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Abstract The Cloud workflow scheduling is to find proper Cloud resources for
the execution of workflow tasks to efficiently utilize resources and meet different
user’s quality of service requirements. Cloud workflow scheduling is a constrained
and NP-complete problem and multi-objective evolutionary algorithms have shown
their excellent ability to solve such problem. But most existing works simply use
static penalty function to handle constraints which usually result in premature when
the constraints become strict. On the other hand, with the search space being more
tremendous and chaotic, how to balance the ability of exploring the entire search
space and exploiting the important regions during the evolutionary process is increas-
ingly important. In this paper, an adaptive individual-assessment scheme based on
evolutionary states is proposed to handle the constraints in multi-objective optimiza-
tion problems. In addition, the evolutionary parameters are also adjusted accordingly
to balance the exploration and exploitation ability. These are distinguishable from
most previous studies that directly incorporate multi-objective evolutionary algorithm
to search excellent solutions for Cloud workflow scheduling. Experimental results
demonstrate the proposed algorithm outperforms other state-of-the-art methods in
convergence and diversity, and it also achieves better optimization ability when it is
applied to solve Cloud workflow scheduling problem.
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1 Introduction

Workflow is a common model to present scientific experiments [1] and it is formed
by a number of tasks, data flows, and computing dependencies [2]. A process that
maps workflow tasks with computational resources (VMs) for execution (preserving
dependencies between tasks) is termedworkflow scheduling. The scientific workflows
are large-scale [3] which include tremendous data and computing requirements and
need a high-performance computing environment for execution, and Cloud computing
has been found as an applicable environment to run scientific workflows [2]. Cloud
computing is the latest development of distributed computing, grid computing and
parallel computing [4,5],which is able to deliver massive scaling computing resource
as a utility, similarly as the way water and electricity are delivered to households
these days. The service models provided by Cloud computing include: Infrastructure-
as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS)
[6], where we focus on IaaS Cloud in this paper. IaaS Cloud provides computational
and storage resources in the form of virtual machines (VMs). The difference between
Cloud computing and distributed computing is that Clouds charge users by the running
time of the leased instances (Virtual Machines), rather than instance-based.

In this paper, a proper task-VM mapping schedule to minimize the total financial
cost and degree of imbalance is investigated while makespan satisfy the deadline con-
straint. It is a constrained multi-objective optimization and NP-complete problem.
The multi-objective evolutionary algorithms (MOEAs), such as NSGA-II (Non-
dominated Sorting Genetic Algorithm-II) [7,8] andMOPSO (Multi-Objective Particle
Swarm Optimization) [11], have shown their excellent ability to solve multi-objective
optimization problems. They could find a set of well converged and diversified non-
dominated solutions within a short time for they reduce the computational complexity
tremendously [9,10]. However, these evolutionary algorithms are designed for solving
unconstrained problems, and how to handle the constraints is an urgent problem in
Cloud workflow scheduling. Most researchers use penalty function to transform con-
strained problems into unconstrained ones, or simply eliminate infeasible individuals
in evolutionary process [12,13], which usually leads the population to premature or
infeasible search space.

To address constraint issue in Cloud workflow scheduling, a Pareto Entropy based
NSGA-II with adaptive individual-assessment scheme is proposed, called ai-NSGA-
II-PE. In our approach, an adaptive individual-assessment scheme is applied to the
evolutionary process of EAs, which will give priority to different types of individuals
for entering the next generation in different evolutionary states. In the initial and
converging state, new regions are searched and excellent genes are explored in the
global search space. In such evolutionary process, not only feasible solutions but also
those solutions with outstanding objective values, even though they do not satisfy the
constraints are searched for populations. After the population goes into diversifying
state, all individuals are Pareto solutions (we assume the number of Pareto individual

123



Distrib Parallel Databases (2018) 36:339–368 341

is much larger than population size), so the algorithm should avoid the infeasible
individual going into population, and enhance its local exploitation ability. In this
way, the search for the feasible space and outstanding objective space is balanced. In
addition, this paper uses the population information (the number of Pareto solutions
and the Pareto Entropy) to detect population states, and adjusts the crossover and
mutation probability accordingly, which are helpful for the convergence.

Our main contributions can be summarized as follows: (1) We utilize a Multi-
Objective Evolutionary Algorithm to schedule Cloud scientific workflows which is
based on the pay-per-runtime IaaS model. (2) The amount of Pareto solutions and
Pareto Entropy of Pareto set in a population are combined to detect the population
states accurately. To the best of our knowledge, it is the first approach to use the number
of Pareto individuals and the Pareto Entropy to distinguish the evolutionary states
of NSGA-II, and guide the evolutionary process to balance the global exploration
and local exploitation. (3) An adaptive individual-assessment scheme is adopted in
NSGA-II for solving constrained Cloud workflow scheduling, which utilizes different
constraint-violation handling schemes in different evolutionary states. Experiments
illustrate it could prevent premature efficiently and improve deadline meeting rate for
workflow scheduling using Multi-Objective Evolutionary Algorithms (MOEAs). (4)
The evolutionary parameters pc and pm are very significant for the convergence and
diversity performance ofNSGA-II. In this paper,we adaptively adjust these parameters
based on the population feedback information and balance MOEA’s exploration and
exploitation ability accordingly.

The remainder of this paper is organized as follows: the following section intro-
duces the related works on Cloud workflow scheduling, with particular emphasis to
evolutionary-based methods. In the Sect. 3, an overview of our workflow scheduling
architecture and optimization objective and constraints models as well as the defini-
tions of problem are detailed. Section 4 introduces Multi-Objective Optimization and
the Pareto Entropy, as well as the population state detection in MOEAs. In Sect. 5, the
proposed method (ai-NSGA-II-PE) is applied to solve scientific workflow scheduling
problem in Cloud. An adaptive individual-assessment scheme and adaptive evolu-
tionary coefficients based on the population states are presented. Section 6 shows the
results of this new adaptive evolutionary approach for 12 benchmark functions. The
proposed approach is evaluated under several famous Scientific Workflows in Sect. 7,
and comparison with classical MOEAs is performed. We conclude this paper with a
discussion and a description of future work in Sect. 8.

2 Relate works

There are many works on the scientific workflow scheduling in the cloud environment,
and two most popular list-based heuristic algorithms are Heterogeneous Earliest Fin-
ish Time (HEFT) and Critical-Path-on-a-Processor (CPOP) [32]. The Heterogeneous
Earliest Finish Time (HEFT) is a scheduling algorithm that gives higher priority to
the workflow task which has higher upper rank value from the beginning to end. This
upper rank value is calculated by utilizing average execution time for each task and
average communication time between resources of two successive tasks, where the

123



342 Distrib Parallel Databases (2018) 36:339–368

tasks in the critical path (CP) have comparatively higher rank values. On the other
hand, CPOP uses the summation of the upper rank value and downward rank value,
which is calculated same as the upper rank value but from the beginning task to end
task, for prioritizing tasks. The two classical algorithms only aim to minimize finish
time regardless of QoS constraints and total monetary cost. Recent studies on the list-
based heuristics begin to take constraints into consideration and schedule workflow as
a multi-objective problem. Paper [33] proposed a Budget-constrained Heterogeneous
Earliest Finish Time (BHEFT) for workflow scheduling. Different with HEFT, this
algorithm reserves the best budget in each assignment. Heterogeneous Budget Con-
strained Scheduling (HBCS) [34] is a recent budget constrained scheduling algorithm
which define a cost coefficient to adjust the ratio between budget and cost to schedule
workflow tasks.Multi-ObjectiveHeterogeneous Earliest Finish Time (MOHEFT) [35]
is a Pareto-based list heuristic algorithm. It is an extension of HEFT which optimizes
time and cost simultaneously to generate trade-off schedules according to the two
objectives.

Evolutionary algorithm is another widely-used approach to address the problem
of constrained cloud workflow scheduling. Rodriguez and Buyya [12] presented a
Particle Swarm Optimization (PSO) based approach for Cloud scientific workflow
scheduling, which aimed to minimize execution cost of a workflow and make the
makespan satisfy user-defined deadline-constraint. A static penalty function was used
in this algorithm which considers the solutions that violate constraints are inferior to
other feasible solutions. A GA-based method for virtual machines configuration in
Cloud workflow scheduling is present in [36]. It considers constraints as objective, so
as to transform the constrained single-objective optimization problem to the uncon-
strained multi-objective problem, and use multi-objective evolutionary algorithm to
solve it. Paper [37] and [38] usemulti-objective particle swarmoptimization (MOPSO)
algorithm to obtain Pareto-optimal tradeoffs between makespan and cost for workflow
scheduling problem. Two improved MOEAs, NSGA-II* and SPEA2*, were proposed
in [39] to generate a set of trade-off scheduling solutions according to the two users
QoS requirements including service prices and execution time. Paper [2] proposed a
multi-objective evolutionary algorithm -based approach to solve workflow schedul-
ing problem on IaaS platform. In paper [40], a multi-objective evolutionary algorithm,
SPEA2+, is employed to solve themulti-objectiveworkflow scheduling problemswith
various QoS constraints. AlthoughMulti-objective evolutionary algorithms have been
widely applied in multi-objective workflow scheduling problems for its superiority
that could optimize multiple objectives simultaneously and take the constraints into
consideration at the same time, there are few works on adaptively handling constraints
when applying MOEAs in constrained workflow scheduling. In this paper, we also
focus on investigating different MOEAs with different constraints-handling methods
for workflow scheduling.

3 General modeling of Cloud scientific workflow scheduling

Workflows are described as DAGs (Directed Acyclic Graph), G = (V, E), where
V = {t1, t2, . . . , tn} is a set of tasks and E is the set of all data dependencies between
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tasks. A vertex in the graph represents a task t and the edges maintain execution order
and data transfer between tasks [14].The IaaS Cloud providers offer a range of VM
types, and different VM types provide different computing resources. We define VM
type in terms of its processing capacity PVMi , cost per unit of time CVMi , and the
bandwidth βV Mi , V Mi = (PVMi ,CVMi , βV Mi ). Cloud Providers charge users based
on the time unites when they leased VMs for executing tasks. In our experiments, we
assume that each task is executed by a single VM, and a VM can execute several tasks.

The actual running time for task ti executed by V Mti is calculated as:

RT
VMti
ti = Sti /PVMti

(1)

where Sti is the size of taskti, and PVMti
is the processing capacity of V Mti . The

transfer time between a parent taskti and its child task t j is calculated as:

T Tei, j = doutti /min
{
βV Mi , βV Mj

}
(2)

wheredoutti is the output data size produced by taskti . If two tasks are executed in the
same VM, the transfer time is 0.

In this paper, we focus on finding a scheme that minimizes the total execution cost
(TEC) and achieves awell-balanced load across all VMs in Cloud, which needs tomin-
imize the imbalance amongVMs, and the total execution time is supposed to satisfy the
deadline constraint as well. We define a scheme S = (M, T EC, DI, T ET ) in terms
of task-VM matching (M), the total execution cost (TEC), the degree of imbalance
(DI), and the total execution time (TET). M is comprised of VM types, start time and

end time, M = (m
VMn1
t1 ,m

VMn2
t2 , . . . ,m

VMnM
tM ),m

VMti
ti = (ti , V Mti , STti , ETti ).The

start time and end time for task ti are calculated as:

STti =
⎧
⎨

⎩

LETVMni
, i f ti is an entr y task

max

(
max
ta ∈ parent (ti )

(
ETta + T Tea,i

)
, LETVMni

)
otherwise

(3)

ETti = STti + RT
VMni
ti (4)

TVMi =
∑

ETt j f or all tasks t j assigned to V Mi (5)

where LETVMti
is the lease end time of V Mti , which is also the time that V Mti

becomes idle [12,15].
There will not be charge for data transfers within the same data center, so this fee

is not considered when calculating the total cost of workflow. The total execution cost
TEC, the total execution time TET and the degree of imbalance DI are calculated as:

T EC =
|V M|∑

i=1

CVMti
∗

⎡

⎣ RT
VMti
ti

τ

⎤

⎦ +
∑

i∈T, j∈T
T Tei, j

∗TCVMti
(6)

DI = Tmax − Tmin

Tavg
(7)
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{
R1, R j , . . . , RK

}
S j Vj

E(I ) =
K∑

j=1

S j

SI
E(R j ) (8)

where TCVMti
is the data transfer cost for V Mti .Tmax and Tmin are the maximum and

minimum running time among all VMs respectively; Tavg is the average running time
of VMs. Each workflow has a deadline dW associated with it, which determines the
allowed longest time to complete its execution.

In this article, the problem can be described as: finding a scheme S with minimum
total execution cost TEC and degree of imbalance (DI), and the total execution time
TET satisfies the workflow’s deadline constraint dW . Equation (9) has depicted this
problem.

Minimize : TEC
DI

Subject to : T ET ≤ dW
(9)

4 Background of multi-objective optimization and Pareto entropy

This section describes the background aboutMulti-ObjectiveEvolutionaryAlgorithms
(MOEAs), Pareto Entropy and population states detection in NSGA-II.

4.1 MOEAs

MOEAs are effective methods to handle multi-objective problems with two or more
conflicting objectives. They could find a set of well converged and well diversified
non-dominated solutions within short time due to the nature that they could reduce the
computational complexity tremendously. There are several matureMOEAs, including
MOPSO [11], SPEA, SPEA2 [10], NSGA, NSGA-II [7,8], MOEA/D [9], Hyper-
MOEA [41], and so on.

In evolutionary processes, the evolutionary parameters have a big impact on bal-
ancing the global exploration of the entire search and local exploitation of important
regions [17]. For example, in NSGA-II, the bigger crossover probability pc and muta-
tion probability pm are, the more new individuals will be generated along with the
diversity of population. But too big pc and pm will destroy good gens easily, while
too small pc and pm , is supposed to slow down search speed is not conducive to
generate new individuals [16].The selection of pc and pm is very critical to the per-
formance of GAs. The crossover probability pc controls the capability of GAs in
exploiting a located hill to reach the local optima, and the higher pc means the quicker
local exploitation proceeds. The mutation probability pm controls the speed of GAs
in exploring a new area, which represents the global exploration of GAs. In order to
balance the exploitation and exploration ability of GAs, the crossover probability pc
andmutation probability pm should be adjusted differently based on population states.
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According to Zhang et al. [17,18], the evolutionary process in NSGA-II can be
depicted as four states, including initial state, converging state, diversifying state and
matured state. For example, in the initial and converging state, the algorithm is sup-
posed to increase its global exploration ability, to guide the population to search
new areas and approximate the Pareto Front. However, in the diversifying state, the
local optima should be exploited along with the diversity. In the matured states, the
population needs to decrease its global exploration and local exploitation ability simul-
taneously.

So, how to detect the evolutionary states for NSGA-II is significant for their perfor-
mance. In this paper, we use the number of Pareto individuals and the Pareto Entropy to
detect the population states of NSAG-II, and adaptively adjust pc and pm accordingly.

4.2 Pareto entropy in MOEAs

Entropy indicates the chaos of a system in thermodynamics, and it is also a good way
to describe the diversity of a population in MOEAs. To calculate the entropy, we have
to find out the distribution of all solutions in the population, and Parallel coordinates
[19] is a widely-used visualization method for multi-dimension data analysis, which
presents multi-dimension data in a two-dimension plane. Paper [18,20] proposed a
Parallel Cell Coordinate System (PCCS) to assess the density of each Pareto solution
in an archive for selecting leaders and updating the archive in MOPSO.

In PCCS, them-th objective value for k-th Pareto solution, f mk , k = 1, 2, 3, . . . , K ,

m = 1, 2, . . . , M , is mapped to an integer label within a 2-dimension grid with K ×M
cells according to (10):

Lm
k =

⌈

K
f mk − f min

m

f max
m − f min

m

⌉

(10)

where K is the current size of archive, �x� is the ceiling operator that returns the small-
est integer which is not less than x . f min

m is the minimum and f max
m is the maximum

of the m-th objective value for all solutions in the archive. Lm
k ∈ {1, 2, . . . , K } and it

is set as 1 if f mk = f min
m . In this way, each solution in the archive is expected to share

along a cell in each dimension which indicates that all individuals in the Pareto front
are well-distributed.

Figure 1 illustrates the transforming process from Cartesian Coordinate System
into PCCS. It is clear that PCCS is better to show the distribution of solutions in every
dimension.

When the Pareto solutions are mapped to PCCS fromCartesian Coordinate System,
the Entropy could be used to measure the diversity of Pareto Front. Evolutionary
algorithms update Pareto Front every iteration that some new individuals are added
into the Pareto front or some new ones substitute old ones. Those changes will also
incur the variation of Entropy �Entropy. Larger �Entropy indicates that there are
many old Pareto solutions replaced by new ones, or a plenty of solutions are added
into the Pareto set, or the new added solutions change the f min

m and f max
m dramatically

and incurs the redistribution of coordinates in PCCS. In such situations, the population
is likely in the initial or converging state. Conversely, if the �Entropy is very small,
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Fig. 1 A mapping example for Pareto front from Cartesian coordinate system to parallel cell coordinate
system [20]

there are just several Pareto solutions that have been replaced by individuals with
better Crowding distance, and the population more likely situates in the diversifying
or matured state.

According to [8,20], the Pareto Entropy in the t-th iteration is calculated based on
(11):

Entropy(t) = −
K∑

k=1

M∑

m=1

Cellk,m(t)

KM
log

Cellk,m(t)

KM
(11)

where Cellk,m(t) is the number of member with the label Lm
k . The variation of

Pareto Entropy between generation t and t-1 can be obtained through the following
equation:

�Entropy(t) = Entropy(t) − Entropy(t − 1) (12)

We assume an extreme example as depicted in the Fig. 2. In this case, the population
is in the diversifying state, and several new solutions with better Crowding distance
are diversified-replaced into the Pareto Front (which means the new enter solution
has better Crowding distance than old one, and do not dominate the old solution; a
new solution cloud only diversified-replace an old solution).This evolution incurs the
maximum �Entropy from the best distributed population to the worst distributed,
for these new added solutions lead to a dramatic change in f min

m and f max
m , and makes

the well distributed population with biggest entropy (where each members in terms of
each objectives takes up a cell along in PCCS) to the worst one (where K-1 members
in terms of each objectives crowd in a single cell, and the remaining one take up
another cell). And the biggest �Entropy in this situation �Entropymax−diver is
calculated:
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Fig. 2 Examples for individual distribution in the PCCS. a is with Crowding distance and b is with the
worst Crowding distance

�Entropymax−diver = Entropymax − Entropymin

= −
K∑

k=1

M∑

m=1

1

KM
log

1

KM

+
K−1∑

k=1

M∑

m=1

Cellk �=l,m(t)

KM
log

Cellk �=l,m(t)

KM

+
M∑

m=1

Cellk=l,m(t)

KM
log

Cellk=l,m(t)

KM

= log KM −
(
K − 1

K
log

KM

K − 1
+ 1

K
log KM

)

= K − 1

K
log KM − K − 1

K
log

KM

K − 1

= K − 1

K
log(K − 1) (13)

Figure 3 illustrates the Entropy(t) and �Entropy(t) of the population when we
use NSGA-II to solve a test problem ZDT1 [29]. We could find that the entropy has
an increasing trend during the evolution as a whole. At the beginning of the evolution,
the Entropy has several abrupt declines where the population is in the initial state or
converging state. That may be due to that an excellent solution goes into the Pareto set,
dominates someprevious Pareto solutions and excludes themout of Pareto set. Another
reason might be that the new added solutions change the f min

m and f max
m dramatically,

which incurs the redistribution of coordinates in PCCS and makes the old Pareto
solution huddle together. After the population goes to the later generations, the Pareto
entropy increases gradually. That is because that the well-distributed solutions with
bigger Crowding Distance will replace those ones with smaller Crowding distance,
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Fig. 3 Curves of Entropy(t)
and �Entropy(t) detected from
ZDT1 with NSGA-II. The blue
curve is the Entropy(t) and the
red one is the �Entropy(t)
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which results in the growth of Pareto Entropy. And the entropy remains the same after
the population goes to the matured state, where the �Entropy(t) still remains 0.

4.3 Population states detection in NSGA-II

Convergence speed and optimization accuracy are conflict goals in the evolutionary
algorithm: putting toomuch emphasis on convergence speedmay lead to premature and
local optimum; on the contrary, it will consume too much time if only the optimization
accuracy is considered [21,22]. So, devising an adaptive scheme for global exploration
and local exploitation is the key to balance the convergence and diversity ability. In
the multi-objective genetic algorithm, adopting an adaptive crossover and mutation
scheme based on the feedback information from the population could control the
evolution efficiently. For example, in NSGA-II, we want to increase the mutation
probability pm and decrease the crossover probability pc in the converging state, to
guide the population to search new areas and approximate to the Pareto Front, and use
the smaller pm and larger pc to exploit the local optima along with the diversity in
the diversifying state. So how to distinguish the evolutionary states is a key issue for
adaptively adjusting global exploration and local exploitation ability in NSGA-II.

In our proposed NSGA-II (detailed in the next section), we use the �Entropy and
the number of individuals of Pareto set to detect the evolutionary states. There are
several scenarios we need to notice.

Firstly, if the number of Pareto solutions np(t) in generation t is less than population
size (generally, the amount of Pareto solutions for all search space is much larger than
the population size), the population is identified as initial or converging state, and the
algorithm needs to find new non-dominated solutions to dominated-replace the old
ones.

Secondly, if the number of Pareto solutions in generation t is not equal to that of
generation t + 1, which means p Pareto solutions of generation t are replaced by q
new Pareto individuals,�np(t + 1) = q − p �= 0, the population is in the converging
state, because only the dominated-replace operator (the new enter solution dominates
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several old Pareto solution and exclude them out of the archive) may change the
number of Pareto solutions, while the diversified-replace operator would not (a new
solution cloud only diversified-replace a old solution).

Thirdly, it is possible that the number of Pareto solutions in generation t is equal
to population size S, and there are p Pareto solutions are replaced by p new Pareto
individuals in generation t + 1,�np(t + 1) = 0, and it is very hard to identify
the evolutionary state. In this situation, our algorithm assumes that the population
is in the converging state when �Entropy(t + 1) > 1

M∗2�Entropymax−diver (M
is the number of objectives), because the f min

m and f max
m of some optimization

objectives may be changed by the new entered solutions and incur the redistri-
bution of coordinates in PCCS, leading to large �Entropy. In this scenario, we
want to enhance the population’s exploration ability to search new regions. When
�Entropy(t + 1) ≤ 1

M∗2�Entropymax−diver , np(t) = S, �np(t + 1) = 0, the
population is asserted as diversifying state.

So the rules of evolutionary states detection for generation t + 1 in our algorithm
can be depicted as following:

Rule 1 The population is in the initial state in the generation t + 1 if np(t) = 0;
Rule 2 The population is in the converging state in the generation t + 1 if 0 <

np(t) < S;
Rule 3 The population is in the converging state in the generation t + 1 if np(t) =

S,�np(t + 1) �= 0;
Rule 4 The population is in the converging state in the generation t + 1 if np(t) =

S,�np(t + 1) = 0, and �Entropy(t + 1) > 1
M∗2�Entropymax−diver ;

Rule 5 The population is in the diversity state in the generation t + 1 if np(t) =
S,�np(t + 1) = 0, and �Entropy(t + 1) ≤ 1

M∗2�Entropymax−diver .
Rule 6 The population is in the matured state in the generation t + 1 if np(t) =

S,�np(t + 1) = 0, and �Entropy(t + 1) = 0.

5 Proposed constrained Cloud workflow scheduling

Scientific workflow scheduling in Cloud environment is a NP-hard and constrained
optimization problem, and it is also very hard for the existing general evolutionary
approaches to find a suitable solution. Considering the problem’s properties, we apply
an adaptive individual-assessment scheme in NSGA-II to handle the constraints, and
adaptively adjust the evolutionary coefficients based on evolutionary states, and we
call it ai-NGSA-II-PE.

5.1 General modeling of Cloud scientific workflow scheduling

In this paper, the chromosome in ai-NGSA-II-PE for scientific workflow scheduling
in Clouds is shown in Fig. 4; chromosomei represents a decision solution. Unlike
other previous works’ encoding strategies which stipulate the execution order of the
tasks in a single VM in a chromosome, we only encode the mapping between tasks
and VMs, and the execution order of the tasks in a single VM is predefined according
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Fig. 4 A chromosome
representation of workflow
task-VM mapping

12 4 2chromosome i 21 3 5

Task to resource 
mapping

2 4 21

to a set of deterministic developmental rules: the task with the smallest ready time (the
time that all parent tasks are executed and all required data have been transferred) in
a single VM will be executed first. If there are several tasks with same ready time, the
task with earliest finish time is expected to execute firstly. This strategy is also in line
with the real workflow execution environment [23,24].

For the scheduling scenario here, a chromosomei represents a task-resourcematch-
ing scheme of a workflow, where the index represents a task and its value represents
the number of VM associated with this task.

ALGORITHM 1 
TEC AND TET ESTIMATION

Input: a set of workflow tasks T, a set of VMs , and a , in 1,

Output: TEC and TET
11. Initial VMs state matrix VS and task state matrix TS.

2. Calculate execution time [ ]RT T VM× ;

Calculate transfer time [ ]TT T T× ; 

3. For i=1: T
If ( )( )TS T i is unscheduled
3.1. ( ) ( ),

,
i k ji t chromosome it T i VM vm= =

3.2. If it has no parents

i t it VMST LET= ; 

Else

( )( ),
,

i a a i tit t e VM
a i

max
ST max ET TT LET

t parent t
⎞⎛

+= ⎟⎜ ∈ ⎠⎝
; 

End
3.3. For each child task ct of it

If ct is mapped to a VM different to
it

VM

,TT i TT i TT i c= +
End

End

3.4. ( ),ti

ii

VM
t i tRT RT t VM= ; 

3.5. ( )ti

i i

VM
t tET RT TT i= +

3.6. updateVS ,and TS , set the time period [ , ]
i it tST ET for 

it
VM is busy, set ( )( )TS T i as scheduled. 

End
End

4. Calculate TEC according to (6);
5. Calculate DI according to (7);
6. Calculate TET according to (8);

Figure 4 represents a workflowwith 12 tasks and 5 different types of VMs available.
The fitness function is used to determine the performance of a solution, which is
calculated by two objectives: total execution cost T EC , and degree of imbalance DI,
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and a constraint: total execution time T ET . The calculations of TEC, DI and TET for
a decision solution are explained in Algorithm 1.

All the calculation of TEC, TET and DI are based on the execution time of VMs,
so identifying the running time of VMs is the core to determine how good a decision
solution is.

Firstly, we initial VMs state matrix VS, task schedule state matrix TS and a set of
VMs; a set of tasks of workflow are also given. Then we estimate the execution time

RT
VMti
ti of each workflow task ti on every type of VM according (1), and the transfer

time T Tei, j between tasks according to (2).
There are two scenarios for the start time value STti .If there is no parent tasks,

the task can start as soon as the VM assigned to the task is idle. Otherwise, the task
starts after the parent tasks have been finished and the output data are transferred.
Furthermore, if the VM is still busy, the start time has to be delayed until the VM
is available. The end time value ETti is calculated according to (4). After a task has
been scheduled, we update VMs state matrix VS and task state matrix TS, set the task
ti as scheduled, and the time period between STti and ETti as busy for V Mti . The
process continues until all tasks have been scheduled. Finally, the TEC, DI and TET
are calculated based on (6)–(8) respectively.

5.2 Adaptive individual-assessment scheme for fitness function

We adopt an adaptive individual-assessment scheme for fitness function in our pro-
posed algorithm in different evolutionary states.

Inspired byNanakorn et al. [25,26], we find that the constraint violation should play
a dominate role to push the population to feasible areas when there are few feasible
individuals, and where the population is supposed to move towards the feasible areas
first. When most individuals are feasible, those individuals with excellent objective
values are supposed to be retained, and the penalty function needs to be weakened.
The final fitness value for each optimization objective under different evolutionary
states is formulated in the follow.

(1) In the initial state, the fitness function is calculated as:

Fa (xi ) = Ẽ (xi ) (14)

where Ẽ(xi is the normalized constraint violation.
We use the constraint violation to sort the individuals rather than Non-dominate
rank and Crowding distance. Obviously, by using such approach, the individuals
with smaller amount of constraints violation are considered better. Consequently,
the search will look for the region where the sum of constraints violation is small
(i.e. the boundary of the feasible region) when there is no feasible solution in the
population.
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(2) When the population goes into the converging state where there is at least one
feasible individual in the current population, the final fitness of i-th individual for
k-th objective Fα

k xi ) can be depicted as:

Fα
k (xi ) =

{
F̃k(xi ) f or f easible individual√
F̃k(xi )2 + Ẽ(xi )2 +

[(
1 − r f

)
Ẽ(xi ) + r f F̃k(xi )

]
otherwise

(15)

whereF̃k(xi ) is the normalized fitness value of i − th individual
for k − th objective,Ẽ(xi ) is the normalized constraint violation, r f =
number of f easible individuals

population si ze . Individuals with both better objective values and
low constraint violation are considered better than individuals with worse fit-
ness value or high constraint violation or both. And if the feasibility ratio (r f )
in the population is small, then the individuals closer to the feasible space are
considered better. Otherwise, the individual with lower normalized fitness value
is better. We calculate the Non-dominate rank and Crowding distance for each
individual based on their final fitness values, and then sort them accordingly.

(3) When the population enters into the diversifying state, our algorithm employs
another kind of individual-assessment scheme to sort individuals. In the diversi-
fying state, the population should enhance its local exploitation ability and avoid
infeasible solution entering into the population. The constraint-domination prin-
ciple in [27] is very suitable for this situation:

Definition 1 A solution S1 is considered better than another solution S2, if any of the
following conditions is true:

1. If S1 is feasible and S2 is infeasible;
2. Both S1 and S2 are infeasible, and S1 has lower constraint violation;
3. S1 and S2 are feasible, and S1 have a higher non-domination rank than S2 are

feasible;
4. S1 and S2 are feasible, and have the same non-domination rank, and S1 has better

Crowding distance than S2.

Our approach guarantees that it will search the feasible individuals with better
diversity and avoid infeasible individuals entering the population in the diversifying
state.

5.3 Adaptive parameter adjustment in ai-NSGA-II-PE

In this section, we explicitly describe the adaptive parameters adjustment of the
proposed approach applied into NSGA-II for constrained Cloud workflow schedul-
ing, which is called ai-NSGA-II-PE (Pareto Entropy based NGSA-II with adaptive
individual-assessment scheme).
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The key difference between the proposed algorithm and the original NSGA-II is
that there is an archive (also called as Pareto set) in our algorithm to retain those
feasible Pareto solutions. And the number of individuals and Pareto Entropy of the
archive are used to detect population state and adjust parameters accordingly.

As discussed in the previous sections, adaptively adjusting crossover probability pc
and mutation probability pm is very essential for balancing the global exploration and
local exploitation ability. In the GAs, larger pm and smaller pc facilitate global explo-
ration, while larger pc and smaller pm promote local exploitation [21,22]. Therefore,
we decrease pc and increase the pm in the initial and converging states, to push the pop-
ulation to the Pareto front. Conversely; during the diversifying state, we increase the pc
and decrease the pm which increases the diversity of the population. The parameters,pc
and pm , are kept decreasing when the population is in the matured state.

In our proposed ai-NSGA-II-PE, the crossover probability andmutation probability
are adjusted based on population state, number of Pareto solutions and Pareto Entropy.
The adjustment schemes are depicted as follow:

pc(t) =

⎧
⎪⎪⎨

⎪⎪⎩

〈pc(t − 1) + c1〉 in the ini tial state
〈pc(t − 1) − c2∗�np(t − 1)〉 in the converaging state
〈pc(t − 1) + c3∗�Entropy(t − 1)〉 in the diversi f ing state
〈pc(t − 1) − c4∗�Entropy(t − 1)〉 in the matured state

(16)

pm(t) =

⎧
⎪⎪⎨

⎪⎪⎩

〈pm(t − 1) − m1〉 in the ini tial state
〈pm(t − 1) − m2

∗�np(t − 1)〉 in the converaging state
〈pm(t − 1) − m3

∗�Entropy(t − 1)〉 in the diversi f ing state
〈pm(t − 1) − m4

∗�Entropy(t − 1)〉 in the matured state

(17)

〈•〉 is a function that keep the pc and pm in the boundaries. When pc and pm are less
than the lower boundaries, they are set to their minima; when they exceed the upper
boundary, they are set to their maxima. �np(t) is the variation of Pareto set’s size in
generation t . �Entropy(t) is the variation of Pareto Entropy in generation t .

In this way, the crossover probability pc decreases quickly and pm increases slowly
to enhance the algorithm’s global exploration ability to push the population towards
the Pareto front in the initial and converging state. In the diversifying state, pcincreases
slowly and pm decreases quickly to enhance the algorithm’s local exploitation ability.
The both parameters decrease quickly in the matured state. This adjustment strategy
is termed fast-down and slow-up [18].

5.4 Ai-NSGA-II-PE for scientific workflow scheduling in Cloud

The pseudo-code of the proposed ai-NSGA-II-PE is depicted in Algorithm 2.
In NSGA-II, a diversified initial population could accelerate the search procedure

greatly, so we generate the initial population by different methods:
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ALGORITHM 2 EVOLUTION PROCESS OF AI-NSGA-II-PE
Input: maxg cp , mp , N,M
Output: best population bpop
1. Set maxg //set the maximum generation
2.Initializing a population gpop randomly
3. FOR  g=1: maxg {

3.1. gNDS = non-domination-sort ( gpop )//rank individual by non-dominant sort.

3.2. gCD = crowding-distance-calculation( gpop )// calculate crowding distance of individuals with same . 

3.3.offsprings= selection ( gpop , gNDS , gCD ) // generate a new population according to non-dominant rank and 
crowding distance.

3.4. offspringc= crossover (offsprings, ( )1cp t − , ( )1s t − )//execute crossover operation to population based on 
population state

3.5. offspringm= mutation (offsprings, ( )1mp t − , ( )1s t − )//apply c mutation operation to population based on 
population state

3.6.pop-comb= gpop + offspringm //combine the former population and the generated population by evolutionary 
operation

3.7. pop combNDS − = non-domination-sort (pop-comb)   // rank each individual according to non-dominant sort for the 

3.8. pop combCD − =crowding-distance-calculation (pop-comb) // calculate crowding distance of individuals with same 
for the combined population

3.9. pop-combs=replace (pop-comb) // get a new population according to non-dominant rank and crowding distance.
3.10.get the Pareto set, calculate the Pareto entropy and detect the population state s(t)
3.10. 1gpop + =pop-combs//get the next generation population.
3.11.g=g+1}

END

• N/10 individuals generated throughHEFTmethod [32]which assigns the unsched-
uled tasks to VM that could execute them with shortest time, and it is treated as
the fastest schedule.

• N/10 “cheapest” individuals are also produced which always assign tasks to VM
with least cost

• N*8/10 random individuals are initialized through RANDOM algorithm.

In our ai-NSGA-II-PE, the Non-dominated sorting and Crowding Distance cal-
culation operations in each generation are the same as that in NSGA-II, and the
time complexity for these two operations is O(M(2N )2 + M∗2N∗log(2N )). The
time complexity for both crossover and mutation operation are O(N ), the fitness
calculation for a solution is O(N∗n∗n), and the evolutionary states detection has
O(N∗M) complexity. Above all, the overall complexity of our proposed ai-NSGA-
II-PE isO(g∗(M(2N )2 + M∗2N∗log(2N ) + N + N∗n2 + N∗M)).

6 Experiments on benchmark functions

To examine the optimization performance of our proposed evolutionary approach,
experiments have been conducted on multi-objective optimization benchmark func-
tions, including unconstrained problems and constrained problems. All the experi-
ments were performed on computers with Inter Core i5-4570S CPU (2.9 GHz and 8
G RAM).
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Table 1 Descriptions of test benchmark functions

Code Nature Dimensions of Feature of PF

Variables Objectives

ZDT1 Unconstrained 30 2 Convex

ZDT2 Unconstrained 30 2 Concave

ZDT3 Unconstrained 30 2 Disconnected multi-modal

UP1 Unconstrained 10 2 Convex

UP2 Unconstrained 10 2 Convex

UP4 Unconstrained 10 2 Concave

Binh2 Constrained 30 2 Convex

Srinivas Constrained 30 2 Convex, multi-modal

Tanaka Constrained 30 2 Disconnected multi-modal

CTP Constrained 30 2 Linear, multi-modal

CP1 Constrained 10 2 Disconnected, Linear

CP2 Constrained 10 2 Disconnected Convex

6.1 Benchmark functions

Six widely used unconstrained test instances (ZDT1-ZDT3, UP1, UP2, UP4) and
six constrained problems (Binh(2), Srinivas, TANAKA, CTP, CP1, CP2)[28,29] are
employed here for comparing the proposed algorithm with other MOEAs. Among
all these twelve problems, UP1, UP2, UP4 and CTP, CP1, CP2 have much more
complicated search space. The description of each optimization problem is depicted
in Table 1.

6.2 Compared algorithms

In order to validate our proposed algorithm, we compare ai-NSGA-II-PE with five
MOEAs, including NSGA-II [7,8], NSGA-II-PE (This algorithm adopts our adaptive
crossover and mutation probability adjusting scheme while using the normal penalty
function to handle the constraints), MOEA/D [9], SPEA2 [10], MOPSO [11]. The
population sizes for all algorithms are set as 200, the generation is 100, and the niche
size (the number of neighboring sub-problems) in MOEA/D is set to20. In the GA-
based algorithms (NSGA-II, NSGA-II-PE, MOEA/D, SPEA2), the initial pc and pm
are set as 0.8 and 0.2 respectively. As to the MOPSO, the initial learning factor c1 =
c2 = 1, and inertial weight ω = 0.4.

6.3 Performance metrics

Two comprehensive performance metrics, inverted generational distance (IGD) and
Spread [8,30], are used to quantify the convergence and diversity of an approximate
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Pareto front obtained by an algorithm. The performances of the above algorithms are
compared in terms of IGD (inverse generational distance) in (18) and Spread in (19).

IGD calculated by (18) determines the convergence of an algorithm, which is the
average distance of the obtained solution points to the real Pareto fronts.

IGD =
√∑n

i=1 d
2
i

n
(18)

where di is the Euclidean distance between the obtained solution points and the
closest point of the real Pareto front and n is the number of the obtained solutions.
Hence,IGD = 0 indicates that the obtained solutions are in the real Pareto front.

Spread in (19) illustrates the diversity of an algorithm [24], and it is a metric to
calculate the broadness using (19).

Spread = d f + dl + ∑N−1
i=1

∣∣di − d
∣∣

d f + dl + (N − 1) ∗d
(19)

wheredi is the Euclidean distance between two neighboring points, d is the average
of di .d f and dl are the Euclidean distance of the two boundary points in the obtained
Pareto front set. Spread = 0means the obtained Pareto front performswell in diversity.

6.4 Experimental results

Figure 5 presents the Pareto fronts obtained by compared algorithms and proposed
approach for test benchmark functions. These pictures intuitively show that our
approach could find better Pareto fronts that are closer to the true Pareto fronts in
both unconstrained problems and constrained problems robustly. Even though these
comparing algorithms could get satisfactory results in some test instances, they can
hardly find the right Pareto front when the search space becomes complicated, such
as UP1, UP2, UP4, CTP, CP1, CP2. Conversely, our approach is still able to get the
approximate Pareto front in such cases.

The summary of statistical experimental results, including mean IGD and Spread
generated by the above algorithms over 12 test instances, are listed in Table 1. The
best value (minimum) of IGD and Spread among those test algorithms is highlighted
in boldface in each test instance.

It can be seen fromTable 2 that NSGA-II-PE obtains 3 best values of IGD on ZDT3,
UP2 and UP4 and SPEA2 obtains 3 best values of IGD on ZDT2, UP1. MOEA/D
gets the best result on ZDT1. In constrained problems, our algorithm ai-NSGA-II-PE
performs more excellent which obtains 4 best results over 6 test instances. Especially,
the convergence results obtained by ai-NSGA-II-PE with adaptive penalty function
are better than that of NSGA-II-PE which uses a fixed penalty function during the
whole evolutionary process.

As to the diversity indicated by Spread in Table 2, the proposed NSGA-II-PE
approach for solving unconstrained problems and ai-NSGA-II-PE for solving con-
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Fig. 5 Pareto fronts obtained by related algorithms and the proposed algorithm. (The last ones are the true
Pareto fronts)

Table 2 Mean IGD and spread generated by 6 algorithms (Color table online)

Unconstrained problem Constrained problem
Zdt1 Zdt2 Zdt3 Up1 Up2 Up4 Binh2 Tanaka Srinivas CTP CP1 CP2

MOEAD IGD 4.37e–3 4.40e–3 1.76e–2 3.50e–3 3.22e–3 1.44e–2 4.55e–2 4.99e–3 7.42e–2 2.50e–3 2.07e–2 1.18e–2

Spread 2.85e–1 1.40e–1 8.99e–1 6.54e–1 5.90e–1 1.13e–0 9.79e–1 1.41e–0 1.85e–1 6.60e–1 1.62e–0 1.25e–0
MOPSO IGD 5.76e–3 2.34e–2 1.69e–2 4.34e–2 1.06e–2 2.12e–2 4.39e–1 1.51e–2 1.90e–1 4.86e–3 7.96e–2 4.54e–2

Spread 9.48e–1 9.60e–1 8.79e–1 1.00e–0 9.79e–1 8.39e–1 1.43e–0 9.68e–1 9.32e–1 7.12e–1 8.52e–1 8.62e–1
SPEA2 IGD 5.10e–3 4.21e–3 8.78e–3 3.32e–3 3.05e–3 2.20e–2 5.70e–2 3.97e–3 8.38e–2 2.66e–3 2.48e–2 1.33e–2

Spread 1.52e–1 1.48e–1 4.61e–1 6.03e–1 4.56e–1 6.92e–1 1.45e–1 1.38e–0 1.69e–1 2.74e–1 1.43e–0 1.45e–0
NSGA–II IGD 1.41e–2 6.76e–3 2.17e–2 7.38e–3 3.46e–3 1.51e–2 5.30e–2 3.72e–3 7.79e–2 2.73e–3 3.62e–2 1.72e–2

Spread 4.01e–1 4.81e–1 6.78e–1 1.01e–0 4.50e–1 1.13e–0 4.89e–1 1.13e–0 3.66e–1 6.42e–1 1.43e–0 1.67e–0
NSGA–
II–PE

IGD 1.28e–2 4.47e–3 1.11e–2 4.68e–3 3.16e–3 1.26e–2 5.40e–2 3.65e–3 8.51e–2 1.25e–2 3.17e–2 1.72e–2

Spread 3.43e–1 4.76e–1 6.34e–1 1.08e–0 3.84e–1 6.53e–1 5.12e–1 1.14e–0 1.06e–1 1.15e–0 1.36e–0 1.40e–0
ai–NSGA
–II–PE

IGD –– –– –– –– –– –– 5.15e–2 3.55e–3 8.07e–2 2.63e–3 2.01e–2 1.02e–2

Spread –– –– –– –– –– –– 4.71e–1 1.13e–0 4.58e–1 5.65e–1 1.11e–0 1.31e–0

The performance of these benchmark functions using different algorithms are displayed in the above table.
In each column, the algorithm with red bold get the best IGD performance under this benchmark function,
and the green bold indicate the best Spread performance

strained problems could get 2 best Spread results in UP2 and UP4, which are all with
complicated search space. Although the SPEA2 get better diversified results in 5 test
instance, its optimizing ability is worse than our approach under most test instances.

The ability to balance the global exploration and local exploitation to enhance
the optimization ability in our algorithm can be observed from the results of all test
problems, which could get the most number of best results. In addition, adaptively
adjusting the penalty functionbasedon evolutionary states could effectively prevent the
premature comparing with those algorithms using simple penalty functions, especially
in solving constrained optimization problems.
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Table 3 Types of VMs used in the experiments

Name Processing capacity (MFLOPS) Bandwidth (bytes/s) Cost per hour

m1.small 44 39,321,600 $0.03

m1.large 176 85,196,800 $0.12

m1. xlarge 352 131,072,000 $0.24

c1. medium 220 85,196,800 $0.15

c1. xlarge 880 131,072,000 $0.60

7 Experiments on practical problems

After solving several typical test problems, we apply the proposed algorithm (ai-
NSGA-II-PE) to the Constrained Workflow Scheduling in Cloud environment. This
problem aims at finding a task-VM mapping scheme S with minimal total execution
cost T EC and degree of imbalance (DI), and the total execution time T ET shouldnot
exceed the workflow’s deadline constraint dW .

7.1 Simulation settings

In our experiments, an IaaS provider which offers a single data center and 8 types of
VMs is modeled. The VM configurations are based on current Amazon EC2 offerings
and are presented in Table 3. We set processing capacity of each type of VMs based
on the work by Ostermann et al.[24].

We have defined 4 different deadlines in our experiments. These deadlines lie
between the slowest and the fastest runtimes, where the slowest runtime is obtained
via using a single VM to execute all tasks, and the fastest runtimes is obtained by
using HEFT to scheduling workflows. The deadlines gradually become stricter, and
Deadline 4 is the strictest one.

All the experiments were performed on computers with Inter Core i5-4570S
CPU(2.9GHz and 8G RAM).

7.2 Workflows

The simulated workflows are 5 famous scientific workflows: Epigenomics, Montage,
CyberShake, Sipht, and Inspiral [3,24]. Each of these workflows has different struc-
tures as shown in Fig. 6.

7.3 Optimizing objectives

In these experiments, wewant tominimize the total execution cost (TEC) and degree of
imbalance (DI), while the total execution time (TET) meets the deadline constraints.
To compare the results, we considered the average, and 95% CI for TEC, DI and
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Fig. 6 Structures of five famous scientific workflows [2]

Pareto Fronts of feasible solutions, obtained through each algorithm after running
each experiment for 30 times.

7.4 Compared algorithms

In order to validate the proposed algorithm, we compare ai-NSGA-II-PE with five
MOEAs, including NSGA-II [7,8], NSGA-II-PE(This algorithm adopt our adaptive
crossover and mutation probability adjusting scheme while using the normal penalty
function to handle the constraints), MOEA/D [9], SPEA2 [10], MOPSO [11].The
parameters for all algorithms are set as same as those in the benchmark function
experiments. In the following experiments,MOEA/D and SPEA2 both use a excluding
strategy which will harshly exclude those infeasible solution out of population in the
evolutionary process. On the other hand, the remaining compared algorithms adopt a
static penalty function.

7.5 Experimental results

In this section, we analyze the algorithms in terms of total execution cost TEC, and
degree of imbalance DI under different user’s defined deadlines.

7.5.1 The total execution cost (TEC)

The 95% CI for total execution costs obtained by all algorithms for each of the work-
flows under different deadlines are displayed in Table 4, and the average of TEC could
also be observed through 95%CI. Our algorithm acquires the most number of best val-
ues, and it performs much better than other peer algorithms when constraints become
strict.
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Fig. 7 a Box plots for TEC values obtained by 6 MOEAs for 5 workflows under Deadline4. (‘–’ means
this MOAE could not get any feasible solution for workflow scheduling under this constraint. Number 1–6
are MOEA/D, MOPSO, SPEA2, NSGA-II, NSGA-II-PE, and ai-NSGA-II-PE, respectively). b Box plots
for DI values obtained by 6MOEAs for 5 workflows under Deadline4. (‘–’ means this MOAE could not get
any feasible solution for workflow scheduling under this constraint, Number 1–6 are MOEA/D, MOPSO,
SPEA2, NSGA-II, NSGA-II-PE, and ai-NSGA-II-PE, respectively)

Generally, the TEC of solutions under strict constraints will be worse than that
of loose ones, because the constraints restrict the search space. We can find that,
in the first two deadlines, the total execution costs obtained by all algorithms are
nearly the same. However, when the constraints become stricter, the peering algo-
rithms could not find satisfactory solutions. For example, in the Montage workflow,
the comparing algorithms MOPSO and MOEA/D are able to get satisfactory results
in terms of TEC in the first 2 constraints, but in the last 2 constraints, they could
not get feasible solutions in several workflows. Conversely, our proposed approach
is still capable of getting excellent solutions in the strict constraints, even though
with a small increase. Obviously, when the constraints become stricter, especially
in the Deadline 4, the peering algorithms which harshly exclude unfeasible solution
out of the evolution or simply use a static penalty function are unable to find any
correct solutions because the populations search towards a wrong direction and are
trapped in a local optimum. Figure 7a gives the box plots of TET values obtained
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by all algorithms under Deadline4 for five scientific workflows. The figure shows
that ai-NSGA-II-PE clearly outperforms these compared multi-objective evolutionary
algorithms under the strictest deadline. Although some peer algorithms with static
penalty function could still get several feasible solutions under strict constraints, their
qualities are much worse than the proposed algorithm. The advantage of ai-NSGA-
II-PE is that it adaptive adjusts its local exploitation and global exploration ability,
and adopts different individual-assessment schedule in different evolutionary states,
both of which have prevented the premature and being trapped in local optimum
effectively.

7.5.2 Degree of imbalance (DI)

Turning to another optimizing objective DI, the results are much like that of TEC,
and we also illustrate the 95% CI of DI in Table 5. The data indicate that, although
in some cases (e.g. Montage with deadline 1, 2) the obtained results of compared
algorithms are similar to or even better than ai-NSGA-II-PE, our algorithm is able
to find satisfactory solutions under strict constraints while these compared algo-
rithms could not. Figure 7b also gives the box plots of DI values obtained by all
algorithms under the strictest Deadline4 for five scientific workflows, and our algo-
rithm gets 4 best results from 5 workflows. This observation confirms the analysis
in the above section. However, it should be noted that the DI obtained by each algo-
rithms shows a downward trend when the constraints become stricter, while TEC
is opposite. That is mainly because the TET constraint and DI optimizing objec-
tive are not mutually independent. When the TET constraints make the algorithms
to use more VMs to reduce the execution time, this will also reduce DI at the same
time.

7.5.3 Tradeoff between the two optimizing objectives

We plot the two optimizing objectives TEC-DI trade-off on the Epigenomics and
Inspiral workflow under different users’ defined constraints as examples in Fig. 8. The
Pareto fronts just contain those feasible solutions, as the algorithms should generate a
cost-efficient and balancing schedule but not at the expense of a long execution time.
There is no use for an algorithm to generate cheap and balancing schedules without
meeting the deadlines. Obviously, Fig. 8 is a summary of the above results. We can
find that, under the first two constraints, SPEA2 and MOEA/D could even get the
best Pareto fronts. However, when it turns to the strictest constraints, they are not
able to generate any feasible solution, where the meeting rates are 0. In these peering
algorithms with static and improper penalty function, the Pareto fronts are worse than
that of our algorithm, especially when users strictly restrict the TEC. On the contrary,
ai-NSGA-II-PE always performs well in different deadlines, and could get the best
Pareto fronts in the strict deadlines.

123



364 Distrib Parallel Databases (2018) 36:339–368

Ta
bl
e
5

D
I
ob

ta
in
ed

by
M
O
E
A
s
fo
r
di
ff
er
en
tw

or
kfl

ow
s
ub

de
r
di
ff
er
en
tc
on

st
ra
in
ts

A
lg
or
ith

m
E
pi
ge
no

m
ic
s

M
on

ta
ge

C
yb

er
Sh

ak
e

Si
ph

t
In
sp
ir
al

D
ea
dl
in
e
1

M
O
E
A
/D

[1
.3
38

3,
1.
48

32
]

[1
.4
03

9,
1.
43

59
]

[1
.3
54

1,
1.
43

56
]

[1
.6
80

,1
.7
42

]
[1
.0
80

4,
1.
15

49
]

SP
E
A
2

[1
.4
37

2,
1.
44

59
]

[0
.9
41

1,
0.
99

49
]

[1
.0
50

7,
1.
31

50
]

[1
.9
94

,2
.0
17

]
[0
.7
67

3,
0.
85

01
]

M
O
PS

O
[2
.7
19

8,
3.
74

50
]

[1
.8
33

8,
5.
13

80
]

[1
.8
47

0,
3.
49

27
]

[1
.7
37

,2
.3
09

]
[4
.0
84

6,
4.
55

23
]

N
SG

A
-I
I

[1
.3
95

3,
1.
43

79
]

[1
.0
08

4,
1.
07

23
]

[1
.1
33

5,
1.
25

13
]

[1
.6
43

,1
.7
03

]
[0
.9
69

4,
1.
06

81
]

N
SG

A
-I
I-
PE

[1
.3
95

3,
1.
43

79
]

[1
.0
61

6,
1.
14

03
]

[1
.1
33

5,
1.
25

13
]

[1
.3
28

,1
.5
77

]
[0
.9
69

4,
1.
06

81
]

ai
-N

SG
A
-I
I-
PE

[2
.6
98

0,
3.
04

98
]

[1
.1
03

5,
1.
19

78
]

[1
.1
07

0,
1.
24

01
]

[1
.2
22

,1
.3
95

]
[0
.9
56

7,
1.
05

12
]

D
ea
dl
in
e
2

M
O
E
A
/D

[1
.7
44

9,
1.
82

85
]

[1
.4
30

6,
1.
46

94
]

[1
.0
71

8,
1.
18

51
]

[1
.4
92

7,
1.
55

58
]

[1
.2
80

5,
1.
34

04
]

SP
E
A
2

[1
.5
03

4,
1.
60

29
]

[1
.3
96

8,
1.
43

72
]

[1
.5
01

4,
1.
79

39
]

[1
.9
79

9,
2.
05

16
]

[0
.8
75

6,
0.
96

34
]

M
O
PS

O
[2
.4
00

9,
3.
37

81
]

[3
.7
79

2,
6.
08

11
]

[1
.4
99

9,
2.
26

66
]

[1
.6
61

3,
1.
66

44
]

[2
.9
39

6,
3.
69

26
]

N
SG

A
-I
I

[1
.3
71

4,
1.
43

40
]

[1
.5
16

1,
1.
56

55
]

[1
.1
15

6,
1.
25

05
]

[1
.7
00

3,
1.
82

36
]

[1
.1
98

8,
1.
31

27
]

N
SG

A
-I
I-
PE

[1
.3
71

4,
1.
43

40
]

[1
.4
51

6,
1.
62

72
]

[1
.1
15

6,
1.
25

05
]

[1
.9
59

3,
2.
01

38
]

[1
.1
98

8,
1.
31

27
]

ai
-N

SG
A
-I
I-
PE

[2
.3
76

8,
2.
69

58
]

[1
.6
51

4,
1.
72

80
]

[1
.1
74

3,
1.
26

44
]

[1
.4
94

6,
1.
56

75
]

[1
.1
59

7,
1.
25

48
]

D
ea
dl
in
e
3

M
O
E
A
/D

[1
.2
09

9,
1.
28

76
]

–
[1
.4
63

6,
1.
54

21
]

[1
.3
20

,1
.3
21

]
[1
.7
55

9,
1.
79

73
]

SP
E
A
2

[2
.3
44

3,
2.
70

08
]

–
[1
.0
67

4,
1.
28

66
]

[1
.7
08

,1
.7
08

]
[1
.9
44

0,
1.
94

67
]

M
O
PS

O
[1
.4
87

1,
2.
92

08
]

[3
.5
79

9,
3.
67

0]
[1
.4
67

4,
2.
41

11
]

[1
.5
37

,2
.3
35

]
[2
.9
23

9,
3.
68

38
]

N
SG

A
-I
I

[1
.7
68

6,
1.
96

87
]

[1
.9
23

0,
2.
06

11
]

[1
.4
46

1,
1.
52

46
]

[1
.5
38

,1
.5
95

]
[1
.1
66

1,
1.
26

53
]

N
SG

A
-I
I-
PE

[1
.5
68

6,
1.
72

87
]

[1
.8
30

7,
1.
99

56
]

[1
.2
13

6,
1.
32

01
]

[1
.4
83

,1
.5
03

]
[1
.1
66

1,
1.
26

53
]

ai
-N

SG
A
-I
I-
PE

[1
.7
74

2,
1.
87

34
]

[1
.8
00

7,
1.
98

66
]

[1
.1
24

1,
1.
20

97
]

[1
.5
79

,1
.5
79

]
[1
.1
63

6,
1.
24

62
]

123



Distrib Parallel Databases (2018) 36:339–368 365

Ta
bl
e
5

co
nt
in
ue
d

A
lg
or
ith

m
E
pi
ge
no

m
ic
s

M
on

ta
ge

C
yb

er
Sh

ak
e

Si
ph

t
In
sp
ir
al

D
ea
dl
in
e
4

M
O
E
A
/D

[1
.5
89

2,
1.
68

87
]

–
[1
.7
13

4,
1.
77

21
]

–
–

SP
E
A
2

[3
.7
75

5,
4.
09

45
]

–
[2
.0
03

3,
2.
32

07
]

–
–

M
O
PS

O
[1
.6
27

5,
1.
69

14
]

–
[2
.1
81

2,
2.
48

71
]

[2
.6
67

8,
2.
89

94
]

[4
.7
38

2,
4.
81

60
]

N
SG

A
-I
I

[2
.7
27

2,
2.
93

04
]

[3
.3
37

6,
3.
45

27
]

[1
.4
50

3,
1.
52

84
]

[1
.8
83

6,
1.
88

56
]

[1
.4
98

1,
1.
58

17
]

N
SG

A
-I
I-
PE

[1
.6
27

5,
1.
69

14
]

[3
.3
37

6,
3.
45

27
]

[1
.4
50

3,
1.
52

84
]

[1
.9
22

3,
1.
96

74
[1
.4
98

1,
1.
58

17
]

ai
-N

SG
A
-I
I-
PE

[1
.4
72

3,
1.
63

34
]

[3
.3
25

5,
3.
38

70
]

[1
.3
59

6,
1.
48

07
]

[2
.0
20

1,
2.
02

60
]

[1
.4
06

4,
1.
51

02
]

T
he

be
st
pe
rf
or
m
an
ce
s
un

de
r
di
ff
er
en
td

ea
dl
in
es

fo
r
ea
ch

w
or
kfl

ow
ar
e
hi
gh

lig
ht
ed

in
bo

ld

123



366 Distrib Parallel Databases (2018) 36:339–368

Fig. 8 Pareto Fronts obtained by different algorithms under several constraints for two workflows. a
Workflow = Epigenomics, b Workflow = Inspiral

8 Conclusion and future work

In this paper, an adaptive Multi-Objective evolutionary approach for constrained sci-
entific workflow scheduling in Clouds is proposed. For most previous works on
Cloud workflow scheduling, the most common drawback is that they use a static
penalty function to handle the constraints, which leads to premature convergence
easily when the users define a strict constraint. In addition, as the Cloud environ-
ment is very chaotic, the workflow scheduling in Cloud has a high demand for
optimizing ability to prevent being trapped in local optimum. As a solution to these
problems, the proposed algorithm designs an adaptive penalty function based on pop-
ulation states and adjusts crossover and mutation probability accordingly. Benchmark
function results indicate that our approach could effectively exploit the information
hidden in different states and guides the evolutionary direction for algorithms to
escape from local optimum, particularly in solving constrained problems. Experi-
mental results on practical problems also show that our approach has outperformed
several state-of-the-art algorithms, and could find better solutions especially under
strict constraints.

Many-Objective Evolutionary Algorithm (MaOEA) to solve the cloud resource
scheduling problem will be investigated in the future, as sometimes the number
of optimizing objectives in Cloud workflow scheduling is far more than 2 or 3.
However, the complexity of EAs rises sharply and the algorithms have a higher
demand for local exploitation and global exploration ability with the increase of
the number of optimizing objectives and search space becoming complex. How to
reduce the complexity of MaOEAs without the cost of degradation is our research
emphasis. Another future work is to construct a Multi-Cloud environment with mul-
tiple data center for simulating Workflows, which will consider the data transfer
cost between data centers so that VMs can be deployed on different geographic-
regions.
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