
© The Author 2012. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

doi:10.1093/comjnl/bxr128

Scheduling Workflow Applications
Based on Multi-source Parallel
Data Retrieval in Distributed

Computing Networks

Suraj Pandey
1,∗

and Rajkumar Buyya
2

1CSIRO, ICT Centre, Marsfield, Australia
2Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computer Science and

Information Systems, The University of Melbourne, Parkville, Australia
∗Corresponding author: suraj.pandey@csiro.au

Many scientific experiments are carried out in collaboration with researchers around the world
to use existing infrastructures and conduct experiments at massive scale. Data produced by such
experiments are thus replicated and cached at multiple geographic locations. This gives rise to new
challenges when selecting distributed data and compute resources so that the execution of applications
is time- and cost-efficient. Existing heuristic techniques select ‘best’ data source for retrieving data to
a compute resource and subsequently process task-resource assignment. However, this approach of
scheduling, which is based only on single source data retrieval, may not give time-efficient schedules
when: (i) tasks are interdependent on data, (ii) the average size of data processed by most tasks is
large and (iii) data transfer time exceeds task computation time by at least one order of magnitude.
In order to address these characteristics of data-intensive applications, we propose to leverage the
presence of replicated data sources, retrieve data in parallel from multiple locations and thus achieve
time-efficient schedules. In this article, we propose two multi-source data-retrieval-based scheduling
heuristic that assigns interdependent tasks to compute resources based on both data retrieval time
and task-computation time. We carry out experiments using real applications and deploy them on
emulated as well as real environments. With a combination of data retrieval and task-resource
mapping technique, we show that our heuristic produces time-efficient schedules that are better

than existing heuristic-based techniques for scheduling application workflows.
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1. INTRODUCTION

A growing emphasis on collaborative research has led to
an increased use of distributed computing environments and
the replication of experimental data for large-scale scientific
applications such as the Compact Muon Solenoid (CMS)
experiment for the Large Hadron Collider (LHC) at CERN, the
Laser Interferometer Gravitational-wave Observatory (LIGO)
data-analysis pipeline and so forth. It is important that these
experiments make full use of the distributed infrastructure and
the replicated data, and optimize the execution time as they

carry out repeated experiments. A well-known method behind
efficient execution is to model the application as a workflow
and schedule the tasks in the workflow over a set of available
compute resources [1–4].

Selecting compute and storage nodes based on their location
in the network is a basic building block when using distributed
computing environments [5]. A workflow scheduler should be
able to select the data sources and parallelize the transfer of data
to a compute host to optimize the overall transfer time. Similarly,
the selection of the compute host, in relation to the selected set of
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data hosts, should be such that the execution time is minimized.
We focus on these two aspects—data host and compute host
selection while scheduling data-intensive scientific application
workflows. We begin by describing two applications that have
motivated us to further optimize the data and compute host
selection while scheduling workflow applications.

Case 1: The CMS experiment still produces more than five
petabytes data per year when running at peak performance. It
has a large number of ‘Tier-2’ analysis centers where physics
analyses are conducted. However, Tier-2 centers rely upon
Tier-1s for access to large datasets and secure storage of the new
data they produce. Tier-2 sites are responsible for the transfer,
buffering and short-term caching of relevant samples from
Tier-1, and transfer of produced data to Tier-1 for storage [1].
They are required to import 5 TB/day of data from Tier-1 and
other data replicated at Tier-2, and export 1 TB/day (This is
based on ∼108 simulated events per year per Tier-2, multiplied
by the event size and divided by the number of working days).
According to James Letts, ‘The ability to move and analyze
data are essential to any experiment, and so far the data transfer
system in CMS seems to be up to the challenge’.

Case 2: The LIGO Scientific Collaboration (LSC), currently
made up of almost 700 scientists from over 60 institutions
and 11 countries worldwide, is a group of scientists seeking
to detect gravitational waves and use them to explore the
fundamental physics of gravity. The LIGO Data Grid (LDG)
has laboratory centers (Caltech, MIT, LHO and LLO) and LSC
institutions (UWM, and three sites in the EU managed by the
GEO-600 collaboration) offering computational services, data
storage and grid computing services. The LDG uses the LIGO
Data Replicator (LDR) to store and distribute data. Input data
are common to the majority of analysis pipelines, and so is
distributed to all LDG centers in advance of job scheduling [2].
The analysis of data from gravitational-wave detectors are
represented as workflows. Using middleware technologies, such
as Pegasus and Condor DAGMan for management, the LDG
continues to manage complex workflows for its growing number
of users.

Rationale: In Case 1, Tier-2 members download data from
Tier-1 and also cache these data for short-term usage. In the
three hypothetical ‘use cases’ presented in [1], scientists are
continuously sharing the cached data for repeated experiments
and analysis. Therefore, the presence of these replicated/cached
data could be used for minimizing the transfer time, when
compared with getting them from Tier-1 directly every
time. This justifies the need for multi-source data transfer
mechanisms. In addition, the results obtained after analysis are
transferred back to Tier-1, which would then be downloaded by
users from Tier-2. This back-and-forth transfer of data could
also be minimized by caching/transferring the output results to
specific locations, where users are active.

Similarly, in Case 2, as input data are replicated at all LDG
centers, complex workflows could make use of these multiple
data sources while transferring data. The intrinsic characteristic

that input data are common to the majority of analysis pipelines
justifies the need for replication before application execution.
This in turn benefits any heuristic using multi-source retrieval
techniques. Similar to Case 1, the results obtained from Case 2
could also be managed/replicated at selected sites so that
scientists can retrieve data within a short period of time from
these sites.

Different approaches such as the replica selection in the
Globus Data Grid [6], Giggle framework [7] and combinations
of these methods are used to resolve replicas in data-
intensive applications. However, these replica selection services
primarily select one ‘best’ replica per task that gives the MTT
to a compute host. But for applications that have tasks with
data-dependencies and multiple input files per task, selecting
one ‘best’ replica may not always give the optimal transfer
time [8, 9].

Storage and distribution services provided by storage service
providers such as Nirvanix Storage Delivery Network1 and
Cloud Storage [Amazon Simple Storage Services (S3)2] are
enabling users and scientists to store and access content from
globally distributed edge servers. These content distribution
networks can be used by data-intensive applications for storage
and distribution. Users can then retrieve data from these multiple
data hosts or edge servers (in contrast to a single ‘best’ storage
resource) in parallel, to minimize the total transfer time. As
data are transferred in segments, the transfer process is carried
out in parallel when using multiple data sources. This is termed
‘multi-source parallel-data-retrieval (MSPDR)’in this article. In
addition to selecting data hosts, we also need to choose compute
resources to transfer data and execute application tasks.

Realizing the limited efficacy of selecting one best
replica, Zhou et al. [9] proposed several replica retrieval
methods to reduce access latency, improve data locality and
increase robustness, scalability and performance for distributed
applications. They showed through experiments that probe-
based data retrieval (described in more detail in Section 4.4) was
best suited for large volumes of data in Data Grid environments.
These techniques were proposed and studied in the context of
Data Grids and were limited to replica retrieval.

Scheduling of workflow applications based on the multi-
source parallel data-retrieval techniques has not been given
much attention in the past, due to the complexity involved in
selecting data resources, managing data retrievals and selecting
compute resources for executing workflow tasks. In contrast to
existing methods where one ‘best’data sources are selected prior
to the selection of compute resources, this article proposes novel
algorithms that select both data and compute resources with
respect to multiple data locations and computing capability of
resources while using MSPDR for data transfers.

In this article, we present two scheduling heuristic
that leverage multi-source parallel data-retrieval techniques.

1http://www.nirvanix.com.
2http://aws.amazon.com.
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Scheduling Workflow Applications 3

We experiment with existing (i) probe-based [9], (ii) greedy [9]
and (iii) random site selection-based data retrieval techniques
for retrieving data from selected data-hosts while scheduling
tasks in a workflow. We also propose a tree-based approach for
selecting multiple data sources during the scheduling process.
We then study the effect of using MSPDR-based heuristic on
the makespan (i.e. the length of the schedule) of representative
data-intensive application workflows. Finally, we compare the
makespan obtained by using MSPDR-heuristic against single
‘best’ data source selection-based heuristic.

In summary, the contributions of this paper are:

(i) A static and a dynamic scheduling heuristic that leverage
multi-source parallel data-retrieval technique.

(ii) A Steiner tree-based resource selection technique for
dynamic scheduling.

(iii) A thorough experimental study of the proposed
scheduling algorithms on both emulated and real
execution platforms using real application workflows.

2. RELATED WORK

In this section, we survey past work on replica selection, data
retrieval and workflow scheduling algorithms.

Replica selection and retrieval:Vazhkudai et al. [6] presented
the design and implementation of a high-level replica selection
service in the Globus data Grid. Chervenak et al. [7] defined a
replica location service that maintains and provides access to
information about the physical locations of copies. Hu et al. [10]
proposed the Instance-Based-Learning (IBL) algorithm for
replica selection where only limited data sources are available.
Their results show that IBL performs well for data-intensive
Grid applications. Zhou et al. [9] analyzed various algorithms
for replica retrieval and concluded that probe-based retrieval is
the best approach, providing twice the transfer rate of the ‘best’
replica server. Feng et al. [8] proposed rFTP that improves the
data transfer rate and reliability on Grids by utilizing multiple
replica sources concurrently. Their NWS Dynamic algorithm
depends on Network Weather Service (NWS) [11] deployment
at all participating Grid nodes, and NoObserve or SelfObserve
does not use NWS. In these works, the replica selection system
seeks one ‘best’ replica among all available replicas. Retrieving
data from the best source may result in poor performance and
degraded reliability [8, 9].

When data are partitioned and distributed at various locations
without full replication, a set of data-hosts that complete the
required data files should be found. The selection of the optimal
set of data-hosts in the presence of a large number of replicated
files for a single job is computationally intensive.Venugopal and
Buyya [12] selected the data-hosts by using one of the solutions
to the Set-Coverage problem [13]. In this paper, we assume that
data are fully replicated and hence set-coverage is guaranteed
by every data source.

The Hadoop Distributed File System (HDFS) distributes data
to all the nodes of a Hadoop cluster as it is being loaded into
the system [14]. Large data files get split in chunks, which are
managed by different nodes in the cluster. In addition, each
chunk is replicated across several machines. HDFS provides the
capability for retrieving data from multiple sources. However,
the Hadoop framework schedules computations (MapReduce
processes) in proximity to the location of the data, where the
computation happens on a subset of the data. Most data (the
subset) are read from the local disk, avoiding network transfers.
Moving computation to the data may not be feasible for a
workflow application, where data and computing nodes are
geographically distributed.

Content Delivery Networks (CDN) maintain content cashing
points of presence in data centers strategically located near
primary Internet Exchange Points so that end users can
download the data with minimal delay.3 Seeking the best
edge-server for data may reduce the transfer time; however,
the best edge-server’s location may not always have the
desired computing capabilities to analyze the downloaded data.
Moreover, there are work in CDN domains that show the
benefits of using multiple edge-servers [15, 16]. Rodriguez and
Biersack [17] proposed a dynamic-parallel access approach
to replicated content from multiple servers or caches in
CDN. They showed that users experience significant speed-
ups and very consistent response times when using multiple
parallel transfers. Wu and Chien et al. [18] reiterate the need
for fetching data from multiple sites concurrently in CDN.
To facilitate multipoint-to-point data transfers, they proposed
Group Transport Protocol (GTP) and a receiver- based rate
allocation scheme and showed that GTP outperforms other
point-to-point protocols for multiple-to-point transmission.

Large data could be disseminated to the computing
infrastructure and scientific communities using various data
movement technologies underpinned by distribution scenarios.
Woollard et al. [19] proposed the use of distribution
workflows for specifying the properties of data distribution
(e.g. the total volume of data transfer, delivery intervals,
number of users receiving the data, etc.). They described the
stages of the distribution workflow (data access, data sub-
setting, movement technology selection and distribution) and
used the Object Oriented Data Technology data distribution
framework [20] to provide the services for data sub-setting and
delivery of information across heterogeneous organizational
structures. In addition, they constructed a decision-making
framework that autonomously decides the appropriate data
movement technology for a distribution scenario, or a class
of scenarios [21]. Their method of specifying data movement
parameters, constructing a workflow and dynamically selecting
movement technologies fits well in the context of this
paper. Similar work on mixed data delivery was proposed

3http://www.akamai.com/, http://aws.amazon.com/cloudfront/, http://www.
gogrid.com/cloud-hosting/content-delivery-network.php.
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by Alinel et al. [22] as part of their dissemination-based
information systems toolkit. These works implicitly assume that
the computing resources are pre-selected prior to constructing
the data distribution workflow, which is the same as scheduling
workflow tasks independent of data. However, it would be
interesting to study the construction of the distribution workflow
at run-time, based on the currently executing workflow statistics,
such as execution time, locality of resources, etc.

Multi-source parallel data transfers can be much more
efficient than single source transfers. It can reduce access times
by transferring data from several replicas in parallel according
to Yang et al. [23] and Feng and Humphrey [8]. GridFTP
and rFTP [8] are existing tools that support these types of
transfers.

Kosar and Balman [24] described the insufficiency of
tradition distributed computing systems in efficiently (and
reliably) accessing and transferring widely distributed data.
Traditional systems emphasize on computations alone and
embed data transfers in the process, causing delays in
computation and data movements. They proposed a data-
aware scheduler, Stork [25], that implements techniques for
scheduling and optimization of data placement jobs. The data
placement jobs include data transfer, storage allocation, data
removal, etc. They also reported using multiple connections
during data transfers between two hosts. They showed that
transfer speed improved slightly when using multiple streams
and issuing multiple transfers, when compared with using
single-connection on wide area networks. In addition, their
results show a positive impact on the transfer rate for increased
concurrency than increased parallelism. Relating their findings
to the work presented in this paper, we use multiple connections
from multiple sources, which introduces concurrency in data
transfers. The more the number of data sources, the higher the
concurrency, but not necessarily the data transfer rate. In order
to maximize the data transfer rate, while maintaining higher
concurrency, we propose a novel method for selecting data
sources.

Static and dynamic workflow scheduling: We focus on list-
based scheduling heuristic for computing static schedules
(offline); and task partitioning and iterative rescheduling for
dynamic schedules (online).

Topcuouglu et al. [26] designed the HEFT algorithm based
on list scheduling. HEFT is a static scheduling algorithm
that attempts to schedule tasks on heterogeneous resources
to get minimum execution time. It assigns ranks to the
tasks according to estimated communication and computation
costs and preserves the job execution precedence. However,
the communication and task computation values are average
estimates.

Sakellariou and Zhou [27] investigated the performance of the
HEFT algorithm produced by different approximation methods.
They concluded that the mean value method is not the most
efficient choice, and the performance could differ significantly
from one application to another. They also proposed a hybrid

heuristic that uses a standard list scheduling approach to rank
the nodes of the Directed Acyclic Graph (DAG) and then uses
this ranking to form groups of tasks that can be scheduled
independently. Their Balanced Minimum Completion Time
(BMCT) is for scheduling independent tasks formed by using
the hybrid heuristic. BMCT algorithm tries to minimize the
execution time in the initial allocation, and again tries to
minimize the overall time by swapping tasks between machines.
We take the Hybrid and BMCT algorithm (HBMCT) for
comparing with our static scheduling heuristic.

Deelman et al. [3] partitioned a workflow into multiple
sub-workflows and allocated resources to tasks of one sub-
workflow at a time based on real-time information. Shankar
and Dewitt [28] proposed a planner that uses a file_location
table to determine the locations of cached or replicated files
for scheduling data-intensive workflows using the Pegasus
framework.

The iterative re-computing technique keeps applying the
scheduling algorithm on the yet-to-be-scheduled tasks of a
workflow in execution. Sakellariou and Zhou [29] proposed a
low-cost Selective Rescheduling (SR) policy by recomputing
a schedule only when the delay of a carefully selected task
impacts the schedule of the entire workflow. Several works have
explored static and dynamic scheduling strategies for workflow
execution that focused on: user quality of service and location
affinity [30–32], iterative calls of static algorithms [33–35],
dynamic programming [36] and so forth. Lopez et al. [34]
explored several static and dynamic approaches for scheduling
workflows and concluded that list-based heuristic significantly
outperforms non-list-based heuristic.Yu et al. [37] described the
strategies involved in scheduling workflows for Grid computing
environments.

Many past works on scheduling workflows focus primarily
on compute-intensive workflows. Most of these scheduling
algorithms could make use of multi-source data retrieval
techniques while also scheduling tasks on compute resources.
However, the challenge is to use a retrieval technique while
scheduling workflow applications. To the best of our knowledge,
this problem has not been explored in detail in the past.
This paper addressed this challenge using heuristic-based
approaches.

3. PROBLEM STATEMENT

We now describe the problem of data host selection and tasks to
resource mapping in the presence of a large number of replicated
files for workflow applications [38].

Definition 1 DTSP(D, R, T , F, G, L, M). Given a set of
data-hosts D, a set of compute resources R, a set of tasks
T , a set of files F (both input and output files of T ),

and a graph G that represents the data flow dependencies
between tasks T , the Data-Task Scheduling Problem (DTSP)

is a problem of finding assignments of tasks to compute-hosts
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Scheduling Workflow Applications 5

[task_schedule = {tr}, t ∈ T , r ∈ R], and the partial data set
(PDtr ) to be transferred from selected data-hosts to assigned
compute hosts [data_set = {{PDdi→r}tr ∀di ∈ D, r ∈ R, i ≤
|D|}] for each task, such that: total execution time (and cost) at
r and data transfer time (and cost) incurred by data transfers
{PDdi→r} are minimized for all tasks T .

The pre-conditions are:

(i) Data files are replicated across multiple data hosts.
(ii) Each task processes more than one input data files.

(iii) Total time and cost are bounded by L and M ,
respectively, where L signifies deadline and M denotes
maximum money (real currency) that can be spent on
executing all the tasks in T

We assume (listed as pre-conditions above) that replicas of
data files are present at multiple locations and can be accessed in
parallel. Data-intensive applications are known to have higher
values for the Communication to Computation Ratio (CCR),
which is mainly due to the size and number of data files to be
processed. Thus, we assume each task in a workflow to have
more than one input files. The third assumption simply put
constrains on the time and cost that could be spent on executing
a workflow.

Figure 1 shows an example scenario for the problem
given in Definition 1, where tasks are mapped to resources
and partial data are retrieved from multiple data hosts.
In the figure, tasks t1 and t2 are assigned to resources
r1 and r3, respectively. In this static mapping, Fig. 1
shows partial data being retrieved in parallel from all data
hosts d1, d2, d3 to the respective compute hosts where the
tasks are assigned: {PDd1→r1, PDd2→r1, PDd3→r1}t1→r1 and
{PDd1→r3, PDd2→r3, PDd3→r3}t2→r3. The objective now is to

minimize the transfer time of these partial data to assigned
computing resources by transferring the right amount of data
from each data source for each task in the workflow.

Definition 1 states a generic problem that includes two
objectives for optimization: time and cost. In this article, we
propose heuristic-based scheduling techniques for the problem
by limiting the number of objectives to only one: minimize the
makespan. Hence, execution and data transfer cost (economic
cost, measured in terms of physical currency) are assumed zero,
i.e. M = $0. Using non-zero value for cost as an additional
parameter when carrying out multi-objective optimizations will
be part of our future work.

4. SCHEDULING HEURISTIC

In this section, we begin by describing a static scheduling
heuristic (also known as offline scheduling), assuming that
the scheduler has advance information of the environment.
For dynamic environments, we propose a Steiner Tree-
based resource selection method. Using this tree, we then
describe a dynamic scheduling heuristic (also known as online
scheduling), where decisions are made at run-time.

4.1. Static scheduling heuristic

We propose an Enhanced Static Mapping Heuristic (ESMH),
assuming that the scheduling system has advance information
of tasks, compute and storage resources and network statistics
at the time of scheduling, prior to execution. The following
information are known:

(i) number of tasks to be scheduled;

FIGURE 1. A scenario that shows partial data retrievals and task to resource mappings for a workflow in a distributed computing environment.
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Algorithm 1. Enhanced static mapping heuristic (ESMH).
Data: Tasks {ti} with input files {f1, . . . , fn}t i ,
Data: A data-resource matrix {M: mij = tr(fi → rj )}
Data: Average computation time: avg_comp of ti on each rj

Data: fk ∈ F can be fully downloaded from more than one location (replicated)
begin

for each task starting from the root do1

Form resource set {R} that has min(tr({fi})) for each file fi required by task ti2

Mark rk ∈ {R} that has min. computation time for ti3

EFTmin_avg = min_avg_comp(ti, rk) + tr({f }t i , rk)4

for each resource ri ∈ {R} do5

EFTrelative = avg_comp(ti, ri) + tr({f }t i , ri)6

if [EFTrelative] < [EFTmin_avg] then7

Map ti to ri ; break;8

if ti not assigned then9

Mark rm /∈ {R} that has minimum tr time for the largest file required by task ti10

EFTf ile = min_avg_comp(ti, rm) + tr({f }t i , rm)11

if [EFTf ile] ≤ [EFTmin_avg] then12

Map ti to rm13

else
Map ti to rk /* last option */14

Update resource availability information based on task-resource mapping15

end

(ii) estimated execution time of every task on a set of
dedicated resources;

(iii) maximum execution time of a task (used for
task preemptions in a priority queue-based resource
management system);

(iv) size of data handled by each task;
(v) earliest start time (EST) for an unscheduled task on any

given resource;
(vi) resource characteristics: CPU MHz, memory;

(vii) average network bandwidth available between resources
at the time of scheduling (based on prediction).

Data-resource matrix: Every task tk ∈ T processes a set of
input files to produce output files, all in the set {f1, . . . , fn}tk
∀fi ∈ F .4 A data-resource matrix M for a task tk stores the
average time required for each file fi , or a set of files {fi}, to
be transferred to a resource (rj ) at a location ij (i corresponds
to a file, j corresponds to a resource in the Matrix M) and
this value is mij = tr(fi → rj ). The mij values must be
calculated/estimated in advance by using partial file transfer
mechanisms, e.g. probe, random or greedy. While scheduling
application workflows, we use probe-based retrieval to estimate
the value of mij as this method performed better than greedy and
random methods (see Section 5.4.4 for experimental results).

4It is assumed, the input and output files for each task are known.

In static mapping heuristic (e.g. HEFT, HBMCT, which are
described in Section 2), it is a common practice to compute
or estimate these transfer times using access logs, prediction
models or real executions. This matrix is similar to a meta-data
catalog that provides transfer times of files between resources.
Our approach is different than the meta-data catalogs as data
are transferred from multiple locations in parallel using either
probe- or greedy-based retrieval technique.

Resource selection: We select compute resources based on
the Earliest Finish Time (EFT) value we calculate for a task on
a resource. This EFT value is calculated by adding the estimated
computation time of a task on a resource min_avg_comp(ti, rk)

∀ti ∈ T ; rk ∈ R and the estimated transfer time of total data
to the resource tr({f }t i , rk) (applicable to steps 4, 6 and 11 in
Algorithm 1). To select the resource that has the minimum EFT
for a task, we rely on external information, usually obtained
by using an Estimated Time to Compute (ETC) matrix, user
supplied information, task profiling, analytical benchmarking,
as mentioned by Briceno et al. [39].

Heuristic:Algorithm 1 lists the ESMH.We start task-resource
mapping by selecting tasks in a workflow on a level-by-
level basis.

As the workflow is represented as a DAG, it has many
topological orderings. We select tasks such that each node
comes before all nodes to which it has outbound edges.
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Scheduling Workflow Applications 7

We create a topological order over the directed graph, with
arbitrary tie-breaking in case of partial order. The node that
gets selected first, after the tie-breaking if any, is termed as the
root node in Algorithm 1.

For each task, we first form a set of compute resources {R}
by selecting only those resources that have Minimum Transfer
Time (MTT) min(tr({fi})) for each input file fi of a task ti
(step 2). The transfer time value tr({fi}, resource) = mij =
m[file, resource] (used in steps 4, 6, and 11 in Algorithm 1) is
obtained from the data-resource matrix for all the resources. We
then form a compute resource set {R} that contains resources
having MTT for each input file for all the tasks in the workflow.
Among these resources, we mark a resource rk ∈ {R} that has
minimum computation time for the task ti (step 3). Next, we
estimate the EFT value of the task (EFTmin_avg) (step 4) by
adding the average of the minimum Execution Time (ET) given
by a resource for the task and the transfer time of all input
files required by the task to that resource. This EFT value is
an average value since we take the average of all the minimum
computation time (min_avg_comp) of tasks on that resource.
We assume the minimum computation time of every task varies
on a resource as the size of input files vary.

Next, we calculate the EFT value of the task ti for all the
resources in the resource set {R}. This EFT given by each
resource is termed as EFTrelative (step 6). EFTrelative is different
than EFTmin_avg as the EFT value is relatively dependent
(convolution relationship) on data transfer and on average
computation, whereas EFTmin_avg is dominated by the minimum
value of execution time given by a resource. We then compare
the EFTmin_avg value against the EFTrelative (step 7). If we find a
resource that has the EFTrelative value lesser than the EFTmin_avg,
then we assign the task to the resource that has smaller EFTrelative

(step 8).
If none of the resources in the set {R} have EFT values lower

than the EFTmin_avg (step 9), we compute the EFT based on
the file size. We choose a resource rm /∈ {R} such that it has
MTT value for the largest input file of the task ti (step 10). We
then compute the EFTfile based on this resource rm (step 11).
The task is then assigned to the resource that has minimum EFT
value (either rm or rk) (step 12–14). We could search for optimal
EFTrelative, but it would be computationally not feasible for large
resource set {R} (discussed further in Section 4.1.2).

Rationale: The formation of a bounded compute resource
set {R} ensures that only limited, but reasonable candidate
resources are selected from a pool of a large number of resources
(step 2). The resources in this set are selected based on the
transfer time of input files of each task. As we are considering
data-intensive workflows, we focus on minimizing data transfer
time (i.e. EFTrelative, EFTfile) over task computation time (i.e.
EFTmin_avg) (step 4). Thus, the heuristic maps tasks to resources
based on the size of data. If all the input files of a task have higher
values of transfer time than its averaged minimum computation
time, the task is assigned to the resource that has minimum
EFTrelative value (step 5–step 8). If only some of the input files of

a task have higher values of transfer time than computing time,
the task is assigned to the resource that has minimum EFTfile

value (step 9–step 13). If the averaged minimum computation
time of a task outweighs the transfer time of input files, the
task is assigned to the resource that gives minimum EFTmin_avg

value (step 14). Hence, in a workflow all the tasks get an equal
share of resources depending on their data and computation
requirements.

ESMH is different than HEFT, HBMCT and existing static
heuristic as: (a) it evaluates task schedules based on multi-
source file transfer times to a resource (b) it manages task to
resource mapping based on both data-transfer and computation
requirements, (c) it uses only selected resources in contrast to
all available resources and (d) it balances tasks to resource
mappings based on both transfer time and computation time.
We illustrate this with an example as follows.

4.1.1. Examples of workflow
Figure 2 shows an example of a workflow with input and
output files and data dependencies between tasks. The table in
Fig. 2c shows the schedule length produced by using ESMH
listed in Algorithm 1. In this example, ESMH uses values
from pre-computed matrices. These matrices are: (a) one that
stores values of average computation time of each task on
each resource (Fig. 2a and b); (b) one that stores values of
transfer time of each data-file from distributed data-centers
to each resource (Fig. 2c) based on probe-based multi-source
parallel retrieval technique. As ESMH is an offline heuristic,
these matrices are computed before the heuristic operates.

In this example, we have three resources {R1, R2, R3} and
eight tasks t1 to t8. Each task operates on several input files
to produce output files. We take the example of mapping of
task t3. The schedule given by each resource R1, R2 and
R3 is (12 + 3917), (4 + 2571) and (21 + 3184) seconds,
respectively. As resource R2’s available time is after task t1
finishes execution, the minimum EFT is given by resource R3,
hence the mapping.

4.1.2. Optimality of static heuristic
The mapping of tasks to compute resources is an NP-complete
problem in the general form [40]. The problem is NP-
complete even in two simple cases: (i) scheduling jobs with
uniform weights to an arbitrary number of processors and
(ii) scheduling jobs with weights equal to one or two units
to two processors [41]. Hence, there exists heuristics-based
approaches for scheduling workflow applications, and ESMH
is one of them.

One computationally expensive way to generate the optimal
schedule (for offline scheduling) is by evaluating the mapping of
each task on all resources and selecting only the time-efficient
mappings. Instead of making all such possible comparisons,
the ESMH listed in Algorithm 1 reduces the number of
comparisons by selecting the candidate resources that could
provide minimum computing and transfer time for a given

The Computer Journal, 2012

 at C
SIR

O
 L

ibrary Services on A
pril 20, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


8 S. Pandey and R. Buyya

FIGURE 2. An example workflow, matrices with estimated values and a schedule generated by using ESMH.

task. This results in the time complexity of the algorithm to
be O((n + e) × m) in the worst case, where n is the number of
tasks, e is the number of edges and m is the number of compute
resources. The time complexity of HEFT algorithm is equal to
O(n2 × m) [42].

HEFT produces better schedules when the CCR is signifi-
cantly small. However, when CCR is large, the communication
cost becomes dominant and HEFT performs worse, even for
values of CCR as low as 0.1 [43]. The performance gain is
more notable in ESMH for larger CCRs.

The static heuristic we have proposed would be most
appropriate if all our assumptions listed in Section 4.1 could
be realized in practice. However, in a distributed environment
where resources are shared among a large number of users,
the estimates recorded in the matrices will suffer from large
deviations from the values at the time of task execution.
Hence the static estimates of computation and communication
time cannot be relied upon for time-efficient scheduling of
applications that have long-running tasks with large data-sets
to process. This limitation prevents us from forming the initial
resource set {R} in Algorithm 1. To circumvent this limitation,
we propose a Steiner-Tree-based resource selection and apply
it for online scheduling, as described in the following section.

4.2. A Steiner tree

Definition. A Steiner Tree problem can be defined as: Given
a weighted undirected graph G = (V , E), and a set S subset
of V, find the Minimum-Cost tree that spans the nodes in S.

G = (V , E) denotes a finite graph with a set V of vertices
and the set E of edges.A weight w defines a number w(e) ∈ R+

0
associated with each edge e, i.e. w : E → R+

0 . In particular,
the weight d : E → R+

0 , and c : E → R+
0 represent the

delay and the cost of the link, respectively. A path is a finite
sequence of non-repeated nodes p = (v0, v1, . . . , vi), such that,
0 < i ≤ k, k = |V |, there exists a link from vi to v(i+1) ∈ E. A
link e ∈ p means that path p passes through link e. The delay
and cost of a path p are thus given by: d(p) = ∑

e∈p d(e), and
c(p) = ∑

e∈p c(e).
A spanning tree T of a graph G whose length is the shortest

among all spanning trees is called a minimum spanning tree
for G. A Steiner-Minimal-Tree (SMT) for a set of points is a
minimum spanning tree, where a finite set of additional vertices
VA is introduced into the space in order to achieve a minimal
solution for the length of the path p. An illustration of these two
trees is depicted in Fig. 3.

In order to approximate the length of the path p, we assume
the delay and cost of a path are in a metric space and can
be combined with the distance function ρ. Let (X, ρ) be a
metric space. That means, X is a nonempty set of points and
ρ : X2 �→ 	 is a real-valued function, called a metric, satisfying
the triangle inequality.

G = (V , E) is embedded in (X, ρ) in such a way that V

is a set of points in X and E is a set of unordered pairs vv′ of
points v, v′ ∈ V . For each edge vv′ a length is given by ρ(v, v′).
Hence, we define the length of the graph G in (X, ρ) as the total
length of G:

L(G) = L(X, ρ)(G) =
∑

vv′∈E

ρ(v, v′). (1)
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Scheduling Workflow Applications 9

Thus, the SMT is a tree that connects vertices in V with
additional vertices VA to lower the path length ρ. Even though
the Internet can be regarded as a non-metric space, where the
network flow is constantly changing in time and the triangle
inequality may not hold, the assumption that ρ is in metric
space highly simplifies the problem of constructing the tree and
hence selecting vertices when compared with when using ρ in
a non-metric space.

We are motivated to use ρ in metric space as relating
geographic coordinates to round-trip-times (RTT) works well
in practice [44]. Freedman et al. [44] showed a strong linear
correlation between geographic distance and RTT across all
PlanetLab hosts assuming geographic distance is a good
indicator of network distance. In contrast, if ρ was taken
in non-metric (i.e. real network delays), we would have to
probe each and every resource continuously and exhaustively
to establish the network distance between resources. This not
only increases the amount of probings per request but also
makes the results susceptible to changing network dynamics.
As opposed to static geographic locations, exhaustive probing
would change the interconnection of resources in the Steiner
tree and affect the structure of the tree in two ways: (a) if
the resources are distributed across large physical distances
(e.g. Fig. 4c), the tree would have minimal changes in terms
of the interconnection of nodes, and (b) if the resources are
physically located relatively close to each other (e.g. Fig. 4a and
b), the nodes would reconnect according to the updated network
distance. Thus, taking ρ in metric space reduces the amount of
probings and also keeps the structure of the tree close to the real
world network topology. The following section describes the
validation of the Steiner-tree-based network topology on three
real networks.

4.2.1. Forming a Steiner tree
The SMT problem is NP-hard; so polynomial-time heuristic
are desired [45]. The Bounded Shortest Multicast Algorithm
(BSMA) is a very well-known delay-constrained minimum-cost
multicast routing algorithm that shows excellent performance
in terms of generated tree cost, but suffers from high time
complexity [46]. In this paper, we use the incremental
optimization heuristic developed by Dreyer and Overton [45].
Even though it does not give an optimal solution, we get a
feasible solution at any point in time.5

The time complexity of constructing SMT with minimal
length for a finite set of points N in the metric space (X, ρ)

depends on n = |N | and, the time taken to compute ρ(x, y) for
any point (x, y) ∈ V of the space. The definition of the distance
function in terms of the delay and cost of a path p is

ρ(v, v′) = w1d(p) + w2c(p). (2)

The weights w1, w2 are considered as a measure of the
significance of each objective in the distance function of

5http://www.nirarebakun.com/graph/emsteinercli.html.

FIGURE 3. Two ways of connecting vertices that minimizes total
path length: (a) Minimum spanning tree; (b) Steiner tree.

Equation (2). We could have obtained a Pareto optimal solution
by choosing the right combination of w1 and w2, which
minimizes the distance. But, we are interested in reducing
the time complexity of the overall process. Hence, we leave
the values of these weights (delay and cost) to the user to
select at runtime. Moreover, even a random choice (but within
acceptable bounds) of delay values (keeping the cost a constant
in this article) helps achieve the objective of our problem when
compared with using a single source.

4.2.2. Why a Steiner tree?
Our main objective is to connect multiple data sources to a
compute resource for transferring data in parallel so that we
could minimize the total transfer time. While using parallel
transfers could speed up the process, we also need to optimize
the total network bandwidth (path of transfers). We could
construct a minimum spanning tree to connect all the data
sources together. But, the resulting tree is not the smallest tree.
We demonstrate this in Fig. 3a by connecting arbitrary vertices
using a minimum spanning tree.

The Steiner tree is distinguished from the minimum spanning
tree in that we are permitted to construct or select intermediate
connection points to reduce the cost of the tree. In Fig. 3b,
the vertices are connected using the minimum Steiner tree
approach, which has lower path length than the minimum
spanning tree. It can be shown that the optimal group minimum
spanning tree is at most twice as long as the optimal group
Steiner minimal tree [47].

One another reason to use Steiner tree is for finding out the
candidate vertices that have maximum connectivity with its
neighboring vertices. For instance, the intermediate connection
points (four added vertices) in Fig. 3b are all candidate nodes
from where computing resources could be selected for task
executions. The neighboring nodes could then be used as
multiple data sources for transferring data to the intermediate
computing node. The minimum spanning tree approach does
not identify the candidate nodes by itself.

4.3. Steiner-tree-based resource selection and
multi-source data retrieval

The problem of selecting multiple data sources can be handled
by forming a SMT. In our formulation of the Steiner tree
problem, the vertices V represent both data D and compute
R sources (as noted in Section 3) and the links E represent
the network connection between them in the graph G.
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Grid'5000 NetworkPlanet Lab Nodes in US 

Lille Luxembourg

Bordeaux
Lyon

Grenoble

Rennes
Paris

Nancy

Marseille

Toulouse Nice 
US East                       US West

Valence

Poitiers

Ireland

Physical Compute ResourceLabel

Steiner tree based path between resources

Resource Site

New Vertex added by Steiner Tree

EC2 Amazon EC2 Nodes (Virtual Machines)

Distributed Compute Resources (Hybrid Cloud)

(a) (b)

(c)

FIGURE 4. A Steiner tree constructed for planet lab nodes, Grid‘5000 network and distributed resources available for our experiment.

The additional vertices VA represent nodes around V that are not
data or compute sources, but would minimize the path length if
the communication network connects through them.

In order to validate our implementation of the Steiner-tree-
based resource selection method, we constructed the tree on
three independent networks: Planet Lab nodes in the US, the
Grid‘5000 network and compute resources from research labs
around the world. The research labs that shared their resource
for our experiment are: Binghamton University, Victorian
Partnership for Advanced Computing, InTrigger at University
of Tokyo, Georgia State University, DPS group at University
of Innsbruck and Complutense University of Madrid. The
distribution of these resources matches the resources used in
the CMS experiment. These trees are shown in Fig. 4. The
trees are SMTs constructed out of vertices scattered in an
Euclidean plane—the coordinates of these points on the plane
are the latitudes and longitudes of the cities where resources
are present. A tree connects the vertices with lines such that the

distance between the points in the plane is minimal. If there are
vertices that fall on the minimal path, the tree routes through
them without the need of additional vertices, as in the Planet
Lab network (boxes with a marked dot). Additional vertices
are added (boxes without a marked dot) where nodes do not
fall in the path of the tree, as in the other two networks. The
trees drawn using the Euclidean plane are close enough to the
real world network connections between the resources (e.g.
Grid‘5000), thus validating our implementation of Steiner trees.
In addition to validation tests, we use the distributed compute
resources depicted in Fig. 4c when conducting real experiments
(see Section 5).

In Fig. 4, there are vertices (existing and added) that have in-
degree (ind : the number of edges coming into a vertex in a graph)
of two and three. A higher value of ind signifies the number of
connections a vertex can make for parallel data retrieval. For
e.g. if a vertex v ∈ V has ind = 3 with vertices v1, v2, v3 ∈ V ,
a resource located at/nearby v can retrieve data from these three
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Scheduling Workflow Applications 11

Algorithm 2. Enhanced dynamic mapping heuristic (EDMH).
Data: A Tasks {ti} with input files {f1, . . . , fn}t i
Data: Earliest Start Time (EST) for a task on each rj

Data: fk can be sourced from more than one location (replicated)
begin

Construct a Steiner tree using all available resources1

Get N compute resources {R}N with highest value of ind2

for each task ti starting from the root do3

Set minimum Start Time (minST ) = ∞4

for each resource ri ∈ {R}N do5

Probe each connected neighbour r
neighbor

i of ri for calculating instantaneous bandwidth (max of ind probes)6

Split input files based on probe values: {f split−1, . . . , f split−ind }t i ∈ {f }t i7

Estimate total transfer time tr({f }t i , ri) for transferring split files {f split }t i from each r
neighbor

i to ri8

StartT ime(ST ) = EST (ti, ri) + tr({f }t i , ri)9

if (ST ≤ minST ) then10

minST = ST , minCR = ri11

Assign ti to the minCR ⇒ the ri that gives minimum ST12

Wait for polling_time13

Update the ready_list14

Distribute output data of task ti to resources that host the files required by successors of ti15

end

data sources with minimal path length:

L(X, ρ) =
i=3∑

i=1,viv∈E

ρ(vi, v).

In the Planet Lab network, there are several nodes (dots
with square) that have an in-degree of three. In the case of
the Grid‘5000 network, Paris and Marseille possess compute
nodes that are each connected to three other sites around them.
If Poitiers and Valence were to host compute nodes, these sites
would also have an in-degree of three. Thus, we first construct
a Steiner tree on a network and select resources that have the
highest value of in-degree ind . This selection procedure is then
used for dynamic mapping heuristic.

4.4. Dynamic mapping heuristic

In this section, we describe the Enhanced Dynamic Mapping
Heuristic (EDMH) using the Steiner tree-based resource
selection as described in Section 4.2. The EDMH is listed in
Algorithm 2.

EDMH is an online heuristic where tasks are assigned to
resources based on resource load and network latency values
available at runtime. Unlike static heuristic (or offline heuristic),
EDMH does not estimate or use the average computation time
of tasks, but instead relies on the EST provided/forecast by
resources. In addition, EDMH selects an initial pool of resources
based on the Steiner Tree-based selection method.

Pre-Scheduling: We construct a Steiner tree using all the
available resources. The tree helps us identify resources that are
well connected and thus have high ind . These resources form a
set of candidate resources {R}N , which are later chosen for exe-
cuting tasks. We construct the tree using a metric space (X, ρ)6.

Scheduling: EDMH is a list-based scheduling heuristic, listed
in Algorithm 2. We maintain a ready_list (step 16), where
tasks are added as they become available for scheduling. In
dependent-task scheduling, child tasks become ‘ready’ only
when their parents have successfully completed execution. The
ready_list is filled by the scheduling loop, starting from the root
task, as tasks are scheduled and get completed.

Initially, every ready task’s minimum Start Time (ST) is set
to a high value (step 6). This time will be set to a wall-clock
time later as tasks are assigned to available resources. Before any
task can start execution, we assume that data required by the task
must be available at the assigned resource. The downloading of
a task’s input data to a resource depends on the total time it takes
for multi-source parallel retrieval of data.To determine this time,
we use a probe-based approach to estimate the instantaneous
bandwidth between connected resources (step 8) and hence
estimate the approximate time it would take to download input
data from multiple resources for every task (step 10).

The instantaneous bandwidth is different from the maximum
bandwidth (or maximum throughput) of a network access.

6Using a non-metric space also validates our heuristic as long as we can
define the distance function ρ(v, v′) and the path length L(G).
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12 S. Pandey and R. Buyya

FIGURE 5. An example showing the partitioning of input files in proportion to the available instantaneous bandwidth.

The latter is calculated as TCP Window Size/Round-trip time,
which is more representative in wide-area networks and gives
the gross bit rate that is transferred physically. The instantaneous
bandwidth however is the application level throughput that
excludes protocol overhead and retransmitting data packets,
and is generally lower than both the maximum throughput and
network access connection speed.As the receiving end will have
limitation on the maximum throughput/bandwidth it can use
while downloading/uploading data (due to multiple transfers,
hardware, etc.), we used the instantaneous bandwidth instead
of maximum throughput for approximating the transfer time.
This is simply an approximation and depends on the size of the
file transferred, the time taken to transfer and the load on the
network, all of which vary in time.

As each resource ri ∈ {R}N is connected with multiple
neighboring nodes {rneighbor

i } in the network (the Steiner tree
helps in the identification of these connections based on the ind ),
we probe these neighboring nodes to determine instantaneous
bandwidth available (step 8). Based on this value, we split
each input file among the nd resources connected to ri in
proportion as: {f split−1, . . . , f split−ind }ti ∈ {f }ti (step 9). This
split will enable parallel download of the respective segments
from each of the connected neighbors to the resource where
a task is scheduled. For example, in Fig. 5, if a task t i were
to be scheduled at Marseille, input files of total size 2000 MB
were split into three segments (as nd = 3 for Marseille): fsplit-
toulouse, fsplit-nice and fsplit-valence. These segments are then
downloaded to Marseille in parallel from the three neighboring
sites. In this example, entire input files can be downloaded from
all the three sites. The MTT of 0.71 seconds depends on the
size of the largest segment (910 MB in the example). While this
segment is being downloaded, we assume the smaller segments
will have finished downloading, so that we can approximate the
value of ST . We take this minimum time as the total transfer
time tr({f }ti, ri) and add it to the EST of the task EST(ti , ri)

to obtain the value of ST (step 11). The transfer time function
tr({f }t i , ri) is analogous to the path length L(G) of the metric
Steiner tree. Similarly, the value of instantaneous bandwidth
resembles the distance function ρ(v, v′) (see Section 4.2).

We assign a task ti to the resource that projects the minimum
ST based on our estimations (step 14). The scheduler then waits

for a duration defined by the delay: polling_t ime (step 15). In
online scheduling, polling is necessary as the scheduler needs
to update the status of completed/failed tasks so that, after this
delay, it can update and schedule ready tasks.

We partition and distribute the output files produced by
each task to those sites that host files needed by the immediate
successors of the task producing the output (step 17). This dis-
tribution step ensures that these output files can be downloaded
from multiple sites that are also hosting the input files of the
child tasks. This distribution should ensure that neighboring
hosts of the candidate resources {R}N have all the segments to
complete the entire file when downloaded at a resource, using
any replication algorithm [48].

While scheduling workflows there exists more than one task
that can be scheduled independently of one another. Since our
workflows are data-intensive in nature, the transfer time are
dominant when compared with the computation time. This gives
rise to the possibility that the majority of tasks are assigned to
a single or only few compute resources. This occurs only when
tasks have more than one input file in common and these files
are only available from limited number of resources. In such
cases, grouping these tasks to form a batch task and submitting
to a resource reduces data-transfer time.

5. PERFORMANCE EVALUATION

We have evaluated proposed heuristic techniques by two
methods: (i9) using emulation, where the network was
virtualized, and (ii) real environment. First we describe the
performance metric, application workflows and data locality,
which are common to both the experiments.

5.1. Performance metric

We used average makespan as a metric to compare the
performance of heuristic-based approaches on the network
topology and workload distribution for both emulation and real
environment. Average makespan for every heuristic is computed
by taking an average of all the makespan produced by the
heuristic for an application workflow, under a setting. During
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Scheduling Workflow Applications 13

FIGURE 6. Application Workflow types: Balanced (Montage), complex (LIGO) and hybrid (IR) workflows.

the scheduling process, the value of makespan estimated (for
static heuristic) and obtained (for dynamic heuristic) differ for
every experiment per application workflow due to the loss model
(based on a normal distribution) attached to each link between
stub domains in the emulation settings, which in turn changes
the data transfer estimations. Similarly, when experimenting on
real platforms, the change in network loads would change the
actual makespan of the workflow applications. Thus, averaging
the makespan obtained from experimental runs provides a mean
value that is closer to the actual value. The smaller the value
of the average makespan, the better the heuristic performs.
We provide standard errors as a means for comparing our
algorithms, as indicated in Figs 9 and 13.

5.2. Application workflows

We used three types of workflows: balanced, complex and
hybrid, as depicted in Fig. 6. Figure 6-Montage depicts
a workflow similar to the Montage Workflow [49]. In
this type of workflow structure, tasks are symmetrically
distributed in the graph and can be easily partitioned/separated
into levels according to their dependencies. Figure 6-LIGO
represents a complex workflow similar to a subset of the
workflow used to analyze data from the second LIGO
science run for binary inspirals [50]. In this type of
workflow, tasks cannot be partitioned into levels easily as they
have links (data dependencies) to/from tasks across levels.
Figure 6-IR represents a real application workflow used for
Image Registration (IR) for fMRI applications [51], which has
both balanced and complex structures. Group of pipelined tasks

form a balanced structure that can be easily partitioned into
levels, whereas some parts are complex.

The makespan of a workflow is highly dependent on the
structure of the workflow (data-dependencies between tasks).
Random selection of data-sources at any level may increase the
data transfer time, delaying the ST of child tasks, which in turn
increases the makespan.

We experimentally recorded the makespan for all the three
types of workflows to determine: (a) the relationship between
makespan and the workflow structures, and (b) the effect
of multi-source retrieval technique-based scheduling on the
makespan of all workflow structures. We also checked the effect
of using multi-source data retrieval technique on both static and
dynamic scheduling approaches.

5.3. Data locality

For experimenting with greedy retrieval technique, we
segmented each file and distributed them uniformly to the
number of resources used. The maximum and minimum file
segment size for our experiment varied between 0.5 and 500 Mb.
We manually configured at least 30% of the resources to have
all the segments of 50% of the files, for each workflow type. For
experimenting with the probe-based retrieval, we replicated all
the files in all the resources.

5.4. Emulation-based evaluation

Here, we list the intrinsic components of our emulation setup:
the network topology, compute and storage resources, and the
design of the emulation platform.
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FIGURE 7. Experiment design using NS-2-based emulation.

5.4.1. Emulation setup
We used NS-27 as the emulation tool. For simulating the
network connecting resources, we constructed a dense network
topology by interconnecting ns nodes. As an emulator, we
injected workflow execution traffic into the simulator and
emitted packets on to live network using NS-2’s real-time
scheduler. Figure 7 depicts the architecture of our emulation
platform. The virtual network connects a set of User-mode
Linux (UML [52]) VMs, all running on a single physical
machine. VMs are connected via an Ethernet bridge in the
host machine using a virtual interface. The network bridge is
configured such that it blocks all the packets forwarded through
it, and passes the traffic through the network defined in NS-2.
We mapped each VM to a ns node, by using the correspondence
between the Ethernet addresses of the VMs and the network
layer addresses of the NS-2 nodes [53].

Quetier et al. [54] compared four virtual machine (VM)
technologies (Vserver, Xen, UML and VMware) in the context
of large-scale emulation. We used UML-based virtualization
mainly for its low CPU and network overheads and ease of
integration with NS-2. The 20 virtual nodes running on a
single machine had minimal impact on the performance of the
applications. We used our Workflow Engine (WFE) [51] as a
workflow execution and scheduling engine for executing the
workflows. All the scheduling heuristic are implemented in the
WFE. We allocated one VM for running the WFE and another
for hosting the NWS nameserver and memory. We used NWS
for monitoring the network’s bandwidth and latency.

5.4.2. Network topology
We used the GT-ITM internetwork topology generator to
generate random graphs.8 GT-ITM is a topology modeling

7http://www.isi.edu/nsnam/ns.
8http://www.cc.gatech.edu/projects/gtitm.

package that produces graphs that look like wide-area Internet.
We used the Transit-Stub network model, where hierarchical
graphs are generated by composing interconnected transit and
stub domains (see [55] for more details).

We attached our VM to one node in the hierarchical network,
such that the node was in a stub domain. We fixed the number
of ns nodes to 100, with average node degree at 3.5 and 50%
asymmetry in the network links.

For the IR workflow depicted in Fig. 6, we recorded estimates
of execution time and data transfer time of each task on
compute resources provided by Grid‘5000. We refer the reader
to our paper that focuses on IR experiment [51] on Grid‘5000.
However, for Montage and LIGO workflows, we used random
execution times and data sizes. The execution times of each task
on every machine were randomly generated from a uniform
distribution in the interval [10, 50] seconds. To maintain
higher values of CCR, we chose each file size in the interval
[1, 1000] MB. These random values, once computed, remained
fixed throughout the experiment.

5.4.3. Storage and compute resources
Since we are not concerned about sub-millisecond response
times, which are common in the case of transactional processing
systems and not in scientific workflows, we have assumed
our data centers to have characteristics similar to those of
an Internet-based storage service provider. In our experiment,
the data passes through the Internet and suffers delays as any
other normal traffic. This delay is incorporated in the network
topology modeled using NS-2 using the synthetic traffic and
loss model.

We created synthetic non-real traffic in NS-2 using UDP
constant bit rate (CBR) and exponential traffic generators. The
real-time traffic from the VMs passed through the simulated
network and suffered from mixing with non-real time traffic in
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the links to create congestion. All links had a delay of 10 ms.
In order to produce losses, we attached a loss model based
on a normal distribution to each link between stub domains.
However, we did not load the VMs with additional workload,
besides the executing workflows.

For our emulation, we used UML-based VMs for both
compute resources and storage servers. The total number of
VMs running at one instance was limited to 50, half the size
used in Quetier’s experiment [54]. We assigned 20 of these VMs
as storage resources and the remaining as compute resources.
The number of storage nodes remained fixed while the number
of compute nodes running was changed based on the type of
workflow (Montage, LIGO or IR) being executed. Figure 8
summarizes the parameters associated with the emulation.

5.4.4. Experimental results
Comparison of retrieval techniques: Data can be retrieved
from multiple sources using: greedy, probe or random retrieval
techniques. To choose between one of these technologies, we
compared the data transfer time (excluding the processing time)

FIGURE 8. A table summarizing parameters used in the emulation.

of files of different sizes using each technique, as depicted in
Fig. 9. The average data transfer times obtained using these
techniques were close to the results listed by Zhou et al. [9]. As
the size of files increased, the random method gave the worst
and the greedy gave the best transfer times on our emulated
network topology. However, the greedy method suffered from
high processing time.

To compare the processing times of these techniques, we
computed the ratio of the processing time over transfer time,
depicted as a percentage in Fig. 10 (upper half). By processing
time, we mean the total time spent for (a) numerous repeated
connections to hosts due to the large number of segments
per file, (b) overheads in maintaining the transfer threads for
each segment, (c) repeated retrievals of data segments due to
intermittent failures (significant factor) and (d) time taken to
combine segments to form a single data file. Our results showed
that the overall time taken when using probe-based retrieval
technique was less than the greedy-based retrieval even though
the latter gave a better transfer time. Also, the probe method
gave lower transfer-time than the random/single-source-based
retrieval, in addition to the lower overheads than the greedy-
based retrieval. We obtained the total transfer time (T) and
overheads (processing time (P)) for the retrieval methods on
all the three types of workflows, as depicted in Fig. 10.

As the workflow structure becomes complex (from WF type 1
to WF type 3), both the transfer time and the processing
time increased for greedy and random-based retrievals, as
depicted in Fig. 10 (upper half). However, probe-based retrieval
had minimum overheads when compared with the other two
methods but gave higher transfer time (T), which in turn
made its ratio P/T lower. This experiment demonstrated that
both transfer time and overheads needed consideration before
choosing a retrieval method for complex workflows. Thus, using
probe-based data retrieval for complex workflows (with large
number of files) was better in terms of time and complexity
than using greedy/random/single-source retrievals. Hence, we

FIGURE 9. Comparison of transfer time and error margins between single-source and multi-source data retrieval techniques using data files of
different sizes (files are from IR Workflow experiment only) (Bézier curve fitting used).
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16 S. Pandey and R. Buyya

FIGURE 10. Average data transfer and segment-processing time of all files using random, greedy, and probe-based retrieval techniques for three
workflows (WF 1, WF 2 and WF 3 correspond to Montage, LIGO and IR workflows in Fig. 6, respectively).

FIGURE 11. Makespan of Montage and LIGO (Type 1 and 2) workflows when using static and dynamic heuristic.

used probe-based data retrieval technique in our heuristic for its
advantage over greedy and random techniques.

Comparison of heuristic approaches: We compared the static
and dynamic approaches in turn.

Static approaches: We executed the workflows on our
emulated platform, based on the static mappings given by our
heuristic, to obtain the actual makespans. The makespans for
real execution had higher values than their corresponding static
estimates, as the estimated transfer time was lower than the
actual transfer time on the emulated network. As the network

was subjected to synthetic non-real traffic load (CBR and
exponential traffic generators) during the executions of the
workflows, the total data transfer time varied considerably from
their estimates at the time of scheduling. We depict the static
estimates of the makespan generated by all the static heuristic
as the lower bound of the vertical lines in Figs 11 and 12. Each
makespan is the addition of data transfer time, task execution
time and overheads. For all the three types of workflow, ESMH
estimated minimum makespan (lower value of the vertical
lines). When executed on our emulated environment, the actual
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Scheduling Workflow Applications 17

FIGURE 12. Makespan of IR workflow (type three) using static and dynamic heuristic.

makespan recorded for ESMH was lower than HEFT and
HBMCT algorithms.

Dynamic approaches: In Figs 11 and 12, we also depict
the makespans generated by each dynamic mapping heuristic.
EDMH confirms its superiority in generating minimum
makespan when compared with the ‘dynamic’ versions of
the HEFT and HBMCT algorithms for all the three types of
workflows. However, dynamic heuristic show mixed results
when compared with the makespans given by the corresponding
static heuristic.

For symmetric workflows (Fig. 6-Montage), the makespans
generated by static heuristic are similar to that generated by
their corresponding dynamic mapping heuristic. This is mainly
due to the structure of the workflow: in Fig. 6-Montage there
are only two tasks that download output files from more than
one parent, while other tasks download the files from their
immediate parent. As a result, both the scheduling heuristic try
to schedule the pipelined tasks to the same resource to avoid file
transfers between resources. This resulted in transfer time being
similar for both the static and dynamic heuristic as depicted by
the data transfer time components of the makespan in Fig. 11
for workflow type 1 (Montage).

However, for both complex and hybrid workflows (Fig. 6-
LIGO,IR), the makespans generated by dynamic mapping
heuristic were at least 5% less than that generated by their
corresponding static heuristic. This is entirely due to the
reduction in total transfer time when using a dynamic scheduling
approach. As the static approach estimated the bandwidth
between resources at the scheduling time (not at run-time) for
all the tasks, it was lower than the actual makespan recorded
after execution. The dynamic approach scheduled each task at
runtime by probing bandwidth right before dispatching the task
to resources for execution. This difference can be easily seen
when comparing the data transfer time component of makespan
in Figs 11 and 12 for workflow type 2 (LIGO) and type 3 (IR).

Dynamic heuristic performed better even when we consid-
ered resource load to be fairly constant when compared with
changing network bandwidth. In cases where resource usage
changes randomly, static scheduling approaches may perform
even worse than dynamic approaches.

In Figs 11 and 12, in addition to the overall makespan,
we also compared the individual components of the schedule,
namely the data transfer time, task execution time and the
processing time of the scheduling approaches. With the use
of the multi-source data retrieval technique, both ESMH and
EDMH achieved minimum data transfer times for all the types
of workflows when compared with other heuristic. However,
both ESMH and EDMH performed poorly when scheduling
tasks to resources based on task execution time alone. HEFT
and HBMCT performed better than our heuristic in terms of
execution time, with HBMCT giving better results on average.
As HBMCT tries to schedule independent tasks to optimize
minimum completion time, it has better estimates for task
executions. The average scheduling overhead of HBMCT was
higher than all other static heuristic for all the three types of
workflows. ESMH and HEFT were comparable in scheduling
overhead. In the case of dynamic heuristic, EDMH gave better
makespans than both D-HEFT and D-HBMCT even though it
suffered from higher scheduling overheads. Clearly, dynamic
approaches produced better makespans for all the three types
of workflows; IR workflow benefiting the most in terms of total
data-transfer time.

However, when the data transfer time was added into the
makespan, ESMH and EDMH produced lower makespans than
all the other static and dynamic approaches HEFT, HBMCT,
and D-HEFT, D-HBMCT, respectively.

5.5. Real deployment-based evaluation

In this section, we present the results obtained using a
real testbed depicted in Fig. 4c. In order to determine the
feasibility of proposed heuristic in practical environments, we
experimented with the IR workflow, depicted in Fig. 6-IR, using
the real testbed. This application used data and scripts that were
provided to us by the Dartmouth Brain Imaging Center.

5.5.1. Experiment setup
We deployed an experimental test-bed consisting of compute
resources from worldwide research labs and Amazon EC2, as
depicted in Fig. 4c. These resources were a combination of real
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FIGURE 13. Determining the benefit of using multi-source parallel data retrieval by comparing the ratio of makespan for IR workflow (WF type
three) in real environments.

compute nodes and VMs (Amazon EC2 nodes), similar to a
hybrid Cloud. Figure 4 labels each resource by the name of the
city where it is located. We chose to distribute these resources
worldwide so that we could study the effect of locality of
data on the total transfer time when using multi-source parallel
retrievals.

We reserved two nodes at each location; 24 compute nodes in
total, all running Linux. Each physical node had at least a dual-
core 2 GHz CPU, 1 GB memory and 20 GB free disk space.
Each Amazon VM was a large instance with 4 EC2 Compute
units (2 virtual cores with 2 EC2 compute units each), 7.5 GB
memory and 850 GB local storage. We used the IR application
workflow with data distribution described in Section 5.3.

The nodes were all connected via the Internet. To approximate
the network topology, we used each node’s location (latitudes
and longitudes) and constructed the Steiner tree (Fig. 4c).
Using the Steiner tree, we could identify the in-degrees of each
node: nodes at Lyon and Taiwan had in-degree of three; nodes
at Atlanta, North Virginia, Indiana, Binghamton, Ireland and
Innsbruck had in-degrees of two. Thus, these nodes were the
candidate resource set {R}N in EDMH (Algorithm 2) with value
of ind ≥ 3, ind ≥ 2, respectively.

5.5.2. Experimental results
We executed the IR workflow consisting of 20 subjects on the
reserved compute resources using the EDMH. Typically, when
the input file size is 16 MB per task, the total size of data handled
by a 20-subject IR workflow exceeds 12 GB [51]. We varied the
input file size for each task from 16 KB to 640 MB and iterated
the experiment for eight times for each input size (Fig. 13) using
D-HEFT and EDMH, in turns. We then calculated the ratio of
makespan given by dynamic heuristic when using single source
(D-HEFT) and multi-source parallel data retrieval (EDMH)

techniques, as given by Equation (3):

Makespan Ratio = (MakespanD−HEFT)

(MakespanEDMH)
. (3)

Figure 13 plots the average values of the ratio from
Equation (3) for varying file sizes for the IR workflow. It also
plots the standard error9 about the mean values. Based on eight
measurements, the ratio was 0.25 ± 0.02 and 1.25 ± 0.92 for
16 KB and 640 MB of data per task, respectively. Greater than
unity values of the ratio clearly showed that the makespan given
by EDMH was smaller than that given by D-HEFT. However,
the ratio is greater than unity only for file sizes 128 MB and
above, clearly indicating the relationship of retrieval technique
to data sizes.

The results obtained in Fig. 13 is in conformity with that
obtained in the emulation. When the size of data was small
(16 KB � 128 MB), the overheads of using multi-source
parallel retrievals resulted in higher values of makespan for
EDMH. However, when size of data was increased (≥128 MB),
the EDMH started producing better makespan than D-HEFT.
This was because the transfer time for a large amount of data
was significantly higher than the overheads and EDMH reduced
the transfer time more than D-HEFT.

The change in bandwidth between the resources and
intermittent failures caused higher than expected deviation in
the real experiment results when compared with the emulated
version. This resulted in higher values of standard error, as
reported in Fig. 13. Also, the break-even point (the intersection
of the two lines) in Fig. 13 occurred for file sizes much higher in
value (≥128 MB) than the results we obtained in our emulation.

9The standard error is calculated by dividing the standard deviation by the
square root of number of measurements.
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This can be attributed to the largely distributed settings of our
experimental platform. However, both the experiments showed
that multi-source retrieval technique reduces the total data
transfer time, and hence makespan, for data-intensive workflow
applications.

6. CONCLUSIONS AND FUTURE WORK

In this article, we proposed two workflow scheduling heuristic
that leverage multi-source parallel data-retrieval techniques.
We showed that probe-based data retrieval from many
resources (multi-source) produces better transfer times and
hence better makespans for data-intensive workflows than
selecting one ‘best’ storage resource for both static and
dynamic scheduling methods. In static scheduling heuristic,
we used a probe-based approach to select candidate sources,
whereas in dynamic scheduling, we applied Steiner-tree-based
multiple resource selection technique to enable multi-source
parallel retrievals. We compared the makespans produced
by our heuristic against that produced by both static and
dynamic versions of the HEFT and HBMCT algorithms for
three different types of workflows in an emulated network
environment. To determine the feasibility of our approach,
we also carried out experiments using a real execution
platform. The results obtained from both emulation and real
experiments consistently showed that makespan of workflows
decreases significantly when using multi-source parallel data
retrieval techniques while scheduling workflows. From our
experimental results, we also conclude that, on average,
EDMH produces more time-efficient makespan than the
HEFT, HBMCT, D-HEFT and D-HBMCT algorithms for data-
intensive workflows.

As part of our future work, we would like to constrain the
resources and network bandwidth based on pricing (similar to
the pricing model of CDN, SDN and storage Clouds) and pro-
pose a multi-objective (time and cost) scheduling techniques.
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