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Abstract—The study of large scale scientific workflows deployment
into cloud computing is prevalent. Infrastructure as a Service (IaaS)
clouds, offer access to the resources required for execution of
scientific workflows in which can be provisioned on-demand to
match the number of workflow tasks that need to be executed.
This flexibility leads to a trade-off between two conflicting Quality
of Service (QoS) requirements: time and cost. Most studies in this
field have only focused on meeting the deadline constraint while
minimizing the cost and few of them exploited the budget spending
to minimize the makespan. Nevertheless, several strategies have
been introduced for budget constraint scheduling problem including
dynamic scheduling of tasks as they ready for the execution in which
enables the algorithm to make decisions based on the current state
of the system. Since the strategy is task-based, the overall workflow
budget must be distributed to each individual task. In this paper, we
propose Fastest-First Task-based Distribution (FFTD) and Slowest-
First Task-based Distribution (SFTD) budget distribution algorithms
designed to minimize the makespan of workflows with budget
constraints in IaaS public clouds. Our performance evaluation
results show that in 88% of the cases, FFTD shows equal or better
performance in terms of cost / budget ratio values; obtains lower
makespan in 84% of all scenario and presents higher VM utilization
in 72% of the staged experiments than state-of-the-art algorithm.

Keywords-budget distribution; task-based; coarse-grained billing
period; scientific workflow

I. INTRODUCTION

Modern scientific instruments can collect vast amounts of
data that enable scientists to conduct ever more meaningful and
precise experiments and simulations. These scientific experiments
are generally expressed as workflows (i.e., applications that are
composed of multiple computational tasks linked together). In
scientific workflows, tasks represent different computations and
links between tasks represent data dependencies. They are large-
scale applications and require large computational resources to
process their input data in a reasonable time. Thus, distributed
environments are commonly used to process them, and cloud
computing has become a popular platform for their deployment
in recent years.

Infrastructure as a Service (IaaS) Clouds offer access to the
resources required for the execution of scientific workflows.
Specifically, they provide access to computational power by leas-
ing Virtual Machines (VMs) of varying configurations (i.e., VM
types). These VMs can be rented and released on-demand and
are charged based on their usage in increments of a billing period
defined by the provider. For example, Amazon EC2 charges VMs
by the hour and a machine used for one and a half hours is billed
as if it was used for two full hours. This flexibility and elasticity
makes IaaS environments ideal platforms for the execution of

scientific workflows; the number of VMs and their types can
be easily adjusted to match the characteristics and number of
workflow tasks that need to be executed at any time.

However, the flexibility and ability to easily scale number of
resources lead to a trade-off between two conflicting Quality of
Service (QoS) requirements: time and cost. The reason is very
simple, more powerful VMs capable of processing a task faster
will be more expensive than slower, less powerful ones. Thus,
provisioning algorithms that can decide the type and number of
VMs required by a workflow execution and scheduling algorithms
capable of efficiently mapping the tasks to the resources while
considering time and cost are essential. This has led to extensive
research [1] in this topic, with most works proposing algorithms
that aim for minimizing the total execution cost while finishing
the workflow execution before a user-defined deadline. In this
work, we focus on optimizing the resources usage so that the total
execution time of the workflow (i.e., makespan) is minimized
while meeting a budget constraint.

There are various strategies that can be used to achieve these
scheduling objectives when deploying workflows in IaaS clouds.
A popular one is using meta-heuristics to produce a static
mapping of tasks to resources in advance. In this way, an estimate
of the total cost and makespan of the workflow execution is
known as well as the required resources and their leasing period.
This technique however is computationally intensive and does
not scale well with the number of tasks of the workflow. Also,
because the schedule is produced before runtime and remains
unchanged throughout the execution, these algorithms are unable
to adapt to the inherent dynamicity and uncertainty of IaaS clouds
environment. To improve the scalability issue, other algorithms
use lighter-weight heuristics to produce static schedules, however,
they still fail to respond to environmental changes. Some strate-
gies choose to dynamically schedule the tasks as they become
ready for execution to overcome the responsiveness issue. This
enables the algorithm to easily scale and to adapt and make
decisions based on the state of the system. Since the scheduling
is task-based, the overall workflow budget must be distributed to
each individual task. This budget allocation guides the scheduling
process as it determines the type of resources that can be allocated
to each task as well as the time when they should be deployed.
This is a challenging problem mainly due to the pricing model
offered by IaaS clouds providers.

It is common for the average execution time of workflow
tasks to be considerably smaller than the coarse-grained billing
periods (e.g., one hour) offered by IaaS vendors. Thus, scheduling
algorithms must aim to efficiently utilize idle time slots on leased



VMs as a cost-controlling mechanism. This creates a challenge
when deciding the portion of the budget that should be allocated
to tasks as their cost must be estimated by either rounding up their
execution time to one (or more) billing periods or by estimating
their cost in time units. Deciding how to factor VM provisioning
delays when estimating the costs of tasks is another important
challenge. To avoid this, some algorithms choose to consolidate
tasks per workflow level and assign a collective budget to them
to be spent greedily. Depending on how the budget is split,
this may result in insufficient budget assigned to some levels,
violating budget constraints due to tasks in a level taking longer
to execute, and inefficient use of the budget. In this paper,
we explore distributing the budget to each individual task by
rounding their cost to billing periods. We argue that this enables
the algorithm to spend the budget more efficiently as it has a
better awareness of the remaining budget and hence can better
utilize it. Furthermore, such an algorithm can respond faster to
unexpected delays. In addition, to avoid underutilizing resources,
this strategy is combined with policies that encourage the reuse
of time slots in already-leased VMs.

Thus, we focus on distributing a portion of the budget to
individual tasks and spending it only when necessary, that is,
when free idle time slots on existing VMs cannot be reused. Our
approach considers inherent features of IaaS clouds such as the
abundance of heterogenous computing resources, VM provision-
ing delays, and the dynamic and uncertain behaviour of VMs
performance. We propose the Fastest-First Task-based Distribu-
tion (FFTD) and Slowest-First Task-based Distribution (SFTD)
algorithms designed to minimize the makespan of workflows
with budget constraints in IaaS public clouds. The algorithms
are dynamic and schedule tasks whenever they are ready for
execution. Our simulation results demonstrate that FFTD can
adapt to unexpected delays and meeting the budget constraint
while achieving lower makespans when compared to the state-
of-the-art budget distribution algorithm.

The rest of this paper is organized as follows. Section II
reviews works that are related to our paper. Section III describes
the considered system model, including the application model
and the resource model. The proposed algorithms are explained
in section IV. A performance evaluation and results is presented
in section V. Finally, the conclusions and future work are depicted
in Section VI.

II. RELATED WORK

Scientific workflows deployment in IaaS clouds environment
has been extensively researched. Most algorithms focus on two
QoS parameters: time and cost. The majority of these algorithms
have objectives of meeting the deadline constraint while minimiz-
ing the resources leasing cost. Examples include the solutions
presented by Mao and Humphrey [2], Abrishami et al. [3],
Malawski et al. [4], Arabnejad et al. [5], Cai et al. [6] and Chen
et al. [7].

Only a few of the existing algorithms focus on meeting the
budget constraint while minimizing the workflow makespan. An
example is the Partial Critical Paths Budget Balanced (PCP-B2)
algorithm [8]. It partitions a workflow into pipelines of partial
critical paths and finds the optimal resource type that maximizes
the budget utilization. Contrary to our work, PCP-B2 assumes
a time unit pricing model as opposed to the more common

model of billing periods. The Critical-Greedy algorithm [9] uses
a similar strategy by iteratively refining and initiating schedule
plan to encourage the use of more powerful VM types if there
is budget remaining. Other works with the same objectives use
Particle Swarm Optimization (PSO) [10] and Genetic Algorithms
[11] to develop a static budget plan that minimizes a workflows
makespan before runtime. These algorithms rely on calculating a
near-optimal schedule by using computationally intensive meta-
heuristic techniques. This differs from our solution in that we use
a lightweight, adaptive, heuristic-based dynamic approach that
makes scheduling and resource-provisioning decisions at runtime
based on the state of the system.

BAGS [12] is another example of existing budget-constrained
algorithm. It partitions the workflow into bags of tasks (BoTs)
that are on the same workflow level. BAGS is based on an online
budget distribution strategy that guides the resource provisioning
and scheduling plans of BoTs dynamically, as tasks become ready
for execution. However, contrary to us, BAGS assumes fine-
grained billing periods (e.g. one minute) that are not much longer
than the average execution time of tasks. Finally, the Budget
Distribution Trickling (BDT) algorithm [13] uses similar strategy
of consolidating tasks on the same workflow level. The budget
is distributed to each level and the algorithm trickles down any
leftover budget to the next level. It assumes an hourly billing
period but ignores the performance variation of VMs. The authors
of BDT explore several level-based budget distribution strategies
based on characteristics such as the number of tasks in the level
and the number of levels in the workflow. The algorithms differ
from ours in that the tasks are scheduled based on task readiness
independently. Whenever all task’s parents are finished and the
data input is available, it will be scheduled regardless of their
level.

III. APPLICATION AND RESOURCE MODEL

Our work is designed to schedule scientific workflows that is
modelled as Directed Acyclic Graphs (DAGs), graph that consists
of directed edges without any cycles. A workflow W consists
of a set of tasks T = (t1, t2, ..., tn) and a set of directed edges
E = (e12, e13, ..., emn) in which an edge eij represents data
dependency between task’s parent ti and task’s child tj , hence, it
implies that tj will only being executed after ti is completed. In
addition, a size of task St is measured in Millions of Instructions
(MI).

Virtual Machines (VMs) are leased using on-demand pricing
model that is charged the usage per billing period bp in which
any partial usage will be rounded up to the nearest billing period.
Furthermore, our work considers heterogeneous environment,
where exists several VM type vmt that have different processing
capacity PCvmt and different cost per billing period cvmt. The
processing capacity PCvmt is measured in Million Instruction
per Second (MIPS) and it corresponds with task size St. We
assume that VM performance varies over time and PCvmt values
published by IaaS cloud providers is the maximum capacity. In
addition, the runtime of a task is denoted as RTt

vmt, it is calculated
using simple approach based on task size St and processing
capacity PCvmt as shown in Eq. 1. Note that this value is simply
an estimate and does not rely on it being one hundred percent
accurate.

RT t
vmt = St/PCvmt (1)



We consider global shared storage system for data sharing
between tasks where each task is getting input data Dt

in from
global-shared repository and sent back the output data Dt

out

produced. Furthermore, each VM has bandwidth Bvmt while the
rates of global storage read and write is GSread and GSwrite

respectively. The bandwidths and I/O rates are changing over
time based on number of transactions Tr running at the time t as
seen in Eq. 2, 3 and 4.

Bvmt(t) = (Bvmt/Trt) (2)

GSread(t) = (GSread/Tr
read
t ) (3)

GSwrite(t) = (GSwrite/Tr
write
t ) (4)

The time for taking input data from global shared storage into
VM is shown in Eq. 5.

T
Dt

in
vmt = (

Dt
in

Bvmt
) + (

Dt
in

GSread
) (5)

on the counterpart, time for storing output data is similar, as seen
in Eq. 6.

T
Dt

out
vmt = (

Dt
out

Bvmt
) + (

Dt
out

GSwrite
) (6)

We assume the global storage and VMs are located on the same
region or availability zone, hence, data transfer between these
is free of charge, as in the case for most IaaS providers such
as Amazon EC2, Google Cloud Storage and Rackspace Block
Storage. Nevertheless, the output data is always kept on VM local
temporary storage. It needs to be mentioned here that there is
no need to read the input data if it is available in VM local
temporary storage where the task will be executed. Hence, this
scenario minimizes the time for getting the input data. The total
processing time of a task PTt

vmt is shown in Eq. 7.

PT t
vmt = RT t

vmt + T
Dt

in
vmt + T

Dt
out

vmt (7)

The cost Ct
vmt of a task for using a VM with type vmt and

price cvmt for a billing period bp is including the provisioning
delay Tpdelay and deprovisioning delay Tddelay, as seen in Eq. 8.

Ct
vmt = d(PT t

vmt + Tpdelay + Tddelay)/bpe ∗ cvmt (8)

We use the cost estimation in the budget distribution as well as
in the resource provisioning phase when choosing the VM types.

IV. RESOURCE PROVISIONING AND SCHEDULING
ALGORITHM

Our work is based on the EPSM algorithm [14], a simple
dynamic heuristic-based algorithm for Workflow-as-a-Service
(WaaS) framework that can handle dynamic workload of multiple
workflows. The algorithm’s objective is meeting the deadline
constraint while minimizing the cost. Furthermore, EPSM uses
the container technology to reuse VMs and implements sharing
resources policy between workflows.

We modify the EPSM to a budget-constrained algorithm with-
out the implementation of container to fit the single workflow
environment. Our algorithm consists of two phases:

1) Budget Distribution: The workflow’s budget is distributed
into each individual task using two approach, FFTD and
SFTD.

2) Resource Provisioning and Scheduling: The tasks are se-
lected based on the ascending order of their Earliest Finish

Time (EFT) and the resources are provisioned per the task’s
sub-budget whenever the idle VMs to reuse is not available.

A. Budget Distribution

The budget drives whole scheduling process. Hence, choosing
the fastest resources that are affordable within the budget, de-
crease the probability of exceeding the VM billing period caused
by performance variation that affects the execution time. The
total cost increases if a task’s execution time is missed from the
runtime estimation and exceeds a billing period, even for just a
small fraction. Therefore, budget distribution is challenging due
to the existence of coarse-grained IaaS cloud billing periods. In
some cases, distributing the budget based on the task’s runtime
estimation without considering a billing period leads to budget
insufficiency, condition where the task’s sub-budget is not enough
to provision a new VM.

Fig. 1: Sample of budget insufficiency scenario

Consider an illustration in Fig. 1, suppose there are two VM
types in IaaS cloud provider, small type which costs $1/hour and
large type that costs $3/hour. We assume that more powerful VMs
capable of processing a task faster are more expensive than less
capacity ones. Then, we have a workflow consists of seven tasks
with estimated runtime for each task RTA = 100s, RTB = 400s,
RTC = 400s, RTD = 200s, RTE = 100s, RTF = 100s and RTG

= 100s. The budget for this workflow is $7. If we distribute the
budget based on the runtime of each task proportional to the tasks
total runtime while ignoring the VM billing period, the budget
for task A, E, F and G will be insufficient. Since task A and E are
the entry tasks of workflow, if their sub-budgets are insufficient to
provision the resources, the workflow cannot be further executed.

We propose budget distribution based on the task’s estimated
execution order. The tasks are executed starting from the entry
tasks which are in the first level of a workflow then proceed to
their children that are residing in the next level. Therefore, we use
Deadline Top Level (DTL) [15] technique that makes the entry
task of workflow as starting point, as seen in Eq. 9, instead of
Deadline Bottom level (DBL) [16] technique that start the level
allocation from the exit task.

level(t) =

0 ifPred(t) = ∅
max

p∈Pred(t)
level(p) + 1 otherwise (9)

If we consider the example from Fig. 1, DTL allocates task A
and task E to the same level(1) while DBL allocates the tasks to a
level starting from task D as level(1). Consequently, using DBL,
task A is allocated to the level(3) which has a different level with
task E that is in the level(4). Although a workflow is obviously
being processed starting from the entry tasks, allocating them into
a different level will cause delay for algorithms that execute the
tasks based on their level. In addition, to determine the order of



Algorithm 1 Budget Distribution

1: procedure DISTRIBUTEBUDGET(β, T )
2: S = task’s estimated execution order
3: for each task t ∈ T do
4: allocateLevel(t, l)
5: initiateBudget(0, t)
6: for each level l do
7: Tl = set of all tasks in level l
8: sort Tl based on ascending Earliest Finish Time (EFT)
9: put(Tl, S)

10: while β > 0 do
11: t = S.poll
12: vmt = chosen VM type
13: allocateBudget(Ct

vmt, t)
14: β = β − Ct

vmt

tasks in a level, we sort them based on the ascending order of
their Earliest Finish Time (EFT) as shown in Eq. 10.

eft(t) =

PT
t
vmt ifPred(t) = ∅
max

p∈Pred(t)
eft(p) + PT t

vmt otherwise (10)

The workflow in Fig. 1 is sorted into sequence of A [level(1)]
→ E [level(1)]→ F [level(2)]→ B [level(2)]→ C [level(2)]→ G
[level(3)] → D [level(4)], then, the budget distribution algorithm
works sequentially distributing the budget to each individual task
while considering task’s estimated runtime and cost for each VM
type. Furthermore, the budget allocation considers the VMs that
are charged per billing period, so, the sub-budget allocated for a
task is equivalent to the cost of a full billing period. However,
there will be several tasks that are not getting the sub-budgets
allocation. For these tasks, the algorithm will delay the tasks so
they can reuse the idle VMs. The budget distribution algorithm
is shown in Algorithm 1.

The algorithm uses two approaches on allocating the budget
based on the VM type chosen, Fastest-First Task-based Bud-
get Distribution (FFTD) and Slowest-First Task-based Budget
Distribution (SFTD). The FFTD approach chooses the fastest
VM type that is affordable within the workflow’s budget. Since
the algorithm allocates fastest resources to the earliest tasks,
their successor’s chance of reusing faster VMs than what they
can afford increases. Hence, it also improves the possibility of
obtaining lower task’s processing time even though involves some
waiting delay for the idle VMs availability. On the contrary, the
SFTD approach chooses the cheapest resources for the tasks.
Whenever exists budget left after all tasks are allocated sub-
budgets, the algorithm lease a faster VM type that is affordable
by the leftover budget. The SFTD ensures most of the tasks are
getting the budget allocation so they do not need to wait for the
idle VMs. In both approaches, allocating resources to the earliest
tasks guarantees execution of the workflow.

B. Resource Provisioning and Scheduling

Once the sub-budgets are assigned to each task, the algorithm
processes entry tasks of the workflow and puts them into the
priority queue based on the EFT ascending order. Then, it
provisions a new fastest VM type that is affordable within the
task’s sub-budget. Whenever exist idle VMs, the algorithm finds

Algorithm 2 Resource Provisioning and Scheduling

1: procedure SCHEDULEQUEUETASKS(q)
2: sort q by ascending Earliest Finish Time (EFT)
3: sb = spare budget
4: while q is not empty do
5: t = q.poll
6: vm = null
7: delayFlag = false
8: if there are idle VMs then
9: VMidle = set of all idle VMs

10: VMinput
idle = set of vm ∈ VMidle that have t’s input

data
11: vm = vm ∈ VMinput

idle that can finish t with
minimum risk of incurring a new billing period

12: if vm = null then
13: vm = vm ∈ VMidle that can finish t with

minimum risk of incurring a new billing
period

14: else
15: vmt = cheapest VM type
16: if t.budget < Ct

vmt then
17: delayFlag = true
18: if delayFlag = false then
19: vmt = fastest VM type within t.budget
20: if there are faster VM type than vmt AND

sb is enough then
21: vmt = leaseFasterVMT()
22: vm = provisionVM(vmt)
23: scheduleTask(t, vm)

list of VMs that contain the cached input data for a task and
assigns VM that has spare time of a billing period that can finish
the task with minimum risk of incurring a new billing period.
Minimum risk means, if there are two VMs that are unable
to finish the task without incurring a new billing period, the
algorithm chooses the lowest cost one. If the VM with cached
input data is not available, the algorithm assigns any idle VM
with the same criteria. The resource provisioning and scheduling
algorithm is shown in Algorithm 2.

After a task is completed, the algorithm updates the budget
distribution to adjust with the budget spent so far. Meanwhile,
it keeps unused sub-budgets of the tasks that reuse idle VMs as
spare budget. This spare budget is used later in the budget update
or in the provisioning phase to lease faster VM type. The budget
update algorithm can be seen in Algorithm 3.

C. Illustrative Example

This section explains how the workflow in Fig. 1 would be
scheduled using both proposed strategies. In this example, we
assume that PCvmt of each VM type is linearly proportional
to cvmt. The resulting budget distribution produced by FFTD
and SFTD are shown in Fig. 2a and Fig. 2b respectively and
their corresponding schedule in Fig. 3a and 3b. Furthermore, the
’Queue of Ready Tasks’ column represents the tasks that are
ready for execution while the ’Deployment of Tasks & VMs’
presents the ready tasks deployment to the leased VMs and the
’spare budget’ shown is the values after tasks deployment in each



Algorithm 3 Budget Update

1: procedure UPDATEBUDGET(T )
2: tf = completed task
3: Tc = set of t ∈ T that are children of tf
4: βc = total sum of t.budget, where t ∈ Tc

5: Tu = set of unscheduled t ∈ (T − Tc)
6: βu = total sum of t.budget, where t ∈ Tu

7: sb = spare budget
8: if Ctf

vmt ≤ (tf .budget + sb) then
9: sb = (tf .budget + sb) − Ctf

vmt

10: else
11: debt = Ctf

vmt − (tf .budget + sb)
12: βc = βc − debt
13: DISTRIBUTEBUDGET(βc, Tc)
14: if βc < 0 then
15: βu = βu + βc
16: DISTRIBUTEBUDGET(βu, Tu)

step.
We can see that steps 1 to 3 for FFTD and SFTD are similar

except for the VM type provisioned and the spare budget. The
VM type chosen are different based on the sub-budget allocated
to the entry tasks that are provisioned the new VMs. In step 4 of
FFTD, the algorithm delays task B because its sub-budget is $0.
After task F is finished, task G becomes ready for execution. The
algorithm prioritizes task G to be scheduled because it has lower
EFT than task B. Then, task G reuses v2(large) and task B reuses
the same VM after task G is finished. Task D becomes ready for
execution after task B and C are finished and reuses v1(large).
Finally, FFTD costs $6 for the execution; it has $1 spare budget
left and obtains 900s makespan.

Fig. 2: Sample of budget distribution scenario using (a) FFTD
and (b) SFTD

In step 4 of SFTD, the algorithm schedules task B and provi-
sions a new small VM type based on its sub-budget. Eventually,
there is enough spare budget for leasing faster VM type. Hence,
the algorithm leases a new large VM type for task B. After task
F is finished, task G becomes ready for execution and reuses
v2(small). Then, task D becomes ready for execution after task B
and C are finished and reuses v3(large), In the end, SFTD costs
$5 for the execution; it has $2 spare budget left and produces
1700s makespan.

V. PERFORMANCE EVALUATION

To evaluate the algorithms’ performance, we use five well-
known synthetic workflows from different scientific areas. The

Montage (Astronomy) workflow is used to generate sky mosaics
from a set of input images [17]. Most of its tasks are I/O intensive
and they do not require much CPU processing. The LIGO
(Astrophysics) workflow is used to detect gravitational waves
[18]. It consists mostly of CPU intensive tasks with high memory
requirements. The SIPHT (sRNA Identification Protocol using
High-throughput Technology) workflow is used for automatic
searching of sRNA encoding-genes in the bioinformatics field
[19]. Most of the tasks in the SIPHT have high CPU and low
I/O utilization. Another bioinformatics application, the Epige-
nomics, is a CPU intensive workflow that is used for executing
various genome-sequencing operations. Finally, the CyberShake
(Earthquake Science) workflow generates synthetic seismograms
to characterize earthquake hazards [20] and is characterized as
data intensive with large memory and CPU requirements. These
workflows have different structures in terms of task dependencies
and task runtimes. Their full description and characterization in-
cluding the Workflow Generator used for generating the synthetic
workflows is presented by Juve et al. [21].

Different budget intervals were used in the experiments. We
assume that the minimum budget to run the workflow is equal to
the cost of running all the tasks on a single VM of the cheapest
type. Based on this minimum budget, we define ten different
budget intervals as seen in Eq. 11.

budget = α ∗minbudget where 0 < α < 11 (11)

The tightest budget in the range corresponds to a budget estimated
with α = 1 while the most relaxed one was estimated using α =
10.

We use CloudSim [22] to model an IaaS cloud provider
with single data center and four types of VMs. The VM type
configurations used are shown in Table I. Their CPU capacity
and price are a simplified version of the compute optimized
(c4) instance types offered by Amazon EC2 that have a linear
relationship between processing capacity and price. A VM billing
period of one hour was modelled for all VM types, and the VM
provisioning delays was set to 97 seconds based on the study by
Mao and Humphrey [23]. The CPU performance of VMs was
degraded by at most 24% based on a normal distribution with a
12% mean and a 10% standard deviation as reported by Jackson
et al. [24].

Table. I: VM TYPES AND PRICES USED

Name Memory (GiB) vCPU ECU Price per Hour ($)
small 3.75 2 7 1

medium 7.5 4 14 2
large 15 8 28 4
xlarge 30 16 56 8

A. Algorithm Performance

The goal of these experiments is to evaluate the algorithm’s
performance in terms of cost and makespan. The cost perfor-
mance is measured using the cost / budget ratio to evaluate
the algorithm’s ability on meeting the budget constraint. In this
way, ratio values greater than one indicate a cost larger than the
budget, values equal to one mean a cost equal to the budget,
and values smaller than one represent a cost smaller than the



Fig. 3: Sample of scheduling and resource provisioning scenario using (a) FFTD and (b) SFTD.

budget. Furthermore, the experiments for each budget interval
are repeated 100 times and we plot the mean value in the charts.

We compare our algorithm with Budget Distribution with
Trickling (BDT) [13], a dynamic level-based budget distribution
algorithm that has similar objectives to our algorithm. BDT
schedules the tasks based on their Earliest Start Time (EST) and
introduces Time Cost Trade-off Factor (TCTF) which calculates
the trade-off ratio between cost and time for executing a task in
a VM type. Then, it selects the VM type with the largest value
in the resource provisioning phase. BDT executes all tasks in a
level using the available budget then trickles down the leftover
budget to the level below. It delays tasks whenever the budget
is not enough to lease new VMs and enforces them to reuse
VMs when possible. The authors of BDT introduce several budget
distribution strategies and the ’All-In’ strategy presents the best
performance. Hence, we use BDT-AI (All-In), to evaluate our
proposed algorithm.

1) Budget Constraint Evaluation: To analyze the algorithms
in terms of meeting the budget constraint, we plot the cost /
budget ratio values for each workflow and budget interval in Fig.
4a, 5a, 6a, 7a and 8a. For the Montage workflow, the results
are presented in Fig. 4a. SFTD performs better than the other
algorithms in the strictest budget interval; this is probably due
to its choice of cheapest VM type when making provisioning
decisions. Interestingly, the performance of the algorithms is the
same for the remaining intervals, with the ratio values being equal
in every case. The possible reason is related to the coarse-grained
billing period. We can see that from Fig. 4b, the makespan

obtained by all algorithms starting from the β2 is quite far from
the billing periods. This means, the VM performance variation is
not significantly affecting the cost since the difference between
the makespan and the billing period is wide enough to tolerate the
VM performance degradation. Although there is no difference in
the performance between FFTD and BDT-AI in terms of meeting
the budget constraint, we found that FFTD outperforms BDT-AI
in terms of makespan; this is further discussed in the ’Makespan
Evaluation’ section.

The results obtained for the LIGO workflow are shown in Fig.
5a. We can see that the first budget interval is too strict, hence,
all algorithms violate the budget constraint. In general, SFTD
produces lower cost / budget ratio values even though the other
two algorithms are also able to meet the budget constraint for the
remaining cases.

Fig. 6a depicts the results for the SIPHT workflow. The
first budget interval is violated by all algorithms while FFTD
shows the closest margin. We can observe that the performance
variation affects the algorithms’ ability of meeting the budget
constraint from the marginal difference between the cost and the
budget in the graphs. In general, FFTD outperforms the other
two algorithms in meeting the budget constraints for the SIPHT
workflow.

Fig. 7a shows the results obtained for the CyberShake work-
flow. In general, all algorithms fail to meet the budget constraint
in every case, except for BDT-AI which succeeds in achieving
its goal in the last three intervals. A possible explanation for
this results is the CyberShake workflow characteristics as a data



(a) Cost / Budget Ratio (b) Makespan

Fig. 4: Cost / Budget Ratio and Makespan Performance of Montage Workflow.
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Fig. 5: Cost / Budget Ratio and Makespan Performance of LIGO Workflow.
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Fig. 6: Cost / Budget Ratio and Makespan Performance of SIPHT Workflow.
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Fig. 7: Cost / Budget Ratio and Makespan Performance of CyberShake Workflow.
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Fig. 8: Cost / Budget Ratio and Makespan Performance of Epigenomics Workflow.

intensive workflow that involves large I/O activities. It is observed
from the SFTD results where the ratio values increase as the
number of VMs being added. It means, there are huge number of
I/O data transfer that causes the overhead. Although all algorithms
consider data transfer time when estimating the task’s processing
time, the network traffic congestion caused unpredicted overhead.
Furthermore, the number of running VMs is proportional to the
number of I/O activities, hence, SFTD that provisions larger
number of VMs than the other algorithms are affected a lot
by the network congestion. It is worthwhile mentioning that
the ratio values for FFTD and BDT-AI decrease as the budget
becomes more relaxed. While SFTD allocates more VMs as the
budget increases, FFTD and BDT-AI use the additional budget
to provision faster VM type.

The Epigenomics workflow result is shown in Fig. 8a. SFTD
shows very high cost / budget ratio values for the earlier
budget intervals; however, the ratios consistently decrease as
the budget increases. The possible reason is that the number
of VMs provisioned by the SFTD remains relatively constant

throughout the budget intervals while the algorithm chooses faster
VM types as the budget increases while the other algorithms
do the opposite. Similar reason with the previous CyberShake
case is possible, in which most of the tasks in Epigenomics
workflow are also characterized as I/O and CPU intensive. Hence,
provisioning more VMs as the budget increases is not improving
the performance as seen in FFTD and BDT-AI cases. However,
FFTD outperforms the other two algorithms in terms of meeting
the budget constraint for all cases.

Overall, FFTD demonstrates equal or better performance than
BDT-AI in 88% of the cases in terms of cost / budget ratio
values. The only case where BDT-AI outperforms FFTD is for
the CyberShake workflow in which 90% of the cases BDT-AI
obtains equal or better performance.

2) Makespan Evaluation: The first half of budget interval in
the Montage workflow (Fig. 4b) shows the marginal difference
in makespan. Most likely, this is due to the characteristics of
the tasks in Montage workflow that highly depend on the I/O
rather than CPU processing. Hence, choosing faster VM types
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Fig. 9: VMs Utilization for Different Workflow Applications.

are not significantly affecting the makespan. However, as the
budget increases, the second half of budget interval shows that the
difference is wider. The possible reason is due to the high number
of VMs provisioned by SFTD during the runtime contributes to
the performance degradation. However, the congestion caused by
the I/O activities is not significant since Montage is not a data
intensive workflow. Finally, FFTD obtains lower makespan than
BDT-AI in 70% of the cases in which both algorithms obtain the
same performance in terms of cost / budget ratio.

Fig. 5b depicts the results obtained for the LIGO workflow.
Although the graph’s trend is similar to the Montage results,
the difference between all algorithms is clearer observed. FFTD
shows the lowest makespan for all cases. Then, the results
obtained for the SIPHT workflow are depicted in Fig. 6b. Similar
with the previous results, FFTD obtains the lowest makespan too
and shows more stable results than BDT-AI.

The results obtained for the CyberShake workflow are shown
in Fig. 7b. FFTD produces slightly lower makespan in 60% of the
cases than BDT-AI while SFTD performs the worst. CyberShake
is considered as a data intensive workflow that involves high
number of data transfer activities. This explains bad SFTD
performance as it provisions a large number of VMs as the budget
increases.

The Epigenomics workflow results are shown in Fig. 8b. The
makespan trend is different from the other workflow scenario. A
possible explanation is the fact that Epigenomics consists of tasks
that are both CPU and I/O intensive. Having low number of VMs
provisioned is the suitable approach for executing the workflow.
It needs to be noted that this behaviour should be a guide for
the users when defining the budget for Epigenomics workflow.
Finally, FFTD shows the lowest makespan for all scenario.

Overall scenario, FFTD demonstrates lower makespan in 84%
of all cases than the other two algorithms. In the scenario where

FFTD gets equal performance with BDT-AI in terms of meeting
the budget constraint, it demonstrates lower makespan in 80% of
the cases. Meanwhile, in the cases where FFTD gets lower cost
/ budget ratio that is normally should be traded-off by getting
higher makespan, it also successfully obtains lower makespan
than BDT-AI in 93% of the cases.

B. VM Utilization

To better understand the behaviour of the algorithms, we
analyzed the average VM utilization for each workflow. High VM
utilization means the algorithm can map the task to VM efficiently
and utilizes the idle time slots. Hence, this performance metric is
suitable to evaluate the algorithm’s ability in dealing with coarse-
grained IaaS cloud billing periods. The VMs utilization results
are shown in Fig. 9.

For the Montage workflow, FFTD presents higher VM utiliza-
tion in 50% of the cases than BDT-AI. Meanwhile, in the LIGO
workflow scenario, FFTD obtains the highest VM utilization in
all cases. On average, the SIPHT workflow case shows the lowest
VM utilization of all experiments. However, FFTD obtains higher
VM utilization in 90% of the cases than BDT-AI for SIPHT.
Furthermore, BDT-AI presents higher VM utilization in 60% of
the cases than FFTD in the CyberShake workflow, it confirms
the cost / budget ratio and makespan results. Finally, in the
Epigenomics workflow, FFTD produces higher VM utilization
than BDT-AI in 80% of the cases.

Overall scenario, in 72% of the cases, FFTD demonstrates
better performance than BDT-AI in terms of VM utilization.
However in the CyberShake workflow, BDT-AI shows compet-
itively better performance than FFTD. A possible explanation
is because the level-based strategy of BDT-AI works best for
the data intensive workflow that has level-wide structure as the
CyberShake.



VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present task-based budget distribution strate-
gies for executing scientific workflows in IaaS clouds with coarse-
grained billing periods. The problem is modelled as a workflow
resource provisioning and scheduling problem which aims to
minimize the makespan while meeting the user defined budget.
Furthermore, the proposed strategy exploits the independent task
readiness for executing the workflow.

The algorithm distributes the workflow budget into each indi-
vidual task and drives the resources usage through the sub-budget
of each task. It schedules the tasks whenever their parents tasks
are finished and the input data are available for execution based
on their Earliest Finish Time (EFT). The algorithm implements a
VM reusing policy to utilize the idle time slots that occur due to
the coarse-grained billing periods. It provisions the fastest VM
type possible within the budget whenever it is necessary due to
unavailability of reusable idle VMs. Every time a task is finished,
the algorithm considers the budget spent so far and adjusts the
next task scheduling decision if necessary. For each task that
reuses idle VMs, unused sub-budget is kept as spare budget and
utilized to update the budget distribution or to lease faster VM
type in the resource provisioning phase.

The performance evaluation results demonstrate that our so-
lution has an overall better performance than state-of-the-art
algorithm. It is successfully obtaining 88% equal or better per-
formance in terms of cost / budget ratio values and gaining
lower makespan for 84% of the cases while presents higher VM
utilization in 72% of the staged experiments. As future works, we
will investigate this approach on workflow-as-a-service (WaaS)
platform with dynamic workloads of multiple workflows.
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