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Abstract—The elasticity of Cloud infrastructures makes them a suitable platform for execution of deadline-constrained workflow
applications, because resources available to the application can be dynamically increased to enable application speedup. Existing
research in execution of scientific workflows in Clouds either try to minimize the workflow execution time ignoring deadlines and
budgets or focus on the minimization of cost while trying to meet the application deadline. However, they implement limited
contingency strategies to correct delays caused by underestimation of tasks execution time or fluctuations in the delivered
performance of leased public Cloud resources. To mitigate effects of performance variation of resources on soft deadlines of
workflow applications, we propose an algorithm that uses idle time of provisioned resources and budget surplus to replicate tasks.
Simulation experiments with four well-known scientific workflows show that the proposed algorithm increases the likelihood of
deadlines being met and reduces the total execution time of applications as the budget available for replication increases.
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1 INTRODUCTION

AMONG the programming paradigms available for
development of scientific applications, the workflow

model is extensively applied in diverse areas such as
astronomy, bioinformatics, and physics. Scientific work-
flows are described as direct acyclic graphs (DAGs) whose
nodes represent tasks and vertices represent dependencies
among tasks. Because a single workflow can contain
hundreds or thousands of tasks [1], this type of application
can benefit of large-scale infrastructures.

Among such infrastructures, the one of special interest
in this paper is public Cloud [2]. This is because these
infrastructures are available in a pay-per-use system and
can provide dynamic scaling in response to the needs of
the application (a propriety known as elasticity). Therefore,
resources for execution of the workflow can be provisioned
on demand, and their number can be increased if there is
enough budget to support it. This Cloud utilization model,
where users obtain hardware resources such as virtual
machines where they deploy their own applications, is
called Infrastructure as a ServiceVIaaS. For the sake of
simplicity, throughout this paper we refer Cloud IaaS
providers as Cloud providers.

This capability of Clouds make them a suitable platform
to host deadline-constrained scientific workflows. In this
class of workflows, a specific soft deadline for completion
of the workflow is assigned, along with the workflow
specification, during the application submission. A soft

deadline is a deadline that, when unmet, does not render
the computation useless [3]. Thus, although the maximal
value of the computation is achieved when the deadline
is met, investment is not lost if the deadline is missed by
small margins.

As the execution of the workflow in the Cloud incurs
financial cost, the workflow may also be subject to a budget
constraint. Although the budget constraint of a workflow
may be a limiting factor to its capability of being scaled
across multiple resources in Clouds, its structure itself also
imposes significant limitation. This is because dependen-
cies among tasks and the number of tasks ready for
execution in a given time may limit the amount of resources
being used in parallel for executing the workflow. Because
Cloud resource providers charge resource utilization by
integer time intervals, such a limitation in the workflow
scalability causes situations where Cloud resources are
available (i.e., their allocation time interval is paid and
there are still time before it expires) but no task is ready to
be executed.

To being able to schedule the workflow in such a way
that it completes before its deadline, the workflow
scheduler needs an estimation of the run time of applica-
tions, which may be available, for example, via analysis of
historical data. However, typical Cloud environments do
not present regular performance in terms of execution and
data transfer times. This is caused by technological and
strategic factors and can cause performance variation of up
to 30 percent for execution times and 65 percent for data
transfer time, as reported by Jackson et al. [4]. Fluctuations
in performance of Cloud resources delay tasks execution,
what also delays such tasks’ successors. If the delayed tasks
were part of the critical path of the workflow, it will delay
its completion time, and may cause its deadline to be
missed. Workflow execution is also subject to delays if one
or more of the virtual machines fail during task execution.
However, typical Cloud infrastructures offer availability
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above 99.9 percent1, therefore performance degradation
is a more serious concern than resource failures in such
environments.

Previous research in workflow scheduling in the context
of Clusters and Grids typically ignore costs related to
utilization of the infrastructure, and also have limitations
in the capacity of taking advantage of elastic infrastruc-
tures. Existing research in execution of scientific workflows
in Clouds either tries to minimize the workflow execution
time ignoring deadlines and budgets or focus on the mini-
mization of cost while trying to meet the application deadline.
Furthermore, previous research implements limited contin-
gency strategies to correct delays caused by underestimation
of tasks execution time or fluctuations in the delivered
performance of leased Cloud resources.

To address limitations of previous research, we propose
an algorithm that uses idle time of provisioned resources
to replicate workflow tasks to mitigate effects of perfor-
mance variation of resources so that soft deadlines can be
met. The amount of ‘‘idle time’’ available for replication
can be increased if there is budget available for replica
execution, which allows provisioning of more resources
than the minimal necessary for meeting the deadline. There-
fore, the proposed algorithm applies a deadline constraint
and variable budget for replication to achieve its goals.
Simulation experiments with four well-known scientific
workflows show that the proposed algorithm increases the
chance of deadlines being met and, for the majority of
studied scenarios, reduces the total execution time of
workflows as the replication budget increases.

2 RELATED WORK

Scheduling of workflows (also referred as Direct Acyclic
GraphsVDAGs) in parallel and distributed systems has
been subject of extensive research. Kwok and Ahmad [5]
presented a survey describing and comparing different
algorithms for static scheduling of workflows in parallel
systems. Shi and Dongarra [6] present an algorithm for
scheduling of workflows in heterogeneous clusters. These
algorithms can be used in the context of Cloud computing
if the machines are provisioned a priori. However, they
cannot decide the optimal number of resources to reduce
the cost of use of the infrastructure, and therefore they
are not suitable for elastic Cloud environments using a
pay-per-use economic model.

In the field of Grid computing, Yu et al. [7] and Hirales-
Carbajal et al. [8] presented surveys comparing and
describing algorithms for scheduling of workflows in
Grid computing environments. These algorithms either
assume a cooperation model free of financial cost or are
based on an economic model that differs from the model
adopted by Cloud providers. Because of that, the budget
calculated by such algorithms would differ from the
amount actually charged by Cloud providers, and thus
they cannot be used in the context of Cloud computing.

Lin and Lu [9] developed an algorithm for scheduling
of workflows in service-oriented environments. Unlike
algorithms for Grid systems, it is able to utilize dynamic

provisioning of resources. However, it misses the capa-
bility of considering the cost for utilization of resources
required for its utilization in Cloud environments.

Recent research focused on algorithms that are aware
of the intricacies of Cloud environments when using them
to schedule workflow applications. Reynolds et al. [10]
proposed the utilization of Clouds to complement desktop
Grid resources. However, Cloud resources are deployed
with the goal of replicating slow tasks to increase the
chance of an early completion of the workflow. The
proposed method is not optimized either for budget or
for execution time; instead, it operates in a best-effort basis
when late tasks are detected. Xu et al. [11] and Mao and
Humphrey [12] proposed algorithms for scheduling mul-
tiple workflows in Clouds. Rahman et al. [13] proposed an
algorithm for hybrid Clouds, where at least part of the
resources can be used without cost and with higher level
of control over their performance. Different from this
approach, we focus on the scheduling of single workflows
in pure Cloud environments.

Byun et al. [14] proposed the Partitioned Balanced Time
Scheduling (PBTS) algorithm for cost-optimized and
deadline-constrained execution of workflow applications
on Clouds. The PBTS algorithm considers only one type of
Cloud resource, chosen a priori, for its provisioning and
scheduling decision. Abrishami et al. [15] proposed two
algorithms for cost-optimized, deadline-constrained exe-
cution of workflows in Clouds. As explained in Section 5,
these algorithms do not consider all data transfer times
during provisioning and scheduling, increasing the execu-
tion budget. Our proposed algorithm is based on one of
such algorithms (called IC-PCP), but also accounts for data
transfer times and Cloud resources boot time during
the provisioning and scheduling process. Furthermore, it
explores possibility of tasks replication to increase the
probability of meeting application deadlines.

The topic of replication of tasks has been extensively
explored in the context of Grid systems [16], [17], [18], [19],
[20] without addressing the issue of cost for resource
utilization. Plankensteiner and Prodan [21] proposed an
algorithm for scheduling of workflow applications on
Grids with tasks replication to meet deadline constraints.
Our algorithm is inspired by such method by considering
particularities of Cloud infrastructures, such as cost and
capacity of dynamic provisioning, when making replica-
tion decisions in Cloud environments.

3 APPLICATION AND SYSTEM MODELS

A scientific workflow application is modeled as a Direct
Acyclic Graph (DAG) G ¼ ðT; ET Þ, where T is the set of
tasks that compose the workflow and ET is the set of
dependencies between tasks. Dependencies are in the form
of edges ei;j ¼ ðti; tjÞ; ti; tj 2 T that establish that a task tj
depends on data generated by ti for its execution, and
therefore tj cannot start before execution of ti completes
and data generated by the latter is transferred to the
location where tj will execute. Task ti is a parent task of tj
and tj is a child task of ti. Tasks without parents are called
entry tasks and tasks without children are called exit tasks.
For the correct operation of the proposed algorithm, we1. http://www.cloudharmony.com/status
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assume that a workflow can have only one entry task and
one exit task. This can be achieved with the insertion of
‘‘dummy’’ tasks tentry and texit that have execution time
equals to 0. All the actual entry tasks are children of tentry
and all the actual exit tasks are parents of texit.

The sets of parents and children of a task tj are given
respectively by functions parentsðtjÞ and childrenðtjÞ. Each
workflow G has a soft deadline dlðGÞ associated to it. It
determines the time to complete its execution, counted
from the moment it is submitted to the workflow scheduler.
The latter manages the execution of the workflow, makes
decision on allocation of virtual machines, and schedules
and dispatches tasks for execution in the Cloud.

A Cloud provider offers a set of n virtual machine (VM)
types denoted by VM

��! ¼ vm1; vm2; . . . ; vmn. Each VM type
offers different amount of resources, and incurs a different
cost per use. Let C

!¼ c1; c2; . . . ; cn be the cost vector
associated with the use of each VM. VMs are charged per
integer amount of time units, and partial utilization of a
time period incurs charge for the whole period. Therefore,
if the time period is one hour, utilization of a VM per
61 minutes incurs in the payment of two hours (two time
periods). There is no limit imposed on the number of VMs
of each type that can be running in any moment for
execution of the workflow.

Runtime of each task is defined in the runtime matrixR.
An element rjk ofR specifies the estimated runtime of task tj
in a VM of type vmk. The minimum runtimeRminðtiÞof a task ti
is the smallest runtime for such a task in the matrixR. Notice
that rentryk ¼ rexitk ¼ 0 for all k. Tasks cannot be preempted
or checkpointed. Therefore, if the execution of a task fails or
if a task is canceled by the scheduler, it has to be restarted.

Each edge ei;j of G has an associated data transfer
time Dði; jÞ. This is the amount of time required to transfer
the data required by the non-entry and non-exit task tj from
the VM where ti is running to the VM where tj is running.
Notice that, if both ti and tj are running on the same VM,
Dði; jÞ ¼ 0. The existence of data transfer time among
different VMs implies that, for each task tj to be executed in
a given VM vmk, vmk is deployed before the data transfer
from parents of tj start, and is decommissioned after all the
data transfers to its children are completed.

Important parameters of tasks are the early start time ðestÞ
and latest finish time ðlftÞ. The former represents the earliest
time a task is able to start, which happens when all its parent
tasks finish as early as possible and the latter represents the
latest time a task can finish without missing the deadline,
which happens when all the children of a task are executed
as late as possible. Formally, est and lft are defined as:

estðtjÞ¼
0; if tj ¼ tentry max

ta2parentsðtjÞ�
estðtaÞ þRminðtaÞ þDðea;jÞ

�
,

otherwise

8><
>:

IftðtjÞ¼
dlðGÞ; if tj ¼ texit max

ts2childrenðtjÞ�
lftðtsÞ �RminðtsÞ �Dðej;sÞ

�
,

otherwise.

8><
>:

The schedule time stðtjÞ of a task tj is the time on which
the task has been scheduled for execution. This parameter

is defined during the scheduling process, and can assume
any value between estðtjÞ and lftðtjÞ.

The problem addressed in this paper consists in the
execution of a workflow G in the Cloud on or before dlðGÞ
(i.e., deadline-constrained) at the smaller possible cost (i.e.,
cost-optimized). Furthermore, because the workflows are
subject to a soft deadline, a bigger budget can be invested
for execution of G if it increases the likelihood of the
deadline being met. The extra budget is expected to be
proportional to the importance of the application to
complete by its deadline.

For this problem to be solved, two subproblems have to
be solved, namely provisioning and scheduling. The provi-
sioning problem consists in the determination of the
optimal number and type of VMs that can complete the
workflow within its deadline. The scheduling problem
consists in the determination of the placement and order
of execution of the different tasks that compose the
workflow in the VMs selected during the provisioning
stage. The provisioning and scheduling problems are
interconnected, as a different decision in types and number
of machines may result in a different scheduling of tasks.

We assume that the workflow application executes in a
single Cloud data center. Since more predictable execution
and data transfer times are paramount for meeting appli-
cation deadlines, keeping the workflow in a single data
center eliminates one possible source of execution delay.
It also eliminates the cost incurred by data transfer among
data centers. We also ignore overheads incurred by the
workflow management system. This is because they are
strongly dependent on the particular technology for work-
flow management in use, varying from constant time [22]
(which could be modeled as additional execution time
of each task) to cyclical regarding the number of tasks
managed [23].

4 MOTIVATION AND EXAMPLE

The system and application model described in the
previous section captures the basic features of typical
Cloud computing environments, but they make too
optimistic assumptions about the performance exhibited
by the underlying Cloud infrastructure. Utilization of the
runtime matrix R in the model implies a known, stable
execution time for each task that composes the workflow.
Similarly, the data transfer time function D assumes a
stable data transfer time between VMs.

However, Cloud environments do not present regular
performance in terms of execution and data transfer times.
Jackson et al. [4] report performance variation of up to
30 percent in execution time and up to 65 percent in data
transfer time when High Performance Computing (HPC)
applications are executed in public Clouds. This demands
countermeasures to be applied at the application provi-
sioning and scheduling stage to enable soft deadlines to
be met. Therefore, we propose the application of task
replication as a means to mitigate the effect of performance
variation of Cloud resources in the workflow execution time.

As a motivational example, consider the workflow and
Cloud VM model proposed by Abrishami et al. [15]
depicted in Fig. 1. The figure contains the description of
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tasks, data transfer time between tasks if running in
different VMs (depicted in the arcs), and execution time
of tasks in three different VM types (labeled S1, S2, and S3).
The deadline for execution of such workflow is 30 time
units and the allocation interval is 10 time units. On these
settings, the IC-PCP algorithm, which is the state-of-the-art
algorithm for provisioning and scheduling of workflows
in Clouds, generates the schedule presented in Fig. 2a [15].
Hatched areas denote idle time slots of provisioned virtual
machines, whereas the arrow in the figure denotes data
dependency between VMs that requires both VMs to be
simultaneously available to enable the data transfer.

The schedule represented in Fig. 2a assumes that Cloud
resources are able to sustain their ideal performance for
the duration of the workflow execution, and therefore the
execution is able to complete by its deadline. Without extra
cost, the schedule depicted in Fig. 2b is able to meet the
application deadline even if either T4 or its replica T4’ is
delayed because of poor Cloud resource performance.
Finally, Fig. 2c presents a schedule that tolerates delays of
three tasks or two virtual machines at the cost of two extra
VM time unit allocations. The extra time enables replication
of one long duration task, what further increases likelihood
of completion of the workflow before its deadline.

The EIPR algorithm also enables the provisioning of
more VMs than the required for the execution of the work-
flow within the deadline to further increase the likelihood
of deadline meeting. This is achieved with the enhance-
ment of the model described in the previous section with
the maximum number of replicas allowed for a single task
and the replication budget rbðGÞ, which defines the
amount, in relation to the estimated cost of executing the
workflow determined during the original provisioning and
scheduling, that can be used to provision extra VMs to
enable further tasks replication. Notice that, if rbðGÞ ¼ 0,
only opportunistic replication caused by idle time slots is
applied, and therefore the algorithm operates like existing
cost minimization approaches [14] with the advantage of
opportunistic tasks replication.

The EIPR algorithm addresses performance variation in
public Clouds, not fault tolerance. This is because public
Cloud resources offer high availability and reliability. In
fact, most public Cloud providers offer guarantees only in
terms of availability of resources, without any guarantees
in terms of performance of such resources. Although task
replication may also help in avoiding delays in execution

caused by resource failures, this topic is not investigated
in this paper.

5 THE EIPR ALGORITHM

The goal of the proposed Enhanced IC-PCP with Replication
(EIPR) algorithm is increasing the likelihood of completing
the execution of a scientific workflow application within a
user-defined deadline in a public Cloud environment, which
typically offers high availability but significant perfor-
mance variation, with the use of task replication. In a high
level, the proposed algorithm performs three distinct steps:

Step 1. Combined provisioned of Cloud resources
and task scheduling (Section 5.1);

Step 2. Data transfer-aware provisioning adjust
(Section 5.2); and

Step 3. Task replication (Section 5.3).

These steps are detailed on the next sections. The full
listing of the EIPR algorithm can be found in Section 1 of

Fig. 1. Example of workflow and available VMs [15]. Numbers in arcs denote data transfer time, whereas the table presents execution times of tasks
on three different VM types S1, S2, and S3, as well as the cost per time unit of each VM. Workflow’s deadline is 30 time units and allocation
slot is 10 time units.

Fig. 2. Schedule of the workflow from Fig. 1 with different task replication
strategies. (a) Original scheduling enabled by the IC-PCP algorithm [15].
(b) Utilization of an available idle slot for replication of T4 (no extra cost
incurred). (c) Allocation of VMs for two extra time units for replication of
T2 and T7.
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the supplementary material of this paper which is available
in the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2013.238.

5.1 Combined Provisioning and Scheduling
The first step of the EIPR algorithm consists in the determi-
nation of the number and type of VMs to be used for
workflow execution as well as start and finish time of each
VM (provisioning) and the determination of ordering and
placement of tasks on such allocated resources (scheduling).

The provisioning and scheduling problems are closely
related, because the availability of VMs affects the sched-
uling, and the scheduling affects finish time of virtual VMs.
Therefore, a more efficient scheduling and provisioning
can be achieved if both problems are solved as one rather
than independently.

Among the existing approaches for combined provi-
sioned and scheduling of workflow applications in public
Cloud environments, the IC-PCP (IaaS Cloud Partial Critical
Path) algorithm [15] works with the closest assumptions to
the system and application models described in Section 3.
It is a cost-minimizer with deadline constraint algorithm
that operates via assignment of all the tasks of a partial
critical path (PCP) of the workflow to the same virtual
machine. The PCP is initially composed of one of the
parents of texit or, if it was already scheduled, the task to
with the latest lft that has not been assigned to a PCP. The
next element to be part of the PCP is the parent tp of such
task with latest estðtpÞ þRminðtpÞ þDðep;oÞ, i.e., the parent
with longer execution and data transfer time. The pro-
cedure for definition of a PCP is detailed in Algorithm 1.
Algorithm 1 is initially executed to texit and then recur-
sively for each task of the resulting PCP, starting from
the first. The process is repeated for each parent of texit.
The whole PCP is assigned to a machine, as detailed below,
and est, lft, and st of all tasks affected by the scheduling
of the PCP are updated.

Algorithm 1 Assignment of the PCP of a task t [15].

1: Data: U : Unscheduled tasks of G.

2: pcp  ;;
3: while U � parentsðtÞ do

4: for each tp 2 parentsðtÞ do

5: if tp � U then

6: readyTime �1;

7: if estðtpÞ þRminðtpÞ þDðtp; tÞ 9 readytime then

8: readyTime estðtpÞ þRminðtpÞ þDðtp; tÞ;
9: parent tp;

10: end if

11: end if

12: end for

13: pcp ! parent [ pcp;

14: Remove parent from U ;

15: t parent;
16: end while

17: return pcp;

For assigning partial critical paths to VMs, we adopt the
method from the IC-PCP algorithm, which examines the
available VMs starting from the cheapest (Algorithm 3, in
the supplementary material available online, Lines 2-30) to
the more expensive to find one able to execute each task of
the path before its lft. The first VM able to meet such
requirement is selected. If none of the existing machines can
meet this requirement, a new VM is provisioned (Line 32).
The type of this VM is the cheapest one that can execute each
task of the critical path before the task’s lft.

When evaluating the suitability of a VM for receiving
a partial critical path, EIPR inserts the new path in the
beginning of the scheduling, if it does not violate lft nor
dependencies of previously assigned tasks (Lines 5-11).
Otherwise, it schedules the path at the end of the schedule
(Lines 13-19). When evaluating each case, the case is
considered invalid if any of the following conditions
occur: 1) at least one scheduled task has its lft violated if
it is preempted; 2) at least one task of the path has its lft
violated if the path is scheduled in the considered position;
and 3) it will require the VM to be executed for an extra
time slot.

The IC-PCP algorithm disregards deployment and boot
time of virtual machines, by assuming that the earliest start
time of the entry task is 0. However, virtual machines
provisioned from public Cloud providers are not immedi-
ately available for task execution; VMs need to be properly
initialized and this time is not negligible. To better model
effects of such non-negligible deployment and boot times
of virtual machines in the workflow scheduling process,
the EIPR algorithm assigns the average boot time of virtual
machines, rather than 0, to estðtentryÞ, and stðtentryÞ before
calculating est and lft of each task.

5.2 Data-Transfer Aware Provisioning Adjust
The combined provisioning and scheduling detailed in
the previous section does not dictate the start and stop
times of VMs. To determine both values, the algorithm has
to consider not only start and end time of scheduled tasks,
but also the data transfers to the first scheduled task and
from the last scheduled task. If the first scheduled task in
a VM is not an entry task, data from parent tasks have to
be moved to the virtual machine before the task can run,
and thus, the VM needs to be provisioned before the start
time of its first task. This affects the start time of tasks and
the total provisioning time of the VM, and may cause
workflow execution delay and execution of VMs for an
extra billing period.

In the second step of the EIPR algorithm, the provi-
sioning decision performed in Step 1 is adjusted to account
for the aforementioned factors. For each non-entry task
scheduled as first task of a virtual machine, and for each
non-exit task scheduled as the last task of a virtual
machine, the algorithm meets the required communication
time by setting the start time of the machine Dði; jÞ earlier
than st of the first task, and/or setting the end time of the
machine Dði; jÞ later than the finish time of the last task,
depending on where the extra time is required. Finally,
the beginning of the first allocation slot of each virtual
machine is anticipated by the estimated deployment and
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boot time for virtual machines, which was accounted for
during the scheduling process as described in the previous
section.

5.3 Task Replication
The aforementioned corrections enable virtual machines
to be ready to receive data and tasks in the moment that
they are required to meet times estimated during the
scheduling process. However, it does not account for
delays in the tasks execution caused by poor performance
of public Cloud resources. EIPR tries to mitigate such
effects with the utilization of task replication in idle slots
of provisioned VMs or on new VMs allocated for enabling
extra replication (if the replication budget allows). Notice
that, because the goal of this replication is increasing
performance rather than fault tolerance, space replication is
the target of EIPR. Therefore, tasks are only replicated on
different VMs, oppositely to a time replication approach
where the same task could be scheduled multiple times
in a single VM to increase fault-tolerance. The process is
listed in Algorithm 5 of the supplementary material
available online.

Idle slots exist in the scheduling because of two reasons.
The first is dependencies between tasks, which may lead to
periods where the next task scheduled to a virtual machine
has to wait for data being generated during execution of
another task in another machine. The other cause of idleness
is adjusts applied by the EIPR algorithm to the provisioning
times of VMs. As the corrected times may cause the
allocation time to exceed the billing period, in some
situations some billing periods will be only partially used,
and the excess can be used for task replication purposes.

The task replication process works as a semi-active
replication technique for fault tolerance [24], with the
difference that here tasks are replicated across perfor-
mance-independent hosts rather than failure-independent
locations. As in the case of replication for fault tolerance, in
our approach replication is also managed by a single entity.
The process operates as follows. Initially, the algorithm
generates new VMs based on the available replication
budget (Lines 8-18).

For selection of the type of VM to be used for the new
VM, the list of already provisioned VMs is sorted in
descending order of number of scheduled tasks (Line 7).
Starting from the beginning of the sorted list, the first VM
type whose cost is smaller than the available budget is
chosen (Line 9). The chosen VM is replicated (Line 13),
provisioning information is updated (Line 14), the VM is
moved to the end of the list (Line 16), the available budget
is updated (Line 17), and the search is restarted. The

process is repeated while the budget admits new instantia-
tions. The new provisioned VM and the correspondent
time slot reproduce the same start and end times than the
original VM.

Next, a list of all possible idle slots is created. This list
includes both paid slots, which are slots were the VM is
actually provisioned and no task is scheduled on it; and
unpaid slots, which are the times between the start time
and the deadline were the VM is not provisioned. Fig. 3
depicts the difference between these two types of slots.
Once paid and unpaid slots are identified, the slots are
sorted in increasing order of size (Line 19). The first
unpaid slot on the list is inserted after the last paid slot
(Line 20), so paid time slots have precedence over unpaid
in the slots selection.

The next step consists in defining an order for tentative
replication of tasks in the available time slots (Line 21).
Tasks are sorted in their ‘‘replication precedence order’’,
which is based on three criteria, as follows:

1. Ratio between execution time and lag time. Task ti
has precedence over task tj if stðtiÞ þ rij=ltðti; viÞ
G stðtjÞ þ rjj=ltðtj; vjÞ. The lag time ltðt; vÞ of a task t
scheduled to a VM v depends on the task’s latest
finish time, start time, and runtime:

ltðt; vÞ ¼ lftðtÞ � stðtÞ þ rtv;

2. Execution time. For tasks ti and tj respectively
scheduled in VMs u and v and with the same ratio, ti
has precedence over tj if riu 9 rjv;

3. Number of children. For tasks ti and tj with the
same ratio and execution times, ti has precedence
overtj ifjchildrenðtiÞj 9 jchildrenðtjÞj,wherejchildrenðtÞj
represents the cardinality (number of elements) of the
set of children of a task.

The EIPR algorithm prioritize tasks whose proportion
between execution time and available time is bigger; then
larger tasks (in terms of execution time), and finally tasks
that have many children (and thus its delay will cause
delays of a bigger number of other tasks).

Once the priority of time slots and priority of tasks is
defined, the algorithm, for each time slot (Lines 22-39),
iterates over the task lists (Lines 26-38), assigning the first
task to fit in the slot (Lines 27-37). A task is considered to
fit a slot if

1. it can complete its execution before the end of the
time slot;

2. it can complete its execution before its latest finish
time;

3. the maximum number of replicas allowed for a
single task was not reached for this task;

4. a replica of the same task is not scheduled in this
machine;

5. it does not violate tasks dependencies (i.e., in this
slot, it does not run before an predecessor or after
a successor).

If the task fits the slot, a replica is created (Line 28) and
scheduled to start either at beginning of the slot or at its est

Fig. 3. Paid and unpaid idle time slots of provisioned VMs.
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(whatever occurs later), and information about available
slots is updated (Line 30), as the schedule of the replica
itself can create a new, smaller, time if the task execution
time is smaller than the slot size. The task is also moved to
the end of the task list (Line 31), to reflect a lower priority
for further replication, and the current number of replicas
of the task is updated.

The process for unpaid slots is similar, but before
considering utilization of the slot, the algorithm checks the
available budget (Line 23). If there is budget for allocation
of new slot, it is allocated and deemed paid. Provisioning
information of the virtual machine is then updated to
reflect the choice for allocation of a new time slot. After
that, its utilization follows the same method applied for
other paid slots (Lines 34-35).

At the end of this process, it is possible that some VMs
provisioned at this stage for enabling extra replication did
not have any replica assigned to them. In this case, such
unused machines are removed from the list of VMs to be
provisioned (Line 40). The result of this step is a pro-
visioning and scheduling plan containing type, start time,
and end time of virtual machines and start times for
tasks and their replicas. This plan respects the deadline
constraint and replication budget set for execution of the
workflow.

6 PERFORMANCE EVALUATION

In this section, we describe the experiments we conducted
to evaluate the EIPR algorithm. Experiments were con-
ducted with the CloudSim toolkit [25]. The simulation
testbed consists of a data center containing 500 hosts.
Each host has 256 GB of RAM and 8 cores. The data center
models Amazon AWS EC2 standard instance types, and
the parameters relevant for the experiments are presented
in Table 1. The billing period is 60 minutes.

Four workflow applications were used in these tests.
They are Montage (generation of sky mosaics), CyberShake
(earthquake risk characterization), LIGO (detection of
gravitational waves), and SIPHT (bioinformatics).2 These
applications were characterized by Juve et al. [1]. Readers
are referred to Fig. 5 of the supplementary material avail-
able online for a visual representation of the applications
and to Juve et al. [1] for their full characterization. The
execution time defined in such files, with a positive or
negative variation between 0 and 10 percent uniformly

applied to each task, is assumed to be achieved by VMs of
type m1.medium.

Because users of IaaS services do not have access to
the underlying physical infrastructures to be able to infer
or model precisely the performance degradation of the
platform, we used a performance degradation model based
on reported observations of the phenomena in public
Clouds. Reduction of performance was modeled after the
analysis presented by Jackson et al. [4] regarding per-
formance of HPC applications in public Clouds. Loss in
performance observed in a VM for a specific scheduling
period is sampled from a Normal distribution with average
of 15 percent loss and standard deviation of 10 percent loss.
Similarly, loss in each data transfer performance is modeled

TABLE 1
VM Types Used in the Experiments

2. The XML files describing the applications are available via the
Pegasus project: https://confluence.pegasus.isi.edu/display/pegasus/
WorkflowGenerator

TABLE 2
Number of Tasks of Each Application for Each of the Three

Configuration Sizes Evaluated

Fig. 4. Normalized average execution time of applications for different
application sizes. NO REP stands for utilization of the EIPR policy
without the replication stage. The budget represents the extra budget
available for replication on the EIPR algorithm in relation to the amount
spent before the replication. (a) Medium application size (as defined in
Table 2). (b) Large application size. (c) Extra large application size.
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with a uniform distribution with average 30 percent and
standard deviation 15 percent.

Each workload was evaluated with three different
number of tasks (referred as application size). Table 2 details
the number of tasks composing each application in each
of the sizes: medium, large, and very large.

For each application and each size, a soft deadline was
generated. The deadline was defined as follows (adapted
from Abrishami et al. [15]). The ‘‘base’’ runtime is defined
as the execution time obtained with a provisioning and
scheduling policy that assigns each workflow task to a
instance of the most powerful virtual machine (m3.xxlarge).
Even though the execution time obtained with such a
policy is not optimal, because data transfer times could be
reduced by mapping tasks that require large data transfer
time to the same VM, the schedule obtained with such a
policy is still very efficient, as only data transfers limit the
performance of the schedule. The base value obtained with
such a policy is then multiplied by the number of tasks of
the workflow, so we can scale the time proportionally to
the number of tasks of the workflow. The deadline is then
defined as 12.5 percent of the proportional base value for
task runtime.

Each application with each size was subject to provi-
sioning and scheduling via the IC-PCP algorithm (as a
baseline for the experiment) and the EIPR algorithm, with
the VM type offers defined in Table 1. The EIPR algorithm
was evaluated with four different replication budget
values: 0 (when only gaps between tasks can be utilized
for replication purposes), 0.5, 1, and 2 times the base
budget. We also executed the EIPR algorithm without
performing the replication step (labeled NO REP in the
result figures and tables) to evaluate in isolation the
benefits of the task replication and the benefits for
accounting for VM deployment and boot time and data
transfer times for the output metrics.

The simulator used the provisioning and scheduling
information to instantiate resources for the application and
to execute it. The whole experiment was repeated 50 times
and the averages of output metrics are reported in this
section. For each of the 50 repetitions, the same random
number generation seeds were used for each policy, what
guarantees that the conditions (including performance

losses) faced by each algorithm are exactly the same
regarding the infrastructure behavior. The observed output
metrics are execution time normalized with the corres-
pondent value obtained with the IC-PCP algorithm and
the average cost. The total number of violations, i.e.,
executions were the deadline was not meet, is also reported
for each metric.

6.1 Results and Analysis
Fig. 4 presents the normalized execution time and Table 3
presents the costs incurred for each workflow application
and for each application size. The average values observed
for 50 executions are presented along with the standard
deviation (in parenthesis). In most scenarios, EIPR drasti-
cally reduces the execution time of applications compared
to IC-PCP. Results show reduction in up to 59 percent of
execution time when compared to the execution time with
the IC-PCP algorithm.

The case where EIPR underperformed is the Montage
very large. However, even in this case EIPR met all the
application deadlines. The reason for the underperfor-
mance on this application is the conservative scheduling
policy of EIPR, which caused more VMs to be allocated.
This in turn increased the need of data transfers, increasing
the application execution time while still meeting the
application deadline. As IC-PCP applies more aggressive
co-scheduling (by potentially inserting a new PCP in be-
tween an already scheduled PCP), it was able to reuse more
VMs and reduce the execution time. The more aggressive
reuse of VMs resulted in smaller amount of data transfer,
what it turn resulted in significantly smaller cost for
execution of the workflow by IC-PCP compared to EIPR.

Fig. 4 also shows the effect that increased replication
budget has on the applications execution time. Utilization
of opportunistic replication (i.e, utilization of the available
gaps intheallocatedVMs,withoutdeploymentofextraVMs)
introduces, in most cases, performance improvements in
the application execution times. As expected, increased
replication budget tends to further reduce execution time,
although the amount of performance improvement is
application-dependent. For example, the CyberShake large
workflow experienced significant performance gains with
budget increases.

TABLE 3
Average Cost (U$) of Workflows Execution. Standard Deviation for Each Case Is Presented in Parenthesis. NO REP Stands for
Utilization of the EIPR Policy without the Replication Stage. The Budget on EIPR Represents the Extra Budget Available for

Replication, in Relation to the Amount Spent before the Replication
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Regarding cost-benefit of replication, all the applications
experience a ‘‘saturation point’’ where extra replication
budget doesnot introduce significant performance improve-
ment. The budget point where it occurs varies depending
on the application and on the size of the workflow. We can
also notice that the estimated extra budget for replication
may be different from the actual budget spent in the
workflow execution. This happens because the estimated
budget assumes a ‘‘perfect scheduling’’ where there will
be no delays in the application execution. Because data
transfer times and performance of Cloud resources vary, it
is impossible to determine beforehand the exact execution
time of the application (and consequently the total cost of
workflow execution). Nevertheless, the estimated extra
budget approximates the observed expenditure in most
cases.

Table 4 presents the total number of violations in the
deadline observed for 50 executions of each workflow. The
table shows that EIPR either completely eliminates viola-
tions or significantly reduces them compared to IC-PCP.
Although in some cases just the improved provisioning
and scheduling already sufficed for meeting deadlines,
other cases required some level of replication. The required
level of replication required varied from opportunistic
replication, as in the cases of CyberShake and SIPHT
mediumVwhere opportunistic replication eliminated
completely deadline violationsVto the case of LIGO, where
1X budget was required for the large workflow and 2X
budget was required to enable the number of violations
to be reduced to 21, whereas in the same case IC-PCP could
not meet any of the deadlines.

From the above discussion, the following conclusions
can be drawn from the experiments:

. Although rarely, replication can increase the execu-
tion time of applications (without compromising
deadlines) when the structure of the workflow
causes low utilization of provisioned VMs. In this
case, replication can delay the tasks originally
scheduled to the machine. If the delayed task is a
data distribution task, its successors may be delayed;

. The structure of the workflow is more important
than its class (i.e., CPU, memory, or I/O-intensive)
for the effectiveness of EIPR. This is because
memory and CPU requirements can be adjusted

with the provisioning of more powerful machines.
However, amount of data transfer and utilization
of gaps in the scheduling, which were found to
affect the performance of EIPR, are dependent on
the particular organization of the workflow;

. Replication has also the additional benefit of
reducing the variance of execution time caused by
performance fluctuations. Even in cases where none
of the policies cause violations, increase in replication
budget increases the stability of the solution. There-
fore, our solution is beneficial not only when
applications need to complete before a deadline, but
also in situations when more certainty about the
execution time is required, such as when the provi-
sioning process is assisted by predictive algorithms.

7 CONCLUSION AND FUTURE WORK

Scientific workflows present a set of characteristics that
make them suitable for execution in Cloud infrastructures,
which offer on-demand scalability that allows resources
to be increased and decreased to adapt to the demand of
applications. However, public Clouds experience variance
in actual performance delivered by resources. Thus, two
resources with the same characteristics may have different
performance in a given time, what results in variation in
the execution time of tasks that may lead to delays in the
workflow execution.

To reduce the impact of performance variation of public
Cloud resources in the deadlines of workflows, we pro-
posed a new algorithm, called EIPR, which takes into
consideration the behavior of Cloud resources during the
scheduling process and also applies replication of tasks
to increase the chance of meeting application deadlines.
Experiments using four well-known scientific workflow
applications showed that the EIPR algorithm increases
the chance of deadlines being met and reduces the total
execution time of workflows as the budget available for
replication increases.

As future work, we will increase the capabilities of the
EIPR algorithm by enabling replication of tasks across
multiple Clouds. Another point that can be further
explored is new criteria for ranking candidate tasks for
replication and also workflow structure-aware scheduling

TABLE 4
Total Number of Violations in the Application Deadlines after Execution of 50 Instances of Each Application. NO REP Stands for
Utilization of the EIPR Policy without the Replication Stage. The Budget on EIPR Represents the Extra Budget Available for

Replication, in Relation to the Amount Spent before the Replication

CALHEIROS AND BUYYA: MEETING DEADLINES OF SCIENTIFIC WORKFLOWS IN PUBLIC CLOUDS 1795



of replicas, where the structure of the workflow application
is considered not only during the selection of candidates
for replication but also during the replica’s scheduling. We
will also investigate how the replication-based approach
can be used when the provisioning and scheduling process
is performed for multiple workflows whose requests arrive
at different rates.
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1 THE EIPR ALGORITHM

This section contains the full listing of the EIPR al-
gorithm. Algorithm 2 contains the high-level logic of
the algorithm, whereas Algorithms 3 to 5 contain the
description of each stage of the algorithm.

Algorithm 2 High-level operation of the EIPR algorithm.
1: Data: G: DAG representing the application.
2: Data: deadline(G) and rb(G): Deadline and budgets

for DAG execution.
3: Data:

−−→
VM,

−→
C : List of VM types and their costs.

4: Data: R: Matrix containing execution times of tasks
on different VM types.

5: Add tentry and texit to G;
6: est(tentry) ← VM boot time;
7: st(tentry) ← VM boot time;
8: lft(texit) ← deadline(G);
9: Calculate est(ti), lft(ti) of each task ti ∈ G;

10: � Step 1: Combined provisioned of Cloud
resources and task scheduling

11: pcp ← result of Algorithm 3 on texit;
12: Apply the combined provisioning and scheduling

(Algorithm 3) on pcp;
13: � Step 2: Provisioning adjust (based on

[1])
14: Apply the data transfer-aware provisioning adjust

Algortihm 4);
15: � Step 3: Task replication
16: Apply the task replication strategy (Algorithm 5);

Algorithm 3 Combined provisioning and scheduling in
the EIPR algorithm.

1: Data: pcp: A PCP, as returned by Algorithm 1.
2: for each provisioned VM sorted by ascending order

of cost do
3: valid ← true;
4: � Try to put pcp at the beginning of
the schedule

5: if Scheduling pcp before previously assigned PCPs
violates any lft(t) then

6: valid ← false;
7: end if
8: if Scheduling pcp before previously assigned PCPs

violates execution order then
9: valid ← false;

10: end if
11: if valid=false then
12: � Try to put pcp at the end of the

schedule
13: if Scheduling pcp after previously assigned PCPs

violates any lft(t) then
14: valid ← false;
15: end if
16: if Scheduling pcp after previously assigned PCPs

violates execution order then
17: valid ← false;
18: end if
19: end if
20: if valid=true then
21: � A potential schedule was found
22: if Scheduling of PCP requires allocation of extra

time slots of the VM then
23: valid ← false;
24: end if
25: end if
26: if valid=true then
27: Assign the PCP in the chosen position in the VM;
28: Break;
29: end if
30: end for
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31: if PCP is not scheduled then
32: Instantiate the cheapest VM able to execute each

task t of pcp before lft(t);
33: Schedule the PCP in the created instance;
34: end if
35: for each task t from pcp do
36: Update est and lft of tasks;
37: Apply Algorithm 1 on t;
38: Recursively apply this algorithm on t;
39: end for

Algorithm 4 Provisioning adjusts in the EIPR algorithm.
1: Data: VM : List of provisioned VMs.
2: for each virtual machine vm in VM do
3: tstart ← first task scheduled to vm;
4: tlast ← last task scheduled to vm;
5: vm.startTime ← st(tstart);
6: transferTime ← 0;
7: for each parent tp of tstart do
8: if D(ep,start) > transferTime then
9: transferTime ← D(ep,start);

10: end if
11: end for
12: vm.startTime ← vm.startTime − transferTime −

bootTime;
13: for each child tc of tend do
14: if D(eend,c) > transferTime then
15: transferTime ← D(eend,c);
16: end if
17: end for
18: vm.endTime ← vm.endTime + transferTime;
19: end for

Algorithm 5 Task replication in the EIPR algorithm.
1: rb: Replication budget.
2: VM : List of provisioned VMs.
3: T : Set of tasks from G.
4: P : List of paid idle slots.
5: U : List of unpaid idle slots.
6: extraV ms ← �|VM | × vmRate�;
7: V ← sorted list containing VMs from VM in de-

scending order of scheduled tasks;
8: while rb > 0.00 do
9: vm ← first VM from V whose cost is smaller than

rb;
10: if no VM was found then
11: Break;
12: end if
13: Replicate vm;
14: Add the new machine to VM ;
15: Add a slot representing the new machine in P ;
16: Move vm to the end of V ;
17: rb ← cost of vm;
18: end while
19: Sort P and U in increasing order of size;
20: Add U at the end of P ;
21: Sort tasks from T in ascending order of replication

precedence;
22: for each slot s in P do
23: if s is unpaid and there is no available budget then
24: Break;
25: end if
26: for each task t in T do
27: if t fits s then
28: Create replica t′ of t;
29: Schedule t′ in s, respecting est(t);
30: Update slots information;
31: Move t to the end of T ;
32: if s is unpaid then
33: Update budget information;
34: Update paid status of slots deriving from s;
35: Update provisioning information of VM that

contains s;
36: end if
37: end if
38: end for
39: end for
40: Remove from VM machines that are not executing

any task or replica;
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2 WORKFLOWS

Figure 5 contains the visual representation of the work-
flows used in the performance evaluation of the EIPR
algorithm.

(a)

(b) (c)

(d)

Fig. 5. Applications used for performance evaluation.
Graphs represent execution dependency only. Full char-
acterization of the applications, including input and output
data analysis and typical execution times of tasks is
available in Juve et al. [2]. (a) Montage. (b) CyberShake.
(c) LIGO. (d) SIPHT.
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