers to improve application performance [11]. The used methodology is not limited

to RUBiS and thus it can be extrapolated to other workload categories [2].

The RUBiS benchmark is an auction site, based on eBay.com, implementing functionalities such as selling, browsing, and

bidding. It provides two user profiles: browsing profile, including only read interactions with the database, and the bidding

profile, which includes 85% read and 15% reading and writing in a database [10].

4.3. Monitoring and tracing

A series of decisions must be made before the application modeling process is carried out. This includes the definition of the

experimental environment and interest metrics. The experimental environment consisted of a private cloud comprising three

high-performance servers interconnected through a Gigabit Ethernet switch. The physical resources management was accom-

plished via OpenStack (Grizzly) [12]. Our experiments had two types of VMs, small and medium, whose hardware configurations

are described in Table 2. The server had twice the Random Access Memory (RAM) existed on the client. For compatibility with

the monitoring tool Bro [13], RUBiS version 1.4.3 was used.

The client VM was configured with the load generator. The server VM hosts a Linux, Apache, MySQL and Hypertext Prepro-

cessor (PHP) (LAMP) stack. The Linux version on the server was the same used on the client (Ubuntu 12.04.2 LTS). The MySQL
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Table 3

Experiment # 1 – RUBiS client configuration.

Configuration Value

Rounds 100

User profile Browsing/Bidding

Session run time 15 min

Think time 7–8 s

Up ramp time 2 min

Down ramp time 1 min
relational database (14.14) was configured with a maximum number of connections equal to the number of virtual CPUs on the

server VM. Finally, we used version 5.3.10 of the PHP scripting language.

To accurately model the user behavior impact on the processor, we monitored the total number of executed instructions and

how they arrived in the processor during a user session through the CPU utilization, which was the second metric analyzed in

this study.

RUBiS randomly generates the size of user sessions from a negative exponential distribution. This value is static for any CPU

that processes the session. Converting such a value to time, according to the CPU clock, is reasonable if all CPUs have the same

characteristics (architecture, core number, manufacturer, etc.). When CPU characteristics are heterogeneous, estimation of the

execution time is a difficult task. Thus, the instructions number is captured with the aim of creating a model that characterizes

the user session in terms of number of executed instructions. Therefore, the session execution time varies according to the

hardware’s processing capacity.

The third and fourth metrics analyzed in this study were memory and disk utilization. The latter one is measured in terms

of Transactions Per Second (TPS), which represents the number of reads and writes transfers per second performed on the disk.

This measure is more easily extrapolated to different disk hardware settings when compared to percentage of disk utilization.

The fifth metric considered was the response time, which was monitored and traced to characterize the Quality of Service

(QoS) provided by RUBiS to its users. In this work, the user response time definition consists of the sum of the reply time and

transfer time. The reply time is the amount of time between the instant at which the client receives the first reply packet, and

the time at which the client issued the HTTP request. Transfer time is the time taken for the entire reply to be transferred to the

client [14]. Since the bidding profile offers a more realistic mix of user actions (registration, bid on items and consult current

bids, rating, and comments left by other users), its response time provides a more meaningful indication of performance than

the response time of the Browsing profile.

Nonetheless, Hashemian et al. [14] verified that RUBiS introduces significant errors in the measured end-user response times.

For this reason, this work adopts their monitoring approach, where the tcpdump tool [15] is used to capture all HTTP packets.

At the end of the user session, a modified version of the Bro tool [13] captures the tcpdump output file and calculates the reply

times and transfer times of HTTP requests and records them. The Bro was executed in an off-line manner to avoid the overhead

on the client.

The metrics samples were obtained through 100 executions of the same experiment, which consists of requests submission

from a single client to Apache and MySQL servers. The data was captured throughout the processing of the user session on the

server. RUBiS was configured using the parameters presented in Table 3.

Empirically, we observed that 100 repetitions of the experiment are large enough to capture most of the patterns found in

the user sessions. To avoid interference of outliers, our statistical analysis is performed on the median of the repetitions. In the

experiments, both RUBiS user profiles are used. RUBiS reproduces the think time via negative exponential distribution with mean

between 7 and 8 s, as defined by TCP-W benchmark [16].

Most of e-commerce sessions last less than 16.66 min [17] and the reasonable longest time for user Web browsing are 15 min

[18]. In this context, the session time uses the negative exponential distribution with the mean equals to 15 min, consistent with

the RUBiS specifications [10].

4.4. Performance modeling

The patterns identified in collected data were modeled in the form of statistical distributions. Then, given n observations,

x1, x2, . . . , xn, representing a metric from an unknown population, our goal was to find the Probability Density Function (PDF)

that represents the data adequately. The PDF has the form f(x, θ ), where θ is the vector of parameters estimated from the available

samples.

Understanding the characteristics of such samples is important to determine which distributions better approximate the

collected data. To this end, we performed a data analysis through test statistics and graphs, focusing on statistics that characterize

the shape of the data: skewness and kurtosis.

4.4.1. Parameters estimation

Since the characteristics of the sample are known, the distribution candidates for the metrics number of instructions, CPU

utilization, memory utilization, and disk transactions per second were selected considering both user profiles supported by RUBiS.
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Additionally, the parameters of response time metric were estimated considering the Bidding profile. The Generalized Lambda

(GL) distribution is able to represent different shapes, including those with negative skewness. Therefore, we used it as an alter-

native to represent the observed number of instructions. The GL is a generalization of the four parameters of lambda distribution

family [19]: the first parameter is the location, represented by the median (μ), the second parameter is the scale, represented by

the inter-quartile range (σ ), and the last two parameters are related to shape, featuring the skewness (α3) and the steepness of

the distribution (α4), respectively.

Another alternative selected is the Generalized Extreme Value (GEV) distribution [20]. This distribution has three parameters,

namely location (μ), scale (σ ), and shape (ξ ) and can represent a variety of forms that include three different distributions: (i)

Gumbel, when ξ = 0, (ii) Frechet, when ξ < 0, and (iii) Weibull, when ξ > 0.

To represent the CPU, memory and disk utilization, 21 different continuous distributions were analyzed for the user profiles.

Among them, we highlight the Generalized Weibull Distribution (GWD) [21] and 3-parameter Error distribution [22]. Both have

the location (μ), scale (σ ) and shape (ξ ) parameters. As GL and GEV, these distributions can also be specialized to represent other

distributions, which makes them extremely flexible in fitting different kinds of data.

After choosing the distributions, it is necessary to estimate the parameters of the models. One option is to calculate the mo-

ments of the sample and use them as estimators for the moments of the distribution. However, this approach is highly sensitive

to outliers, especially for the third and fourth moments. This limits its utilization in the case of distributions used in this work

[2,23]. As noted in Table 5, five different estimation methods were used [23]: Maximum Log-Likelihood (mle), Histogram Fit-

ting (hist), Quantile Matching (quant), Probability Weighted Moments (pwm) [24], and Maximum Product of Spacing Estimator

(mps) [25].

The CPU utilization metric proved much harder to adjust when compared to the other metrics. Even compared to a higher

number of distributions (total = 21), we obtained high values of D and values of p-Value lower than the critical value. Therefore, a

parameter estimation previous phase called pre-fitting was performed. This step consists in changing the data scale to make the

normality assumption plausible. Thereby, the following mathematical transformations were applied to this metric: log, square-

root, and inverse.

4.4.2. Goodness of fit

Once the selected parameters and their distributions are known, the next step was the determination of the models that fit

to the data through GoF tests. The GoF statistics verifies if the empirical and theoretical data belong to the same distribution. In

this study, two methods were used to assess if the selected distributions provide good fit to the data: one graphic method using

Quantile–Quantile (Q–Q) plots, and one analytical method using the KS test.

The Q–Q plots technique consists in the calculation of empirical and theoretical distribution quantiles and plotting one in

terms of the other [2]. It allows verifying if two data sets belong to the same distribution and other aspects simultaneously, for

example, the presence of outliers.

The KS test evaluates the hypothesis that the observed data belongs to a population that follows one or more probability dis-

tributions. This test can be defined as the hypotheses: (i) Null Hypothesis (H0): the observed data follows the specified distribution

and (ii) Alternative Hypothesis (Ha): the observed data does not follow the specified distribution.

The KS test has an important limitation: the parameters from F(x) must be known in advance rather than estimated from the

observed data, as performed in this work. In order to circumvent this limitation, we used the bootstrapping method [26].

4.5. Model simulation

In this section, we detail the implementation of the web application modeling as an extension of the CloudSim simulator

[1]. The application modeling was developed in CloudSim because this simulator contains abstractions for representing cloud

infrastructures and power consumption.

4.5.1. Workload generation and validation

The process of generating the load simulator is shown in Fig. 2. At the start of the simulation, the ECommerceApp class is

instantiated with the parameters number of users and arrival rate of users, which can be a fixed value or generated by a distribu-

tion, and, finally, the user profiles (browsing and bidding). With these parameters, the ECommerceApp instantiates the UBehavior

class responsible for encapsulating the users’ behavior. This behavior is defined by the statistical distributions that represent

the total number of instructions, CPU, memory and disk utilization, and response time. The models are developed using the R

statistical language [27] that communicates with CloudSim through the REngine library.

Once the users’ behavior (number of requests, their arrival time, their size in terms of number of instructions, memory and

disk demands, and response time) is known, a USession is instantiated for each user. Afterwards, USession instantiates the set of

Request that will compose it. In each simulation step, one or more requests are processed until all are completed.

Graphical and statistical hypothesis test approaches were used to evaluate the accuracy of the model in the simulator by

comparing the simulated against the observed data. The Wilcox Mann–Whitney (WMW) hypothesis test [28] consists in the

evaluation of the hypothesis that the simulated data belongs to the population that follows the probability distribution of the

observed data. If p-Value > α, the hypothesis cannot be rejected. Otherwise, the null hypothesis is rejected. The level of signifi-

cance was set at α = 0.05 for all the tests.
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Fig. 2. Workload generation.

Table 4

Observed metrics statistics: number of instructions, CPU, memory, and disk utilization, and response time.

Statistic Type Browsing Bidding

Instructions CPU (%) RAM (%) Disk (TPS) Instructions CPU (%) RAM (%) Disk (TPS) Resp. time (ms)

Minimum Location 4.00e + 08 0 18.92 0 4.26e + 08 0 58.17 0 0.74

1st Quartile Location 4.69e + 08 0 19.97 0 4.72e + 08 0 58.76 0 0.85

Median Location 4.87e + 08 0 20.02 0 4.87e + 08 0 58.84 0 0.87

Mean Location 4.75e + 08 0.59 20.01 0.11 4.79e + 08 0.55 58.82 0.08 1.00

3rd Quartile Location 4.89e + 08 0.50 20.08 0 4.89e + 08 0.50 58.92 0 0.90

Maximum Location 4.92e + 08 82.50 20.13 26 4.91e + 08 79.90 59.01 8 9.42

Std. deviation Dispersion 2.02e + 07 4.99 0.11 1 1.38e + 07 4.80 0.16 0.43 0.68

Skewness Shape −1.67 12.28 −3.10 18.05 −1.52 13.00 −2.05 8.28 8.80

Kurtosis Shape 2.25 156.89 17.21 418.48 2.07 175.84 5.06 107.78 91.97
5. Results and discussion

5.1. Statistical analysis

Table 4 presents the descriptive statistics related to the sum of the number of instructions consumed by Apache and MySQL

services, CPU, memory and disk utilization for both user profiles, and response time for Biding profile. Regarding the number of

instructions and memory, the negative value of skewness is reinforced because the median is greater than the average. This char-

acteristic is clearly observed in the histograms of the number of instructions consumed by Apache and MySQL services (Figs. 3a

and 4a) through the long left tail relative the right tail. The negative skewness was primordial in the choice of distributions used

to fit the number of instructions.

Table 4 also shows high kurtosis values for CPU, disk and response time. This characteristic is seen in Figs. 3a and 4a through a

well pronounced peak, near the median. These metrics have many time intervals equal or close to zero. Therefore, the non-zero

values promote a large scale difference contributing to the presence of peaks.

The change from browsing to bidding profile implies in a memory consumption increment. However, the disk consumption

is much lower compared to memory consumption because, in general, e-commerce applications are in-memory, i.e., the infor-

mation is transferred from disk to memory (cache) to avoid slow Web response times.

Figs. 3b and 4b show the number of instructions executed by the CPU concerning the Apache and MySQL services for each of

the 100 user sessions performed during the experiment. In both profiles, MySQL requires more processing than Apache. Further-

more, none of these services are bottlenecks for the application in this experimental setting.

Fig. 5a depicts the scatterplot of percentage of CPU utilization over a user session, where we found a higher CPU consumption

at the beginning of the session. This consumption decays rapidly to zero or close to zero and so continues until the end of the

session. The concentration of data in a single well-pronounced peak near the median with fast decay reinforced the high kurtosis

presented in Table 4.
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Fig. 3. Statistical analysis of number of instructions. (a) Histogram of Browsing profile (median of 100 rounds). (b) Number of instruction per user session for

Apache and MySQL.

Bidding Profile: instructions observed (100)
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Fig. 4. Statistical analysis of instructions number. (a) Histogram of Bidding profile (median of 100 rounds). (b) Number of instruction per user session for Apache

and MySQL.
Due to the large difference in scale between the percentages of CPU utilization reflected in Fig. 5a, the values of the axes are

limited in order to observe the CPU utilization behavior when it is equal or close to zero, as shown in Fig. 5b. The same pattern

of behavior is identified in the bidding profile.

Fig. 5b shows that instructions arrive to the processor in bursts followed by periods of inactivity, because of think times

of users, for both profiles. However, the number of instructions in each cycle and the frequency with which they occur varies

over time, so there is no pattern about where the peaks and troughs of cycles will happen, indicating a stationary time series.

Thus, the data are subjected to a statistical hypothesis test of stationarity, where the Augmented Dickey–Fuller (ADF) [29] and

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) [30] tests are computed. In these tests, the significance level are fixed at α = 0.05.

Both tests showed that the data are stationary: for ADF, p-Value = 0.01 and, for KPSS, p-Value = 0.1.
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Fig. 5. Exploratory analysis of the observed CPU utilization for a browsing user session. (A) Browsing profile: scatterplot of CPU utilization. (b) Browsing profile:

limited axis with interval between 600 and 650 s.

Table 5

Distributions and parameters for number of instructions.

Distribution Estimation method Estimated parameters

Browsing Bidding

GL mle α̂3 = −9.509e − 01, α̂4 = 8.055e − 01 α̂3 = −9.414e − 01, α̂4 = 9.814e − 01

hist α̂3 = −9.635e − 01, α̂4 = 3.264e − 02 α̂3 = −4.442e − 01, α̂4 = 4.790e − 01

quant α̂3 = −9.744e − 01, α̂4 = 1.347e − 02 α̂3 = −9.539e − 01, α̂4 = 2.102e − 02

mps α̂3 = −9.504e − 01, α̂4 = 9.834e − 01 α̂3 = −9.483e − 01, α̂4 = 9.777e − 01

GEV mle ξ̂ = −3.015e + 00, σ̂ = 4.230e + 07 ξ̂ = 7.116e − 01, σ̂ = 6.077e + 07

pwm ξ̂ = −1.324e + 00, σ̂ = 1.839e + 07 ξ̂ = −8.767e − 01, σ̂ = 1.523e + 07
5.2. Parameters estimation

Table 5 shows the values of the estimated parameters for the selected distributions in combination with the different estima-

tion methods for the number of instructions considering both user profiles. The GL distribution has four estimated parameters,

because the sample is the same for all estimation methods. The median values for the browsing profile (μ̂ = 4.873e + 08) and

for the bidding profile (μ̂ = 4.877e + 08), as well as inter-quartile range for the browsing profile (σ̂ = 1.919e + 07) and for the

bidding profile (σ̂ = 1.735e + 07) remain constant for all the combinations.

In contrast, the shape parameters (α3) and (α4) of the GL distribution have their values influenced by the estimation method.

Similarly, the value of the location parameter for the browsing profile (μ̂ = 4.783e + 08) and for the bidding profile (μ̂ = 4.820e +
08) of the GEV distribution remains constant, while the scale parameters (σ ) and shape (ξ ) are influenced by the estimation

method. Therefore, if the selected fitting distributions have shape parameters, it is important to verify the existence of outliers

in the sample in order to choose the appropriated estimation method. Fig. 6 shows how sensitive the mle and pwm estimation

methods are to the presence of outliers.

Table 6 contains the parameters estimated through the mle method, for the distributions that represent the CPU, memory and

disk utilization, and response time metrics and offer the best fit for the data, according to the KS test. The GEV distribution best

fits CPU (Bidding), memory (Browsing), disk (Browsing), and response time (Bidding) enhancing the results found in Moreno et al.

[3] that uses GEV to model the consumption of CPU and memory from the data provided by the Google Cloud TraceLog [6]. The

other scenarios are covered by the GWD and Error(3P). All these distributions have a shape parameter that allows a better fitting.

5.3. Goodness of fit

Fig. 6 shows the Q–Q graphs for the following pairs distribution/estimation method: GL/mle and GEV/pwm. For each graph, the

reference line is plotted. It can be noticed that the pair GEV/pwm quantiles (Fig. 6b), in terms of the observed data quantiles, have

greater proximity to the reference line. Thus, this pair is a strong candidate to represent the observed number of instructions

behavior. It is interesting to compare the pairs GEV/pwm and GL/mle (Fig. 6a). So, it can be observed how sensitive the mle

estimation method is to the presence of outliers.
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Fig. 6. Quantile–Quantile plots. (a) GL with the mle method; (b) GEV with the pwm method.

Table 6

mle parameters estimation of response time and CPU, memory and disk utilization metrics.

Metric User profile Distribution Estimated parameters

CPU utilization Browsing GWD ξ̂ = 5.386, μ̂ = 0.976, σ̂ = 0.014

Bidding GEV ξ̂ = −0.259, μ̂ = 0.576, σ̂ = 0.004

Memory utilization Browsing GEV ξ̂ = −0.221, μ̂ = 0.049, σ̂ = 8.526e − 06

Bidding Error(3P) ξ̂ = 2.062, μ̂ = 7.669, σ̂ = 3.0985e − 04

Disk utilization Browsing GEV ξ̂ = −0.369, μ̂ = 0.977, σ̂ = 0.003

Bidding Error(3P) ξ̂ = 2.042, μ̂ = 0.967, σ̂ = 0.003

Response time Bidding GEV ξ̂ = −0.290, μ̂ = 1086.7, σ̂ = 10.898

Table 7

The Kolmogorov–Smirnov test: number of instructions.

Distribution/estimation method Browsing Bidding

D p-Value D p-Value

GL/mle 0.130 0.368 0.120 0.431

GL/hist 0.210 0.016 0.240 0.009

GL/quant 0.230 0.012 0.240 0.006

GL/mps 0.120 0.465 0.120 0.433

GEV/mle 0.200 0.030 0.450 2.2e-16

GEV/pwm 0.100 0.675 0.160 0.146
Table 7 presents the values of D and p-Value test statistics for the number of instructions observed to the distributions of

probability specified in Section 4.4.1. Considering the browsing profile, there are only 3 cases where the null hypothesis cannot

be rejected because the p-Value > 0.05: GL/mle, GL/mps and GEV/pwm. Considering the profile bidding, there are 2 cases where

the null hypothesis cannot be rejected: GL/mle and GL/mps. Other important information that can be inferred from the table

is that the results are sensitive to the applied estimation method. The GL distribution with hist and quant estimation methods

presents performance near or below to the symmetric and positive asymmetric distributions.

The estimation methods pwm and mps perform better than the mle method for both GEV and GL distributions, for both

profiles. This can be justified by the fact that the mle method is equivalent to maximizing the geometric mean. Therefore, it is

highly sensitive to outliers. Fig. 6a shows the presence of outliers in the data. Furthermore, the mle method provides good results

for a small sample size, while the pwm and mps are more robust methods.

The GEV distribution with parameters estimated using the pwm method presents the best fit to browsing profile. In contrast,

the GL distribution with parameters estimated using the mps method presents the best fit for the bidding profile.

In accordance with the presented results, the models are defined representing the number of instructions executed during a

user session for both user profiles. These models aim to characterize user session based on the number of instructions instead

of session runtime. Thus, the session runtime will vary according to the characteristics of the CPU. On the other hand, if the
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Table 8

Kolmogorov-Smirnov test: response time and cpu, memory and disk utilization.

Metric Browsing Bidding

p-Value (max) p-Value (min) Error (%) p-Value (max) p-Value (min) Error (%)

CPU utilization 0.901 0.007 6 0.982 0.008 1

Memory utilization 0.998 0.065 0 0.992 0.018 2

Disk utilization 0.994 0.032 1 0.994 0.044 1

Response time – – – 0.983 0.036 1
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Fig. 7. Comparison of histogram of observed number of instructions and probability density function of simulated number of instructions. (a) Browsing profile.

(b) Bidding profile.
model characterized the session runtime, this value would be constant regardless the processor. Also, establishing relationship

between session runtime for different processors in a heterogeneous environment is a complex task, since several factors impact

the runtime such as number of cores, clock frequency, and architecture.

The GoF tests defined the distribution/parameters pairs more apt to represent the observed metrics. These pairs are used to

compose the model that represents the resources demand of the web application according to user profiles. Table 8 shows the

p-Value(max), p-Value(min) and error(%) calculated based on 500 replications of KS test. An error is computed when sampled

simulated data does not belong to the same sample data observed, i.e., p-Value < 0.05. No resource has an error greater than 6%,

indicating that the models can correctly represent the collected data.

Therefore, the Browsing model is represented by the GEV distribution with ξ̂ = −1.324e + 00, μ̂ = 4.873e + 08, σ̂ = 1.839e +
07 parameters, representing the total number of instructions that will compose the user session, and distribution GWD with ξ̂ =
5.386, μ̂ = −0.976, σ̂ = 0.014 parameters, representing how the total of instructions will be distributed throughout the session

based on CPU utilization.

The Bidding model, on the other hand, is modeled by the GL distribution with μ̂ = 4.877e + 08, σ̂ = 1.735e + 07, α̂3 =
−9.483e − 01, α̂4 = 9.777e − 01 parameters, representing the total number of instructions, and the distribution GEV with

ξ̂ = −0.259, μ̂ = 0.576, σ̂ = 0.004 parameters, representing the CPU utilization. The models that represents the disk and mem-

ory demands of the two profiles and the response time experienced by the Bidding profile are presented in Table 6.

Due to trace or model unavailability, unrealistic assumptions are made in the literature about the workload [31], such as set of

requisitions with fixed inter arrival times, simple Poisson models to represent instruction arrivals and exponentially distributed

session time. However, in this work, we achieved different results from assumptions commonly made, such as: stationarity in

the data observed, the distribution representing the arrival of instructions in the processor is GWD, and the distributions that

represent the total number of instructions, which is a metric correlated with session time, are GEV and GL.

5.4. Simulation validation

The graphical validation is shown in Fig. 7, while the WMW test results are reported in Table 9. Fig. 7 shows a comparison of

the histogram of observed data against probability density function of the simulated data to the number of instructions metric,
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Table 9

WMW test

Metric Browsing Bidding

p-Value (max) p-Value (min) Error (%) p-Value (max) p-Value (min) Error (%)

Number of instructions 0.999 0.033 3.000 0.995 0.012 9.000

CPU utilization 0.996 0.026 6.000 0.998 0.033 8.000

Memory utilization 0.992 0.046 4.000 0.999 0.016 1.000

Disk utilization 0.998 0.034 1.000 0.999 0.029 8.000

Response time – – – 0.998 0.024 4.000
considering both user profiles. The simulated data are consistent with the observed data for both profiles. However, visually, the

Browsing profile provides a better approximation to the observed data. This result is reinforced by Table 9, where the Browsing

profile has an error three times smaller than the Bidding profile.

Table 9 shows the maximum and minimum p-Values obtained through the WMW test applied to a set of 100 samples of

observed data and 100 samples of simulated data. For the total of 10,000 comparisons, the error was also calculated. The error

is computed when sampled simulated data does not belong to the same sample data observed, i.e., p-Value < 0.05. The error

for all metrics is less than 10%. Among the mathematical transformations applied to the CPU utilization metric, the inverse

transformation offers the best results, reducing the Wilcox error rate of 34% to 6%, considering the Browsing profile.

Then, we can conclude the implementation of web application modeling in the CloudSim simulator is capable of producing

data to accurately represent both user profiles. Thus, it can be used by researchers to build performance models and to produce

tracelogs based on realistic scenarios and extrapolating the results with controlled modification of parameters such as number

of users, software stack, and physical and virtual machine configuration. Furthermore, this implementation contributes to the

development of performance models to support emerging cloud computing research domains, such as resource allocation in

Mobile Cloud Computing (MCC) in which the trade-off between time and energy is a management challenge [32].

6. Conclusion

We applied a well-defined methodology to generate a Web application model for a cloud data center workload. It contains

steps and justifications to achieve the distributions and parameters derived from application analyses and it can be extrapolated

to other workload categories. Thereby, our model can be easily reproduced by researchers and cloud providers to support differ-

ent research domains. It was implemented as an extension of the CloudSim simulator and its validation demonstrated that the

Web application modeling can produce data to accurately represent different user profiles.

Based on our model and experiments, the following observations can be highlighted: (i) the user profile type (i.e., model of

the user behavior) has a strong influence on resource utilization, so we need different statistical distributions to represent the

total number of instructions and CPU, memory and disk utilization. Therefore, user behavior must be considered in workload

modeling to reflect realistic conditions; and (ii) we observe the presence of stationarity instead of fixed arrival times to represent

instructions arrival on the processor, GWD and GEV distributions instead of simple Poisson models to represent instruction

arrivals, and Generalized Extreme Value and Generalized Lambda distributions instead of Exponential distribution to represent

session time.

As future work, we are planning to (i) incorporate a model of user arrival including daily cycle characteristic; (ii) evaluate

the impact of different sizes of user population on the observed metrics; and (iii) develop provisioning policies based on the

proposed model to meet the web applications demand.
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