
Scalable Deployment of a LIGO Physics
Application on Public Clouds: Workflow Engine
and Resource Provisioning Techniques

Suraj Pandey, Letizia Sammut, Rodrigo N. Calheiros, Andrew Melatos,
and Rajkumar Buyya

Abstract Cloud computing has empowered users to provision virtually unlimited
computational resources and are accessible over the Internet on demand. This makes
Cloud computing a compelling technology that tackles the issues rising with the
growing size and complexity of scientific applications, which are characterized by
high variance in usage, large volume of data and high compute load, flash crowds,
unpredictable load, and varying compute and storage requirements. In order to
provide users an automated and scalable platform for hosting scientific workflow
applications, while hiding the complexity of the underlying Cloud infrastructure,
we present the design and implementation of a PaaS middleware solution along
with resource provisioning techniques. We apply our PaaS solution to the data
analysis pipeline of a physics application, a gravitational wave search, utilizing
public Clouds. The system architecture, a load-balancing approach, and the system’s
behavior over varying loads are detailed. The performance evaluation on scalability
and load-balancing characteristics of the automated PaaS middleware demonstrates
the feasibility and advantages of the approach over existing monolithic approaches.

1 Introduction

Cloud computing enables users to get virtually unlimited computational resources
that can be accessed on demand from anywhere at any time. The main features of
Clouds such as elasticity and pay-per-use cost model enable low upfront investment

S. Pandey
IBM Research Australia, Melbourne, Australia
e-mail: suraj.pandey@au.ibm.com

L. Sammut • A. Melatos
School of Physics, The University of Melbourne, Parkville, VIC 3010, Australia
e-mail: l.sammut@student.unimelb.edu.au; amelatos@unimelb.edu.au

R.N. Calheiros (�) • R. Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computing
and Information Systems, The University of Melbourne, Parkville, VIC 3010, Australia
e-mail: rnc@unimelb.edu.au; rbuyya@unimelb.edu.au

© Springer Science+Business Media New York 2014
X. Li, J. Qiu (eds.), Cloud Computing for Data-Intensive Applications,
DOI 10.1007/978-1-4939-1905-5__1

3

mailto:suraj.pandey@au.ibm.com
mailto:l.sammut@student.unimelb.edu.au
mailto:amelatos@unimelb.edu.au
mailto:rnc@unimelb.edu.au
mailto:rbuyya@unimelb.edu.au

4 S. Pandey et al.

and low time to market, which in turn enables small to large software applications
to use the Cloud as a hosting platform, in contrast to traditional enterprise infras-
tructure settings. This makes Cloud computing a compelling technology to tackle
the issues rising with the growing size and complexity of scientific applications. For
instance, for a typical problem size, a single physics application may scale to a few
thousand processors, and multi-physics applications not only are increasing in size,
but are also requiring more sophisticated workflows for their execution [1].

Most large-scale applications, such as scientific applications, are characterized
by high variance in usage, mixture of data and compute load, flash crowds,
unpredictable load, and varying compute and storage requirements. This makes
the management of the computational infrastructures supporting such applications a
complex task, even when public Infrastructure as a Service (IaaS) Cloud resources—
such as virtual machines—are used as the underlying system infrastructure.

The above situation can be mitigated with the utilization of Platform as a Service
(PaaS). PaaS Clouds offer to users a complete platform for hosting user-developed
applications, while hiding the underlying infrastructure. Therefore, complex oper-
ations such as automatic scaling, load balancing, and management of virtualized
environments are completely transparent to users, and happen without their direct
interference.

In this article, we describe the design and implementation of a system delivering
a scalable solution to scientific workflow applications, specifically focusing on the
data analysis pipeline underpinning a high-profile scientific (physics) application:
gravitational wave searches. The proposed solution is a PaaS middleware that uses
resources from public Cloud infrastructures (IaaS) for hosting the management and
application services.

Gravitational waves (GW) are ripples in the fabric of space–time that result from
galactic collisions, stellar explosions, or rapid acceleration of large and extremely
dense objects such as neutron stars [22]. In principle, the ripples can be detected by
measuring minute changes in the separation of test masses on Earth, for example the
mirrors on a long-baseline, laser, Michelson interferometer. However, the changes
in separation are so small—one part in 1021 for the strongest predicted sources—
that they have not yet been detected. A worldwide effort is currently under way
to achieve the first detection, led by a new generation of interferometric antennas
like the Laser Interferometer Gravitational-Wave Observatory (LIGO) and partner
facilities around the world like VIRGO, GEO600, and TAMA300 [2].

Numerous search algorithms have been applied to the GW data from the above
detectors, all of them computationally intensive. There are four main types of GW
signal: stochastic, burst, continuous, and compact binary coalescence. Each search
for a specific type of source covers a wide parameter space, with an optimal balance
required between parameter space mismatch and computational resources. The
search space is especially large for blind, all-sky searches where the electromagnetic
counterpart of the source is unknown. In this paper, we concentrate on a search for
periodic gravitational waves from Sco X-1. Sco X-1 is the brightest X-ray source
in the sky. It is thought to be an accreting neutron star [22]. Theoretical analysis
indicates that it may also be a strong GW candidate [4, 16, 24].

Workflow Engine and Resource Provisioning Techniques 5

GW searches can be represented as a workflow consisting of tasks linked through
data dependencies. Execution of the workflow can be parallelized in such a way
that each parallel instance operates in a different multi-dimensional parameter
set. Therefore, with an appropriate support from a platform, numerous scientists
can simultaneously and independently use these workflows to analyse and search
for GWs using their own parameter sets. As the number of concurrent workflow
executions grows and shrinks, the platform can automatically increase and decrease
the number of infrastructural resources deployed to support the platform, in such
a way that the execution time of each individual workflow is not affected by the
number of running workflows. Without support for scheduling and management of
data and tasks, in the worst case, the parallel execution of these workflows will be
reduced to sequential execution due to insufficient resources.

Parallel executions of workflows can lead to resource contention, as each
workflow instance often requires the same set of data as input, requires a specific
number of compute resources, which can be limited, and are bound by deadlines set
by users. Hence, the challenges are to:

1. allocate Cloud resources to tasks, workflows, and users effectively to avoid
resource contention—dynamic resource provisioning problem;

2. minimize execution time of individual workflows—task/workflow scheduling
problem;

3. dynamically expand or shrink Cloud services based on varying load.

In order to tackle the above challenges, we designed a scalable PaaS middleware
and built a prototype system that facilitates the search for Sco X-1. This article
describes the PaaS middleware design, implementation, and performance evaluation
with the support of the GW data analysis application use-case. Specifically, this
paper makes the following novel contributions:

1. Dynamically Provisioning of Multiple PaaS middleware Pools: Our PaaS
middleware is composed of workflow engines that manage a pool of workers
in the Cloud. Instances of the workflow engine can be added and removed on
demand in order to adapt to the observed demand of the system.

2. Load Balancing and Distribution: Our system contains a layer that distributes
user requests to PaaS middleware pools and maintains load balance on each pool
of workers by scaling load across recently spawned PaaS middleware, releasing
resources when not in use.

3. Cloud-Enabled LIGO Software Application (LALApps): We describe how
we used a LIGO software application and executed its operations using our
propose system hosted in a public Cloud infrastructure.

The remainder of the paper is organized as follows: Sect. 2 presents closely
related work in workflow systems and deployment of scientific applications in Cloud
computing environments. We describe the scalable system design in Sect. 3. We then
present the description of the GW data analysis pipeline in Sect. 4. Using the case-
study as workload, we present performance evaluation in Sect. 5. We conclude and
present future directions in “Conclusions and Future Work” section.

6 S. Pandey et al.

2 Related Work

Efforts for accelerating the execution of LIGO applications in distributed systems
date back to 2002 [7]. Such a project established the workflows and data access
policies used for earlier generation of LIGO experiments. After the rise of Clouds as
suitable platforms for execution of scientific operations, Zhang et al. [25] developed
an algorithm for execution of a LIGO workflow in a public Cloud. The application
differs from ours in the method used for detecting the gravitational waves, and the
algorithm is customized for the particular application. Our work proposes a two-
level provisioning approach to scale either the application or the workflow execution
platform. Therefore, Zhang’s LIGO application and the corresponding scheduling
algorithm could be integrated in our proposed system. Chen et al. [6] proposed an
approach for generation of virtual machine images for the LIGO project. This virtual
machine images can be used by platforms (such as the one proposed in this paper)
or directly by researchers wanting to deploy their LIGO application in the Cloud.

Auto scaling of Cloud services and infrastructure results in significant cost
reduction, green energy use, and sustainability. Dougherty et al. [9] proposed
a model-driven configuration of Cloud auto-scaling infrastructure and applied
it to an e-commerce application running on Amazon EC2 platform. Mao and
Humphrey [14] used auto scaling of Cloud resources to minimize deployment costs
while taking into account both user performance requirements and budget concerns.

In the context of platform support for execution of Workflow applications in
Clouds, Workflow Management Systems that were originally proposed for Grids,
such as Pegasus [8, 18], Askalon [20], Kepler [13], Taverna [19], and Cloudbus
Workflow Engine [21] were extended to support utilization of Cloud resources.
However, these systems have limited scalability regarding the total number of
resources and application that can be simultaneously managed by them. Therefore,
our proposed architecture groups such systems in a Platform as a Service layer and
enable the deployment of multiple of such engines to increase the overall system
scalability. In this sense, any of the above systems could be used in the PaaS layer
of our architecture, even though in this paper we used Cloudbus Workflow Engine
for this purpose.

Lu et al. [12] proposed a workflow for large-scale data analytics and visualization
with emphasis in spatio-temporal climate data sets that targets public Cloud
environments as the source of resources for workflow execution. However, the target
scenario of such a tool is one user operating over one dataset, whereas our proposed
solution targets multiple users accessing multiple data sets concurrently.

Kim et al. [11] proposed a system supporting execution of workflows in hybrid
Clouds. This approach differ from our proposal in the sense that the main objective
of such tool is typically keeping the utilization of local infrastructure as high as
possible and keep utilization of public Clouds low, in order to reduce the extra costs
related to public Clouds. Such approach has also to work in the selection of work-
loads to be moved to the public Clouds and the workloads to be kept on premises.
Furthermore, it scales only the number of workers, while our approach is able to
scale the number of engines to support more simultaneous users and resources.

Workflow Engine and Resource Provisioning Techniques 7

On the topic of automatic scaling of applications in Clouds, Vaquero et al. [23]
presents a survey on the topic. It categorizes how scalability can be achieved on
IaaS and PaaS Clouds. According to their classification for the problems, our work
is classified as PaaS scaling via container replication.

Mao and Humphrey [15] proposes a solution for the problem of auto-scaling
Clouds for execution of workflow applications. The approach considers a single
workflow engine that is able to scale resources available for processing workflow
applications. Our approach, on the other hand, considers a two-layers scaling
approach where the number of workflow engines can also be scaled to further
increase the total capacity of the system in managing and executing multiple
simultaneous applications.

Casalicchio and Silvestri [5] explore different architectures for monitoring and
scaling of applications in Clouds. The architectures explore different mixes of
public Cloud provider services with local services for achieving scalability of VM
applications. The proposed architectures operate at the IaaS layer, and utilize with
arbitrary metrics for scalability decisions (for example, application throughput). The
architectures are not aware of dependencies between tasks in workflow applications,
and therefore they are not optimal for this type of application, unlike our approach.

Finally, it is worth noticing that public Cloud providers such as Amazon,1

Microsoft,2 RightScale,3 and Rackspace4 also offer solution for auto-scaling based
on web services or APIs. They allow users to determine simple rules, typically
based on monitored performance metrics (CPU and memory utilization, application
response time), that trigger the auto-scaling process. Rules are used to determine the
amount of machines to be added or removed from the system, typically proportional
to the amount of resources in use (e.g., increase number of resources by 20 % if
average memory utilization is above 80 %) or fixed (e.g., reduce the number of
resources to 5 if utilization is below 40 %). Our approach enables more complex
decisions that are determined algorithmically, and performed at two different levels
(platform and application).

3 System Architecture and Design

In this section, we detail the design of the proposed PaaS middleware for execution
of scientific workflows. Table 1 defines the symbols used in the rest of the article.

The system has a layered design in order to process multiple users and their
workflows in a scalable manner, as depicted in Fig. 1. The bottommost layer is
composed of virtualized resources, provided by public IaaS Cloud service providers,

1http://aws.amazon.com/autoscaling/.
2http://www.windowsazure.com/.
3http://www.rightscale.com/products/automation-engine.php.
4http://www.rackspace.com/cloud/loadbalancers/.

http://aws.amazon.com/autoscaling/
http://www.windowsazure.com/
http://www.rightscale.com/products/automation-engine.php
http://www.rackspace.com/cloud/loadbalancers/

8 S. Pandey et al.

Table 1 Description of symbols used in the article

Symbol Description

Q Queue containing the list of tasks submitted to the system for execution as
applications by end-users

Eengines Set of compute resources where the workflow engine has been installed.
Resources in this set compose the PaaS middleware

VM A virtual machine deployed to support our platform

Rworkers Set of VMs that are configured to execute end-user applications

WpE Workers per Engine. This constant directs the algorithms to allocate up
to the WpE compute resources (workers) to each workflow engine that is
running. For example if there are three engines and WpE D 5, then each
engine will have five worker VMs under its management

NtW Number of Tasks submitted to each worker. Higher values enable multiple
tasks to be submitted to a worker to run in parallel

sizeof .Array/ This function returns the length of the array that is passed to it as a parameter

CCE.integer/ This is the capacity calculation algorithm. Its argument is the length of the
task queue Q

MAXCompTime This value signifies the maximum completion time for a task submitted by
the user

Workflow Engine

Server

Workflow Engine

Server

Workflow Engine

Server

Load Balancer/Distributor
D

yn
am

ic
al

ly
 P

ro
vi

si
on

ed
D

yn
am

ic
al

ly
P

ro
vi

si
on

ed

P
aa

S
Ia

aS

Application Web Portal

A
pp

lic
at

io
ns

LI
G

O
 S

ea
rc

h

Web Service Web Service Web Service

Amazon EC2 Amazon S3+

Fig. 1 Scalable PaaS middleware for scientific workflows

where the application is actually executed. In particular, for supporting LIGO
data analysis we choose Amazon AWS as the public IaaS provider. The entire
system is deployed on Amazon EC2, so that data transfers happen within the
same Cloud provider with lower latency than when using multiple Cloud providers.
Virtualized resources are managed by software components at the next level, which

Workflow Engine and Resource Provisioning Techniques 9

we name platform services. To implement this layer, we use our existing middleware
solution—Workflow Engine [21]—for managing application workflows submitted
by end-users for execution on the Cloud resources.

Because the overhead incurred to each workflow engine increases with the num-
ber of managed workflows, better scalability and response times can be obtained
if multiple workflow engines are deployed and the load is balanced among them.
Thus, the next layer is composed of a Load Balancer/Distributor that is responsible
for enabling dynamic scaling of the platform services. The Load Balancer can
dynamically create workflow engines instances, each running on a separate VM,
at run-time. The provisioning of additional platform services is based on: (a) the
number of waiting jobs (the difference between user requests arriving to the server
and the request-level parallelism) over a period of time, and (b) average completion
time of workflow applications submitted by users.

Finally, at the topmost layer, the Application Web Portal is the interface provided
to end-users, who submit workflow application execution requests and monitor their
progress.

Our architecture enables independent resource scaling at two different levels—
the platform level composed of workflow engine instances that can manage the
actual execution of tasks—and at the infrastructure level, where resources are
deployed to execute the tasks. With the coordination of platform services provi-
sioning and compute resource provisioning at the infrastructure level, the system is
able to efficiently manage multiple workflows submitted by large number of users.

Figure 2 depicts the sequential interaction among different entities in order to
achieve automatic scaling of Cloud resources. The interaction starts with a user
sending an authentication request to access the web portal. After the authorization
is granted, the user sets the parameters of the application workflow, determines
the configuration files, and submits the workflow for execution. Depending on the
number of tasks in the application, the load balancer calculates the number of
VMs (engines) and computing machines (workers) needed and sends the invocation
request to the public Cloud resource provider, as detailed in the next section.
Workers are assigned to a specific workflow engine, and therefore all the tasks
executed from a worker belong to jobs managed by its corresponding engine.

Once the number of required engines and workers is defined, the Load balancer
submits requests for machines to Cloud resource provider, which starts the type
and number of virtual machines according to the request. Once there are enough
available virtual machines to start execution of tasks, the load balancer sends tasks
to the workflow engine, which in turn forwards them to its associated workers for
actual execution.

The worker sends the end result to its assigned workflow engine in order to
direct it to store the data on the Cloud storage. The user can monitor the process
of application execution through the web portal, which is able to supply statistics
such as submission time, allocated resources, execution status, total execution time,
and total stage-out time. Once results of workload execution is available, the user
can download it directly from the Cloud storage. During the whole process, the
load balancer continuously enforces distribution of applications among workflow

10 S. Pandey et al.

Wait for Amazon Instances to
start

[new workers and engine count are
above the minimum threshold]

[Jobs waiting]

No

No

No

Yes

Calculate Engines' Capability

Engines and workers enough?

Assign Jobs to Engines

Invoke Start Engine

Idle Engines and workers?

Stop engine and its workersDelay()

Start New Engines and
workers

Fig. 2 Auto scaling at the PaaS layer of our proposed middleware

Workflow Engine and Resource Provisioning Techniques 11

engines by provisioning the right amount of virtual machines (both workers and
workflow engines). It does so by increasing or decreasing the number of running
virtual machines based on the number of tasks to run and the capability of each
VM (see Algorithms 1 and 2). Therefore, if all the submitted applications finish
execution and no further application are submitted, running engines and workers
are turned off automatically by the load balancer, as detailed in the next section.

Algorithm 1: PaaS load balancing algorithm
Input: WpE: Application-dependent worker-per-engine rate.
while There are incomplete Tasks in L in Q do

Update Rworkers;
Apply the CCE Algorithm to divide newly added instances between Eengines and
Rworkers;
Associate up to WpE workers in {Rworkers} to each engine ei 2 Eengines;
if ((jRworkersj � 0) OR all waiting compute resources available) AND (jQj > 0) then

Number of tasks remaining to be submitted for execution
nPending D CCE.sizeof .Q//;

if nPending > 0 then
Workers to run wr D nPending=NtW ;
wPending D wr;
foreach Engine ei 2 Eengines do

Free slots for engine ei : es D WpE � .current_number_of _workers_in_ei /;
wPending D wPending � es;
if wPending > 0 then

Engines to run er D bwPending=WpEc;

Provision er engines in the Cloud;
Provision wr workers in the Cloud;

foreach Engine ei 2 Eengines do
repeat

Assign tasks in Q to ei ;
until current_engine reaches it maximum load;
Start execution of tasks assigned to engine ei ;

3.1 Load Balancing

Load balancing in our proposed architecture is managed by the Load Balancer/
Distributor component. This component acts both at task level, in order to balance
the load of workers, and also at the middleware level, by controlling the number of
running Workload Engine instances and balancing the number of jobs submitted to
each engine. The general operation of the Load balancer is detailed in Algorithm 1.

When jobs are submitted to the system, their corresponding tasks are queued
at the Load Balancer (LB) in a queue Q. The LB groups the running resources in

12 S. Pandey et al.

two sets: workflow engines Eengines and computing workers Rworkers. Application-
dependent, user-defined WpE workers are assigned to each engine running in
the system. If new virtual machines were started since the last execution of the
algorithm, each new VM is assigned to an already running workflow engine in a
round-robin basis.

After all the provisioned VMs are ready to accept requests, the Load balancer
checks for jobs waiting. Definition of number of engines to be added to the platform
layer and the number of workers to be added to these engines is based on several
factors. One such factor is the estimated capacity of available resources to handle
extra tasks, which is determined using the method presented in Algorithm 2.
The Load balancer computes the average tasks completion time observed in a
configurable timespan and uses this value to estimate resource availability for the
next time span. The availability estimation and number of waiting tasks are then
compared in order to determine whether existing engines are enough to handle all
the tasks or not.

Algorithm 2: CCE: engine capacity/load calculating algorithm

Set the capability of each free worker to NtW ;
Set the threshold of completion time of a single task to MAXCompTime;
foreach ei 2 Eengines do

Get average task completion time ctei of ei during the last n minutes;
Compute the availability ai of ei ,
ai D .ctei � MAXCompT ime/=MAXCompT ime;
Compute the capability ci of ei , ci D ai�(number of workers of ei)� (max tasks per
worker);

Refresh compute resource status;
if New workers are ready then

Increase the capability of its engine by NtW ;

return list of unassigned tasks;

If the algorithm determines that available resources are not enough, the number of
extra workers and engines is computed and the corresponding number of resources
is started in the public Cloud provider. Each new engine, once ready, receives
waiting tasks belonging to the same job. The assignment step is repeated until each
engine reaches its maximum load or until no more waiting jobs exist. The engines
then start applications that have been assigned for execution, and availability of
resources is recomputed. The load balancing process is repeated until all tasks are
finalized (either completed or canceled after a maximum number of failures).

The algorithm initially sets the capability of each free worker to NtW , which is the
maximum number of tasks that can be allocated to a worker while ensuring that the
tasks can be completed in a reasonable time. The threshold of completion time of a
single task is set MAXCompTime, which is the default threshold for determination
if the engine is overloaded. If it is overloaded, it stops having tasks assigned
to it. Afterwards, for each engine of Eengines, the algorithm computes the average

Workflow Engine and Resource Provisioning Techniques 13

User Portal Load Balancer Engine Worker

Authentication

Amazon EC2, S3

Configure Parms

Submit Tasks

Invoke
Monitor Resources

[No tasks]
Terminate unused
Resources

[Have tasks]
Calculate Engine
Capability / Load

[Not Enough]
Start Resource

[Enough Resource]
Assign Tasks to Engine

Send Task Execute

Return Result
Store Result

Notify Result Available

Get Result

Monitor / Query

View Result

Cloud (Computation and Storage)Server (Request Handling and Load Balancing)

Fig. 3 Sequence diagram showing the interaction between entities involved in scaling PaaS
services

completion time observed in the last time interval, so the estimated availability and
capability can be computed. Based on such values, waiting tasks are assigned to
running engines up to the maximum calculated capacity of each engine. Remaining
tasks are taken into account when deciding to extend the number of engines (Fig. 3).

4 LIGO Data Analysis and the Search for Gravitational
Waves

The system described in the previous sections was implemented and used in an
application scenario: a data analysis pipeline in a gravitational wave search. The
Laser Interferometer Gravitational Wave Observatory (LIGO) is one of the world’s
largest physics projects [2]. It will inaugurate a new era in astronomy by detecting
Einstein’s elusive gravitational waves, vibrations in space–time emitted by various
cosmic sources. LIGO is currently the most sensitive element of an international
detector network including facilities like Virgo, spaced widely around the globe
to take advantage of the dramatically improved angular resolution afforded by
intercontinental baselines. Sophisticated computing is the backbone of LIGO: the
sheer scale of the data flows and the difficulty of detecting minuscule signals make
gravitational wave searches one of the great computing challenges of our time.

To illustrate the application scenario and its requirements, we present a search for
periodic GW signals from neutron starts in binary orbits [10, 17, 22]. Of this class
of source, low mass X-ray binaries (LMXBs) are prime candidates due to numerous

14 S. Pandey et al.

accurate observations across the electromagnetic spectrum [22, 24]. Sco X-1, the
brightest X-ray source in the sky, located in the constellation Scorpius, is likely to
be the LMXB that emits GW most strongly [24]. It is targeted for the development
of the search application investigated in this study.

In working towards the detection of GWs, the LIGO Data Analysis Software
Working Group has built several analysis tools. The sideband search is part of the
LIGO Algorithm Library (LAL).5 We use tools in LAL and its application suite
(LALapps) to generate and analyze synthetic test data. Using the LAL tools we cre-
ate LIGO-like data with an injected signal and synthetic noise and run the sideband
search to retrieve the injected signal. The LAL tools ensure that the synthetic data
resembles the data generated by actual detectors. Real data is available, but remains
proprietary for now; its analysis lies outside the scope of this paper.

The sideband search has two stages. The first stage is a matched filter known as
the F -statistic [10]. It requires knowledge of the source sky position and searches
over the unknown source frequency, by comparing against a signal template via a
maximum likelihood approach. It is computationally intensive. If the source is in
a binary system, the F -statistic power is smeared out over many frequency bins
(sidebands), spaced by integer multiples of the orbital frequency, i.e., a frequency
comb. Hence, the second stage of the sideband search involves summing up
semi-coherently the output of the F -statistic at the frequency of each sideband in
the comb. This requires knowledge of the orbital period and semi-major axis but is
not computationally expensive. It produces a result called C -statistic. The frequency
parameter space can be split to allow parallel distribution. However the F -statistic
and C -statistic steps must be performed sequentially. A search pipeline for this
procedure is shown in Fig. 4. Coherent follow-up (Step 3) proceeds in the event of
a positive provisional detection at the end of Step 2 and may leverage other signal
processing algorithms, whose details lie outside the scope of this paper.

Input: GW time-
series data

Generate 30-min
short Fourier
transforms

Frequency comb

Incoherent
summation oc F-

statistic sidebands

Coherent follow-up
search on candidates
identified in second

stage

Stage 1 Stage 2 Stage 3

Demodulate for sky
position

Input: GW
detection (or
upper limits)

Frequency
dependent

detection statistic
(C-statistic)

Fig. 4 The frequency comb search algorithm for periodic sources in binary systems

5http://www.lsc-group.phys.uwm.edu/daswg/.

http://www.lsc-group.phys.uwm.edu/daswg/

Workflow Engine and Resource Provisioning Techniques 15

Sample plots of F - and C -statistic output obtained from a simulated Sco X-1
search are presented in Fig. 5. The signal is injected at 505 Hz and is clearly
recovered by the C -statistic in Fig. 5d from the two-horned frequency comb
structure in the F -statistic output in Fig. 5b. Figure 5a, c shows null results from
the same experiment but in a region of frequency space away from the injected
frequency of the signal, where the data should contain just noise. Only a few Hz
(out of a total search band of 1 kHz) are plotted for clarity.

A simple workflow for this procedure is depicted in Fig. 6. The various param-
eters that form the input are represented at the top of the figure. For each
frequency range, one workflow task (circles in the figure) is created. For each
F -statistic computing task, a comb search is performed. Once the comb search
is complete, the mean value is calculated and submitted to the last task, which
provides the visualization in the form of a plot. The activity described above can be
triggered multiple times by a user simultaneously considering multiple GW sources.

503.4 503.6 503.8 504 504.2 504.4 504.6
0

5

10

15

20

25

30

35

40a b

c d

Fstat, h0=1, sqrtSh=1, f=505Hz, off target

frequency

F
st

at

504.4 504.6 504.8 505 505.2 505.4 505.6
0

50

100

150

200

250

300
Fstat, h0=1, sqrtSh=1, f=505Hz, on target

frequency

F
st

at

503.4 503.6 503.8 504 504.2 504.4 504.6
3.5

3.55

3.6

3.65

3.7

3.75
x 104 x 105Cstat, h0=1, sqrtSh=1, f=505Hz, off target

frequency

C
st

at

504.4 504.6 504.8 505 505.2 505.4 505.6
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Cstat, h0=1, sqrtSh=1, f=505Hz, on target

frequency

C
st

at

Fig. 5 F -statistic (top) and C -statistic (bottom) versus frequency plots obtained after processing
the workflow in Fig. 4, demonstrating the noise (left) and signal (right) cases. The F -statistic (a
and b) calculation is the first stage of the CombSearch workflow, and also the input to the second
stage, C -statistic (c and d) calculation (Color figure online)

16 S. Pandey et al.

Frequency Range1,050Hz50Hz

lalapps_Makefakedata_v4

lalapps_ComputeFStatistic_v2

lalapps_CombSearch

calculate_mean

--s
ta

rtT
im

e

--R
A

--D
ec

--o
rb

itP
er

iod

--o
rb

ita
sin

i

--d
ur

at
ion Input Parameters for

Sco X-1

plot

IN
P

U
T

W
o

rk
fl

o
w

O
u

tp
u

t

US

O
rg

an
is

at
io

n
al

 U
n

it
 U

US

O
rg

an
is

at
io

n
al

 U
n

it
 2

GW Source 1 GW Source 2 GW Source M1

USER 1

GW Source 1 GW Source 2 GW Source M2

USER 2

GW Source 1 GW Source 2 GW Source MN

USER N

O
rg

an
is

at
io

n
al

 U
n

it
 1

Fig. 6 A data analysis application workflow for Sco X-1 search over 1,000 Hz

The figure also depicts the fact that multiple Organizational Units (for example,
research labs belonging to different universities) can have various users requesting
execution of such workflow at the same time.

Workflow Engine and Resource Provisioning Techniques 17

0
0

2000

4000

6000

8000

10000

12000

 100 200 300 400 500 600 700 800 900 1000 1100

C
-s

ta
ti
st

ic

frequency (Hz)

Plot for Source B8 [87b0e...]

mean C (1 σ)
max C

no signal

Fig. 7 C -statistic output versus frequency after processing the workflow in Fig. 6. The cross
with error bars represents the mean C -statistic C=�1 standard deviation for each Hz band. The
maximum C -statistic from each band is indicated with stars. The “no signal” black curve refers
to the theoretically expected value of the C -statistic in the case of pure noise. The black arrow
indicates the outlier from the C -statistic results in the Hz band containing the signal, which was
injected at 721.27 Hz (Color figure online)

As an example, a search for Sco X-1 over a 1,000 Hz band can be divided into
103 jobs of 1 Hz each. The result of each job is a list of C -statistic values for
every frequency bin in the 1 Hz band. The number of frequency bins is determined
by the frequency resolution of the F -statistic, .2T /�1, which is a function of the
observation time T . In our example, for T D10 days, each 1 Hz band contains
� 106 C -statistic values.

To test for a detection, we calculate the C -statistic for each bin in a 1 Hz
band. For each band, the mean, standard deviation, minimum, and maximum values
are collected and used for plotting the output. Figure 7 shows the output from a
simulated search for a signal injected at 721.27 Hz with strength h0 D 1:6 � 10�23

and noise
p
Sh D 6 � 10�23 across the 50–1,050 Hz band. Mean C -statistic values

are shown as crosses and the solid black line indicates the expected signal-free
result. The plot also shows the maximum C -statistic value in each band (stars).
Since the injected signal is narrow band, it only appears in � 10 bins (out of 106

per Hz), so the maximum C is a better diagnostic than the mean. The maximum
C -statistic values shows a clear outlier in the region of the injected signal around
721 Hz, highlighted by the black arrow.

18 S. Pandey et al.

4.1 Application Requirements

Data Requirements The size and quantity of data produced by the workflow
depicted in Fig. 6 are substantial. In our test example, which is deliberately chosen
to be small, if 10 days of synthetic data is generated by LAL, the workflow must
handle 480 files of size 142 KB each, each file is a 1,800-second Short-time Fourier
Transform (SFT). The total volume of data generated depends on the search duration
chosen by LIGO scientists. The ComputeFStatistic and CombSearch scripts each
produce 77 MB of data after processing the synthetic data. Depending on the input
parameters, the result obtained after plotting the points (106 points in a single file;
points are FStat-frequency and CStat-frequency, as depicted in Fig. 5) may need
further processing to produce an image file (e.g. png, eps, etc.) for visualization.

It is vital to emphasize that these data volumes are small because we restrict
ourselves to a small test problem in this paper. In general, full LIGO searches involve
petabytes of data. The LIGO detectors sample the gravitational-wave signal channel
at 16 kHz continuously for several years and generate another � 104 environmental
channels sampled at similar rates. A typical compact binary coalescence search
must process all the environmental channels, as must the pre-processing scripts that
generate the SFTs for Sco X-1-like searches. The LIGO data storage requirements
are determined by the rate at which data is produced by the LIGO interferometers.
Each advanced LIGO interferometer is expected to produce a total data rate of
�10 MB/s. This corresponds to an annual data volume of �315 TB or �200 TB
with best current compression. The Advanced LIGO computing plan calls for each
interferometer to maintain an archive of its own raw data as well as copies of the raw
data generated by the other two interferometers. Additionally, a separate redundant
archive of the raw data is to be maintained at each Tier 1 data center [2, 3].

Computational Requirements The processing time taken by ComputeFStatistic
and CombSearch is around 9 min on an Intel dual core 2 GHz CPU with 7 GB
memory when executed for a single source across the 10-day stretch of data with a
band of 1 Hz.

Multiple GW Sources and Multi-User Environment As noted in the introduc-
tion, GWs can be detected from multiple sources. Users may elect to search for
multiple sources or single sources across different sections of the data. Each source
has different input parameters even though the underlying workflow is the same.
This scenario is depicted in Fig. 6 as GW Source 1–GW Source N. In a LIGO
organizational unit, it is expected that many users conduct searches simultaneously
on different sources. In an organizational unit, e.g., a university research group, there
are many users conducting different search procedures on the same and/or different
GW sources. These users are depicted as User 1–User N in Fig. 6.

Execution Time in Clouds In order to evaluate the expected execution time of the
application in public Clouds, we executed the search procedure on Amazon EC2,
an IaaS service enabling users to buy virtual machines (instances) with specific
characteristics in terms of CPU, memory, and storage (instance types). We repeated

Workflow Engine and Resource Provisioning Techniques 19

the experiment with different instance types (Small, Large, and Extra Large). The
synthetic input data was generated using lalapps_Makefakedata_v4. The execution
times of the applications and their input/output file sizes are reported in Table 2. The
values listed in Table 2 show that the application’s runtime is CPU-intensive, and
therefore dependent on the machine processing capacity and directly affected by the
computing power of the resource in use. Furthermore, the size of data produced will
help us in identifying techniques to manage the transfer and storage of such large
data sets.

Table 2 Execution characteristics on Amazon AWS

Task names
Execution time (s)

Input size (KB) Output sizeSmall Large Extra large

Generate data 37 17 12 – 138 kB

Compute F-statistic 2,611 1202 883 138 KB 480 MB

Comb search 184 85 N/A 480 KB 76 MB

Plot results 32 15 N/A 138 KB 100 KB

5 Performance Evaluation

In this section, we present the experiments conducted for evaluating the performance
of the system design and the load balancing algorithms. We divide the experiments
into two groups, namely Platform scalability and Dynamic provisioning and
instantiation of compute resources.

The PaaS system and the workflow application was demonstrated at the Fourth
IEEE International Scalable Computing Challenge (SCALE 2011), in California,
USA, during May 23–26, 2011. The experimental results presented in this section
are a result of the data collected from the executions during and after the challenge.

5.1 Platform Scalability

As discussed earlier, the PaaS middleware (the Workflow Engine) has limitations
on the number of workers and concurrent workflow applications it can manage.
In an environment such as that of the LIGO project, where it is expected that
multiple users from multiple organizations will be simultaneously performing GW
searches, a single engine can become a bottleneck for the scalability of the solution.
To tackle such a limitation, our proposed system is able to dynamically scale the
PaaS layer and also the worker pools by deploying multiple Engines when the
demand is high.

20 S. Pandey et al.

In order to evaluate the dynamic scaling of PaaS services work, a first series
of experiments was conducted. The experiments consist in a series of execution of
the application described in the previous section with a fixed number of compute
sources and different combination of engines and workers numbers. The application
conducts the search for GW signals between the frequencies of 50 and 1,050 Hz,
performing both the full-range (1,000 Hz) and proximity (within 200 Hz intervals)
searches.

The maximum number of tasks executed was 40. Moreover, in order to enable
us to acquire a better understanding of the practical environment, we use different
sources for each experiment. Experiments were performed with a maximum of one,
two, and four engines. For each number of engines, experiments were executed with
4, 8 and 16 workers per engine.

Figures 8, 9, and 10 show respectively results when the system was allowed to
scale up to one, two, and four engines. The topmost plot on each figures shows the
execution time of individual tasks, while the bottom plots show start and finish time
of each task with different scaling levels related to number of workers.

Figure 8 shows that, when a single workflow engine is available, execution time
of tasks when only four workers are deployed is smaller than when 16 workers are
deployed. Also, there are bigger variation in the execution time when 16 workers are
in use. This demonstrates the limitation of a single workflow engine in managing
too many concurrent workers, caused by overheads related to the management of

0:00:00
0 5 10 15 20 25 30 35

0:01:26
0:02:53
0:04:19
0:05:46
0:07:12
0:08:38
0:10:05
0:11:31
0:12:58

Ex
ec

ut
io

n
tim

e
(h

h:
m

m
:s

)

4 Workers 16 Workers

Task number

a

b c

20:24:00

21:36:00

22:48:00

0:00:00

1:12:00

Ti
m

e
(h

h:
m

m
:s

s)

1 4 7 10 13 16 19 22 25 28 31
Number of tasks

Submit time Finish time

4 workers

Number of tasks

Submit time Finish time

11:31:12
1 2 3 4 5 6 7 8 9 10 11 12 13

12:00:00

12:28:48

12:57:36

Ti
m

e
(h

h:
m

m
:s

s)

16 workers

Fig. 8 Performance of a single workflow engine. (a) Execution time of tasks. (b and c) Submission
and finish time of tasks for 4 and 16 workers, respectively

Workflow Engine and Resource Provisioning Techniques 21

0:00:00
0 5 10 20 25 30 3515

0:02:53

0:05:46

0:08:38

0:11:31

0:14:24

Ex
ec

ut
io

n
tim

e
(h

h:
m

m
:s

s)

Task number

a

b c d

8 Workers 4 Workers 16 Workers

SubmitTime FinishTime SubmitTime FinishTime SubmitTime FinishTime

0:00:00
0:28:48
0:57:36
1:26:24
1:55:12
2:24:00

Ti
m

e
(h

h:
m

m
:s

s)

8 workers

11:31:12
12:00:00
12:28:48
12:57:36
13:26:24

Ti
m

e
(h

h:
m

m
:s

s)

Number of tasks Number of tasks Number of tasks

4 workers

22:33:36
22:40:48
22:48:00
22:55:12
23:02:24
23:09:36
23:16:48

Ti
m

e
(h

h:
m

m
:s

s)

16 workers

1 1 3 5 7 9 11 13 15 17 1 3 5 7 9 11 135 9 13 17 2125 29

Fig. 9 Performance of two concurrent workflow engines. (a) Execution time of tasks. (b–d)
Submission and finish time of tasks for 4, 8, and 16 workers, respectively

0:00:00
0 5 10 15 20 25 30

0:07:12

0:14:24

0:21:36

0:28:48

(h
h:

m
m

:s
s)

Tasks number

a

b c d

4 Workers 8 Workers 16 Workers

1:02:24

0:33:36

0:04:48

9:36:00

SubmitTime FinishTime SubmitTime FinishTime SubmitTime FinishTime

12:43:12 3:07:12

1 4 7 10 13 16 19 22 25Ti
m

e
(h

h:
m

m
:s

s)

Number of tasks Number of tasks Number of tasks

4 workers
11:45:36
12:00:00
12:14:24
12:28:48

1 4 7 10 13 16 19 22Ti
m

e
(h

h:
m

m
:s

s)

Ti
m

e
(h

h:
m

m
:s

s)

8 workers 2:09:36
2:24:00
2:38:24
2:52:48

1 2 3 4 5 6 7 8 9101112

16 workers

Fig. 10 Performance of four concurrent workflow engines. (a) Execution time of tasks. (b–d)
Submission and finish time of tasks for 4, 8, and 16 workers, respectively

multiple workers. for the scenario with one workflow engine, utilization of only
four workers makes execution time of tasks more homogeneous. The same trend
is observed with two and four simultaneous workflow engines, as shown in Figs. 9
and 10, respectively. When the ratio of workers per engine is low, increase in the
number of concurrent engines reduces tasks runtime.

22 S. Pandey et al.

Fig. 11 (a) A single workflow engine handles all the user requests. (b) Multiple workflow engines
are “dynamically” provisioned based on user requests, thus forming resource pools

5.2 Dynamic Provisioning of Workers

The next set of experiments aimed at evaluating the performance of the mechanism
for dynamic provisioning of workers. The experiment consisted in the execution of
the same application used in the previous experiments with an increasing number of
tasks in order to stress the system, triggering the dynamic provisioning process.

The graphs presented in Fig. 11 shows tasks completion time as a function of
number of resources and the number of workflow engines running. Due to overheads
cause by monitoring and management of workers, as the number of workflow tasks
increases until a maximum value of 40, the task completion time increases, which in
turn triggers the instantiation of new compute resources (workers). Figure 11a shows
the completion time of tasks when the number of workers increases linearly, with
only one workflow middleware handling all the requests. It can be noticed that, in
this case, the completion time steeply falls when more compute resources are added.
However, we also observed that efficiency is constantly decreasing. For instance,
the completion time when there are 170 workers is around 11 min, as compared to
around 5 min when there are 35 resources. Although the ratio of tasks to workers is
the same, a single PaaS middleware introduces higher overheads for a large number
of tasks and workers, which affects the completion time. The same trend is not
observed when multiple workflow engines are deployed.

In contrast, in Fig. 11b, we can observe that the completion time decreases for
the same task to worker ratio as in Fig. 11a. As the completion time starts to
climb, we instantiate a new workflow engine, which has an immediate impact on
the completion times of new tasks. This effect is visible as a ladder-like curve
in Fig. 11b. When 170 workers are instantiated, the completion time is around
2 min 20 s, nearly five times less than in Fig. 11a. Multiple workflow engines (PaaS
middleware) divide the overheads of scheduling and execution.

Workflow Engine and Resource Provisioning Techniques 23

Conclusions and Future Work
Cloud computing is a promising technology for transparently managing the
challenges brought by large-scale research applications that are characterized
by large volumes of data, computationally demanding applications, and exe-
cution concurrency. However, such scientific applications demand specialized
platform tools capable of coordinating the different stages of execution of
tasks while optimizing user-defined deadlines and Cloud usage cost. Because
platforms for scientific applications supporting such features are not readily
available, we designed and implemented an automated PaaS middleware that
uses public IaaS providers to host and support scalable execution of scientific
application workflows.

The proposed middleware is able to independently manage and scale the
platform layer composed of workflow engines and the infrastructure layer
composed of worker units able to execute application tasks. The scalable
PaaS middleware architecture was described, algorithms for load balance and
scaling were presented, and an application case study in the area of particle
physics was presented. The application is a search for gravitational waves
from the LIGO project, and workflows of such project were executed in a
prototype of the discussed architecture in order to validate our approach and
enable us to evaluate the systems performance. Results show that our goals
of independent and automated scaling of different layers is achievable and
enable reduction in execution time of applications even with variable pattern
and size of user requests.

As future work, we intend to evaluate the impact of different types of
applications in the performance of our proposed architecture. We also plan
to enhance the load balance algorithm and extend them to support execution
of workflows in multi-cloud scenarios, where resources from different Cloud
providers, both public and private, are used at the same time in a federated
environment.

Acknowledgements This project is partially supported by project grants from the University
of Melbourne (Sustainable Research Excellence Implementation Fund and Melbourne School of
Engineering) and the Australian Research Council (ARC). We thank Amazon for providing access
to their Cloud infrastructure, the Australian and international LIGO communities for their guidance
and support, and Dong Leng for his contribution towards extending the Workflow Engine for the
LIGO experiment.

References

1. Large scale computing and storage requirements for basic energy sciences research. Workshop
Report LBNL-4809E, Lawrence Berkeley National Laboratory, USA, Jun. 2011.

2. B. P. Abbott et al. LIGO: the laser interferometer gravitational-wave observatory. Reports on
Progress in Physics, 72(7):076901, Jul. 2009.

24 S. Pandey et al.

3. Advanced LIGO Team. Advanced ligo reference design. Technical Report LIGO
M060056-08-M, LIGO Laboratory, USA, May 2007.

4. Lars Bildsten. Gravitational radiation and rotation of accreting neutron stars. The Astrophysical
Journal Letters, 501(1):L89–L93, Jul. 1998.

5. E. Casalicchio and L. Silvestri. Architectures for autonomic service management in
cloud-based systems. In Proceedings of the 2011 IEEE Symposium on Computers and
Communications (ISCC’11), 2011.

6. Wei Chen, Junwei Cao, and Ziyang Li. Customized virtual machines for software provisioning
in scientific clouds. In Proceedings of the 2nd International Conference on Networking and
Distributed Computing (ICNDC’11), 2011.

7. Ewa Deelman et al. GriPhyN and LIGO, building a virtual data grid for gravitational wave
scientists. In Proceedings of the 11th IEEE International Symposium on High Performance
Distributed Computing (HPDC’02), 2002.

8. Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl Kesselman,
Gaurang Mehta, Karan Vahi, G. Bruce Berriman, John Good, Anastasia Laity, Joseph C. Jacob,
and Daniel S. Katz. Pegasus: A framework for mapping complex scientific workflows onto
distributed systems. Scientific Programming, 13(3):219–237, Jul. 2005.

9. B. Dougherty, J. White, and D. C. Schmidt. Model-driven auto-scaling of green cloud
computing infrastructure. Future Generation Computer Systems, 28(2):371–378, Feb. 2012.

10. Piotr Jaranowski, Andrzej Królak, and Bernard F. Schutz. Data analysis of gravitational-wave
signals from spinning neutron stars: The signal and its detection. Physics Review D, 58(6),
Aug. 1998.

11. Hyunjoo Kim, Yaakoub el Khamra, Ivan Rodero, Shantenu Jha, and Manish Parashar. Auto-
nomic management of application workflows on hybrid computing infrastructure. Scientific
Programming, 19(2–3):75–89, Jun. 2011.

12. Sifei Lu, Reuben Mingguang Li, William Chandra Tjhi, Long Wang, Xiaorong Li, Terence
Hung, and Di Ma. A framework for cloud-based large-scale data analytics and visualization:
Case study on multiscale climate data. In Proceedings of the 3rd International Conference on
Cloud Computing Technology and Science (CloudCom’11), 2011.

13. Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, Matthew Jones,
Edward A. Lee, Jing Tao, and Yang Zhao. Scientific workflow management and the Kepler
system. Concurrency and Computation: Practice and Experience, 18(10):1039–1065, Aug.
2006.

14. M. Mao and M. Humphrey. Auto-scaling to minimize cost and meet application deadlines in
cloud workflows. In Proceedings of the 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC’11), 2011.

15. Ming Mao and Marty Humphrey. Auto-scaling to minimize cost and meet application
deadlines in cloud workflows. In Proceedings of the 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC’11), 2011.

16. A. Melatos and D. J. B. Payne. Gravitational radiation from an accreting millisecond pulsar
with a magnetically confined mountain. The Astrophysical Journal, 623(2):1044–1050, Apr.
2005.

17. C. Messenger and G. Woan. A fast search strategy for gravitational waves from low-mass x-ray
binaries. Classical and Quantum Gravity, 24(19):S469–S480, 2007.

18. Ashish Nagavaram, Gagan Agrawal, Michael A. Freitas, and Kelly H. Telu. A cloud-based
dynamic workflow for mass spectrometry data analysis. In Proceedings of the 7th IEEE
International Conference on eScience (eScience’11), 2011.

19. Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger, Mark Greenwood,
Tim Carver, Kevin Glover, Matthew R. Pocock, Anil Wipat, and Peter Li. Taverna: a tool for the
composition and enactment of bioinformatics workflows. Bioinformatics, 20(17):3045–3054,
Nov. 2004.

20. Simon Ostermann, Radu Prodan, and Thomas Fahringer. Extending grids with cloud resource
management for scientific computing. In Proceedings of the 10th IEEE/ACM International
Conference on Grid Computing (GRID’09), 2009.

Workflow Engine and Resource Provisioning Techniques 25

21. S. Pandey, D. Karunamoorthy, and R. Buyya. Workflow engine for clouds. In R. Buyya,
J. Broberg, and A.Goscinski, editors, Cloud Computing: Principles and Paradigms, chapter 12,
pages 321–344. Wiley, 2011.

22. Stuart L. Shapiro and Saul A. Teukolsky. Black holes, white dwarfs, and neutron stars: The
physics of compact objects. Wiley-Interscience, New York, USA, 1983.

23. Luis M. Vaquero, Luis Rodero-Merino, and Rajkumar Buyya. Dynamically scaling applica-
tions in the cloud. SIGCOMM Computer Communication Review, 41(1):45–52, Jan. 2011.

24. Anna L. Watts, Badri Krishnan, Lars Bildsten, and Bernard F. Schutz. Detecting gravitational
wave emission from the known accreting neutron stars. Monthly Notices of the Royal
Astronomical Society, 389(2):839–868, 2008.

25. Fan Zhang, Junwei Cao, Kai Hwang, and Cheng Wu. Ordinal optimized scheduling of scientific
workflows in elastic compute clouds. In Proceedings of the 3rd IEEE International Conference
on Cloud Computing Technology and Science (CloudCom’11), 2011.

	Scalable Deployment of a LIGO Physics Application on Public Clouds: Workflow Engine and Resource Provisioning Techniques
	1 Introduction
	2 Related Work
	3 System Architecture and Design
	3.1 Load Balancing

	4 LIGO Data Analysis and the Search for Gravitational Waves
	4.1 Application Requirements

	5 Performance Evaluation
	5.1 Platform Scalability
	5.2 Dynamic Provisioning of Workers

	References

