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SUMMARY

Scientific applications like neuroscience data analysis are usually compute and data-
intensive. With the use of the additional capacity offered by distributed resources
and suitable middlewares, we can achieve much shorter execution time, distribute
compute and storage load, and add greater flexibility to the execution of these scientific
applications than we could ever achieve in a single compute resource.

In this paper, we present the processing of Image Registration (IR) for Functional
Magnetic Resonance Imaging (fMRI) studies on Global Grids. We characterize the
application, list its requirements and then transform it to a workflow. We use
Gridbus Broker and Gridbus Workflow Engine (GWFE) technologies for executing
the neuroscience application on the Grid. We developed a complete web-based
portal integrating GUI-based workflow editor, execution management, monitoring and
visualization of tasks and resources. We describe each component of the system in
detail. We then execute the application on Grid’5000 platform and present extensive
performance results. We show that the IR application can have 1) significantly improved
makespan, 2) distribution of compute and storage load among resources used, and 3)
flexibility when executing multiple times on Grid resources.
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1. INTRODUCTION

Nowadays many scientific experiments such as climate modeling, structural biology and
chemistry, neuroscience data analysis, and disaster recovery are conducted through complex
and distributed scientific computations that are represented and structured as scientific
workflows [13]. Representing these application in the form of a workflow highly simplifies the
layout of individual or a group of components of the application as compared to the raw form
(usually scripts). The components of a workflow are usually tasks and data linked together
using dependency rules and control sequences. Scientific workflows usually need to process a
huge amount of data and are computationally intensive activities. Neuroscience data analysis
is one such application that has been a focus of much research in recent years (NIFTI, BIRN)
(see Section 2).

The neuroscience data analysis application we present in this paper has several tasks that
need to be structured according to their data dependencies for correct execution. Both the
data and computation requirements are very high, depending on the number of subjects
analyzed. Given the typically large number of subjects’ data being analyzed, it takes significant
amount of time for this application to produce results when executed as a sequential process on
limited resources. Moreover, scientists may need to re-run the application by varying run-time
parameters. Often researchers and users around the globe may share the results produced. To
facilitate these requirements such as high compute power, repeated experiments, sharing of
data and results, this application may leverage the power of distributed resources presented by
platforms such as Grids. By executing this application on distributed resources execution time
can be minimized, repeated executions can be performed with little overhead, reliability of
execution can be increased, and resource usage can be distributed. It is a very demanding task
for researchers to handle these complex applications directly on Global Grids without proper
management systems, interfaces, and utilities. Therefore, user friendly systems are increasingly
being developed to enable e-scientists to integrate, structure and orchestrate various local or
remote data and service resources to perform scientific experiments to produce interesting
scientific discoveries.

A scientific workflow management system is one of the popular approaches that provide an
environment for managing scientific experiments, which have data dependent tasks, by hiding
the orchestration and integration details inherent while executing workflows on distributed
resources.

The Gridbus Workflow Engine (GWFE) [23], is one such Grid-based workflow management
system that aids users (scientists) by enabling their applications to be represented as a workflow
and then execute on the Grid from a higher level of abstraction. The GWFE provides an
easy-to-use workflow editor for application composition, an XML-based workflow language
for structured representation, and a user-friendly portal with discovery, monitoring, and
scheduling components that enables users to select resources, upload files and keep track of
the application’s progress.

In this paper, we present a Brain Imaging application that performs Image Registration
(IR) which can be used for Functional Magnetic Resonance Imaging (fMRI) studies. We first
characterize the application and identify its requirements. We describe the components of
GWFE that enable the application to leverage the capabilities of Grid. We then execute
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this application on Global Grids and present detailed analysis of the results. Our performance
results and technology used could directly assist neuroscientists using brain imaging technology
in clinical areas such as epilepsy, stroke, brain trauma and mental health.

Our main contributions in this paper are as follows:

1. representation of a brain imaging application in the form of a workflow.
2. design and implementation of a tool set to manage a complete life cycle of the workflow.
3. characterization of the tasks of brain imaging application workflow in terms of data and

computational requirements.
4. a performance evaluation of the workflow execution on the Grid.

The rest of the paper is structured as follows: Section 2 presents related work and Section
3 describes the workflow application scenario, its components, and requirements. In Section 4,
we describe the workflow execution life cycle and the major components that users can use to
interact with the system. Section 5 presents an experimental evaluation of a real biomedical
application by executing it on the Grid. Section 6 concludes the paper and discusses some
future work.

2. RELATED WORK

Several projects are investigating workflow technology with respect to our target application
and Global Grid scheduling. These related works are categorized as application and
Workflow Management Systems and described below.

Application: Olbarriaga et al. [15] present the Virtual Laboratory for fMRI (VL-fMRI)
project, whose goal is to provide an IT infrastructure to facilitate management, analysis,
and sharing of data in neuroimaging research with a focus on functional MRI. We share
a common objective to facilitate the data logistics and management in fMRI analysis via
workflow automation. Their system could use our workflow management system as a pluggable
component.

Neurobase [10] uses grid technology for the integration and sharing of heterogeneous sources
of information in neuroimaging from both data and computing aspects.

Buyya et al. [3] studied instrumentation and distribution analysis of brain activity data on
global grids. They present the design and development of Magnetoencephalography (MEG)
data analysis system. They describe the composition of the neuroscience application as
parameter-sweep application and its on-demand deployment on Global Grids.

Ellis et al. [9] executed their IR algorithm by registering several couples of T1 MRI images
coming from different subjects in 5 minutes on a Grid consisting of 15 2GHz Pentium IV PCs
linked through a 1Gigabit/s network. This is an example where the capabilities of Grid has
been used to speedup brain imaging applications.

The LONI Pipeline [17] was developed to facilitate ease of workflow construction, validation
and execution like many similar workflow environments, primarily used in the context of
neuroimaging. This initiative, which was as early as 2003, clearly demonstrates that workflow
technology can be used and is viable for neuroimaging applications.

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 00:1–7



4 S. PANDEY

The NIMH Neuroimaging Informatics Technology Initiative (NIFTI†) was formed to aid
in the development and enhancement of informatics tools for neuroimaging. Likewise, the
Biomedical Informatics Research Network (BIRN‡) is another high profile effort working to
develop standards (eg. LONI) among its consortia membership. Such efforts are contributing
more towards standards, efficiency, interoperability and integration of tools. We have tried to
use these tools to harness the power of distributed resources to increase several characteristics
of the application.

Workflow Management Systems: Deelman et al. [7] have done considerable work on
planning, mapping and data-reuse in the area of workflow scheduling. They propose Pegasus
[8], which is a framework that maps complex scientific workflows onto distributed resources
such as the Grid. DAGMan, together with Pegasus, schedules tasks to Condor system. With the
integration of Chimera [11] and Pegasus based [7] mapping, it can execute complex workflows
based on pre-planning. In our system, we use dynamic mapping of tasks to resources based on
current resource availability.

The Taverna project [14] has developed a tool for the composition and enactment of
bioinformatics workflows for the life science community. This tool provides a graphical user
interface for the composition of workflows. Other well-known projects on workflow systems
include GridFlow [4], Unicore [18], ICENI [12], GridAnt [2] and Triana [20].

Yu et al. [22] proposed a comprehensive taxonomy on workflow management systems. Chen
et al. [6] proposed a taxonomy for workflow verification and validation. We refer the reader to
these taxonomies for the characterization and classification of existing workflow management
systems.

3. A SCENARIO AND REQUIREMENTS

Image registration is a brain imaging technique. We describe the Image Registration (IR)
procedure as a Scientific Workflow Application. We construct the IR workflow and describe
each of its tasks, and then tabulate the requirements of executing each task in the workflow.

fMRI and IR: fMRI attempts to determine which parts of the brain are active in response
to some given stimulus. For instance, a person (referred as subject in this paper), in the
Magnetic Resonance (MR) scanner, would be asked to perform some tasks, e.g., finger-tap at
regular intervals. As the subject performs the task, researchers effectively take 3-D MR images
of his brain. The goal is to identify those parts of the brain responsible for processing the
information the stimulus provides.

IR is ubiquitous in fMRI analysis, especially in the case of multi-subject studies. IR is the
process of estimating an optimal transformation between two images, also known as “Spatial

†http://nifti.nimh.nih.gov
‡http://nbhirn.net
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(a) Berkeley's 4T fMRI scanner. (b) Subject's Brain Image before IR (c) Subject's Brain Image after IR

(d) Comparison of Image t with the Standard Image(e) Further fMRI analysis 

Figure 1. Image Registration and fMRI.

Normalization” in functional neuroimaging [16]. When registering images we are determining
a geometric transformation, which aligns one image to fit another. The aim is to establish
a one-to-one continuous correspondence between the brain images of different individuals.
The transformation will reduce the anatomical variability between high-resolution anatomical
brain images from different subjects. This enables analysts to compute a single activation
map representing the entire group of subjects or to compare the brain activation between two
different groups of subjects.

The IR procedure and its relation to fMRI is depicted in Figure 1. The scanner acquires
high-resolution images of each subject’s brain. Due to subject movements, the images can be
oriented in different positions at the time of scanning. One such image of a subject before
registration is shown in Figure 1 (b). The registration process ensures that all the images of
different subjects are normalized against a standard image and in a common 3D space. The
normalized image of the subject is shown in Figure 1 (c). After normalization, the subject’s
normalized image is compared with the atlas (reference image) for the quality of fit. This
comparison is shown in Figure 1 (d). The workflow we study in this paper, first produces the
atlas, then produces the comparison image (Figure 1 (d)) as output for each subject.

Application Description: The IR procedure, expressed as a scientific workflow is shown
in Figure 2. The tasks are linked according to their data dependencies. Individual tasks that
form the workflow are described below [19] [1].

BET: (Brain Extraction Tool) deletes non-brain tissue from an image of the whole head and
extracts brain’s image.

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 00:1–7
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Figure 2. Image Registration Workflow.

FSLMATHS: allows mathematical manipulation of images.
MAKEAHEADER: generates a header (.hdr) file based on the parameters (type, x-y-z

dimensions and size).
ALIGNLINEAR: is a general linear intra modality registration tool. Any image can be aligned

to a representative with a transformation model using alignlinear. It generates .air files
that can be used to reslice the specified reslice data set to match the specified standard
data set. We use affine 12-parameter full-afine model.

DEFINECOMMONAIR: defines new .air files with a new standard file that defines the
“average” position, size and shape of the various reslice files.

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 00:1–7
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RESLICE: takes a .air file and uses the information that it contains to load the corresponding
image file and generate a new, realigned file.

SOFTMEAN: averages together a series of files.
ALIGN WARP: compares the reference image to determine how the new image should be

warped, i.e. the position and shape of the image adjusted, to match the reference image.
It is a nonlinear registration tool that generates a .warp file that can be used to reslice
the specified reslice data set to match the specified standard data set.

RESLICE WARP: takes a .warp file and uses the information that it contains to load the
corresponding image file and generate a new, realigned file.

FLIRT: performs affine registration. It produces an output volume, where the transform
is applied to the input volume to align it with the reference volume (atlas created in
previous steps).

SLICER: takes 3D image and produces 2D pictures of slices.
PNGAPPEND: processes addition/subtraction of .png images.

Application Requirements: According to Zhao et.al [24], in a typical year the
Dartmouth Brain Imaging Center about 60 researchers pre-process and analyze data from
about 20 concurrent studies. The raw fMRI data for a typical study would consist of three
subject groups with 20 subjects per group, five experimental runs per subject, and 300 volume
images per run, yielding 90,000 volumes and over 60 GB of data. Intensive analysis begins
once the images are processed. IR forms a part of the image pre-processing step using only
the high-resolution data, which represents a minor portion of the entire workflow’s execution
time.

We characterize each task in the IR workflow in Table I. It lists each task, its input files
and sizes, its average computation time (w̄i) on a single machine, and standard deviation (σ)
computed over 40 subjects on a set of 10 random machines in Grid’5000 [5]. The random
machines chosen didn’t vary much in their processing powers. The high values of standard
deviation (σ) for certain tasks can be explained by examining the nature of the operation
of that task. In this application, tasks having longer execution time have higher values of
deviation. The execution time also depends on the orientation of the image to be aligned.

A complete execution of the workflow of 40 subjects on a single CPU with single core
(without local load) takes two and a half days to complete. The total storage space needed for
the complete execution of 40 subjects exceeds 20GB on a single machine when the intermediate
files are retained. Moreover, the computation time and storage requirements limit the number
of subjects that can be used for execution at one time on a single machine.

When the application is executed on distributed resources with no resource scarcity the
application should take as much time to execute all the subjects as a single machine would
take to execute a single subject workflow without local load. However, the real execution time is
higher than the ideal case (∼69 minutes) for 1 subject as shown in Table I, due to the significant
amount of time taken to transfer the intermediate files from one resource to another. We can
decrease the transfer time by allowing multiple tasks to run on a single machine (grouping of
tasks). Also, the synchronizing tasks take longer to execute when there are more subjects. The

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 00:1–7
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Table I. Characteristics of tasks for a single subject’s IR.
note: X = hires, ‘–’ = not applicable (depends on # of subjects),
taskname(*) = same task but different execution instance, N = subject index (N ∈ Z)
# Task Name Input Files Source Tasks Size of i/p (MB) w̄i(sec) σ
1 bet(1) X.{hdr,img} Staging server 16 45 11.91
2 fslmaths bX.{hdr,img} bet(1) 16 1 0.42
3 makeaheader bX.{hdr,img} fslmaths 16 # 1 –
4 alignlinear(1) bX.{hdr,img} fslmaths 16 2 0.47
5 definecommonair X.air, bX.{hdr,img} alignlinear(1) 16 94 –
6 reslice X.air.aircommon,

bX.{hdr,img}
definecommonair 16 5 0.5

7 softmean(1) X-reslice.{hdr,img} reslice 20 140 –
8 alignwarp(1) atlas-

linear.{hdr,img},
X-reslice.{hdr,img}

softmean(1) 40 971 620.17

9 reslicewarp(1) atlas-
linear.{hdr,img}, X-
reslice.{hdr,img,warp}

alignwarp(1) 40 9 1.88

10 softmean(2) X-reslice-
warp.{hdr,img}

reslicewarp(1) 20 111 –

11 bet(2) atlas.{hdr,img} softmean(2) 20 11 1.5
12 alignlinear(2) bX.{hdr,img},

atlas.{hdr,img}
definecommonair,
softmean(2)

36 23 10.25

13 alignwarp(2) X.air,
atlas.{hdr,img},
bX.{hdr,img}

alignlinear(2) 36 2656 1501

14 reslicewarp(2) bX.{hdr,img,warp} alignwarp(2) 16 9 1.88
15 bet(3) nX.{hdr,img} reslicewarp(2) 16 15 1.3
16 flirt batlas.{hdr,img},

nbX.{hdr,img}
bet(2), bet(3) 56 6 0.44

17 slicer(1) batlas.{hdr,img},
N-fit.{hdr,img}

bet(2), flirt 80 8 0.44

18 pngappend(1) {sla,slb,...,slk,sll}.png slicer(1) 0.3 4 0.51
19 slicer(2) batlas.{hdr,img},

N-fit.{hdr,img}
bet(2), flirt 80 8 0.44

20 pngappend(2) {sla,slb,...,slk,sll}.png slicer(2) 0.3 4 0.28
21 pngappend(3) {N-fit1, N-fit2}.png pngappend(1),

pngappend(2)
0.8 4 0.28

22 OUTPUT N-fit.png pngappend(3) (o/p size) 0.8
Average data volume and computation time: 558.2 MB ∼69min

coordination time taken by the middleware also adds to the overall increase in total execution
time.

Application to End-users and Challenges: In an effort to improve the quality of image
registration and to provide clean, high-resolution images for 3D display, researchers have been
collecting multiple T1-weighted structural MRI volumes. Recent projects have used up to four
of these volumes per subject. The resulting average volume can then be combined with the
larger subject population in order to produce the probabilistic atlas. In additional to these
anatomically derived processes researchers have begun experimenting with the use of methods
that will use functional information to register data collected in a time-series. The introduction
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A GRID WORKFLOW ENVIRONMENT 9

Collection
Compilation& 

Installation
Initial Results 
Verication

Workow Design  Workow Generation Automation

Setup Resources on the Grid Generate services &
credentials

Execute/Debug Workow on Grid

Collect Data & Results

D
es

ig
n

Ex
ec

ut
io

n
In

pu
t

O
ut

pu
t

W
or

k
ow

 D
es

ig
n 

O
pt

im
iz

at
io

n

Figure 3. Deployment Cycle.

of new protocols and the acquisition of multiple high-resolution volumes have increased both
the time to acquire and pre-process a typical study. In order to facilitate these new methods
imaging centers will need to provide additional data storage and compute capacity. These
centers will most likely need to create a shared database of subjects, along with the increased
variety of imaging modalities collected, and to expose to individual investigators the methods
used to calculate average structural volumes.

Typical fMRI experiments have between twenty and thirty subjects with some having over
fifty subjects. A number are removed from the analysis, often due to excessive head movement
that image registration algorithms are unable to correct for. While the image registration
application described in this paper makes use of only a single high-resolution volume per
subject, the addition of several more volumes would be trivial. Doing such would enable both
a cleaner volume for the subject as well as a tighter fit to the atlas. Processes such as these
are often repeated many times with spot checks at critical points, such as during the first
average. In the case of a poor fit to the atlas, or an outlier distorting the overall registration,
modifications can be made to the workflow. These modifications might include to the rejection
of a subject or a change in application parameters.

4. WORKFLOW MANAGEMENT ON THE GRID

We describe a process of constructing and experimenting with the workflow on the Grid. We
then present the components of Gridbus Workflow Management System (GWMS).

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 00:1–7
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4.1. Workflow Deployment Cycle

The life cycle of deployment of the workflow is depicted in Figure 3. In the input
phase, scientists provide the input data, batch scripts, sample output files, and application
requirements. In order to run the application on the Grid with heterogeneous resources, the
executables are required to be compiled and installed (can be submitted at runtime) at both
remote and local sites. For quality assurance or initial results verification, this step involves
the testing of conformance of our execution with that of the sample results provided by the
scientists. Once the initial results are verified the workflow structure and its details need to
be composed in the designing phase. In this phase, the automated generation of the workflow
in terms of the workflow language used can also be done by taking into account the run-time
parameters that users might want to change during execution.

In the Execution phase the resources, where the application can be executed, need to be
setup. The resource list, its credentials and the services provided by each resource need to be
inserted into the catalogue. When experiments are conducted repeatedly and in time, resource
availability and conditions will have changed. This requires services and credentials list to be
generated for each execution with the help of the catalogue. The application is then executed
on the Grid. Usually debugging and testing is done while the application is being executed,
but this depends on the software development process being used. Depending on the analysis
of the results from the output phase, the workflow design can be further optimized according
to the requirements of the user. These are the basic steps involved in constructing most of the
scientific workflows to be executed on the Grid, but doesn’t generalize all applications. The
process can get complicated when more user and system requirements are added.

4.2. Components of GWMS

Users interact with the GWMS through the Grid Portal. Figure 4 depicts the components of
GWMS. We describe the following key components that provide users access to the scientific
application.

Grid Portal: The primary user interface for our IR application is a Web Portal that
encompasses the following functionalities:

1. A workflow editor, which enables users to compose new workflows and modify existing
ones.

2. A submission page, through which users can upload to the system, all necessary input
files to run a workflow including the workflow description file, credentials, and services
files (Figure 8 (b)).

3. A monitoring and output visualization page, which allows users to monitor multiple
workflow executions in progress. The most common monitoring activity consists of
keeping track the status of each task through the workflow monitor, which provides
a real-time updated graphical representation of workflow tasks. The application’s output
is presented in the form of images (Figure 8 (d), 1 (d)).

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 00:1–7
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Figure 4. Components of GWMS.

4. A resource information page, which shows the characteristics of all available grid
resources.

5. An application specific page, which in the current implementation provides generation
of IR workflow description files by taking the number of subjects as input.

Although the current incarnation of this Grid Portal is targeted at an IR application,
our design is in no means limited to such application. Apart from few parts of the output
visualization page and the application specific page, the portal infrastructure is generic enough
to allow the porting of almost any workflow application into the portal.

Figure 5(a) shows a layered architecture of the GWMS portal. In the top layer, a set of
Java Server Faces (JSF) pages enable actions such as creating, submitting and monitoring a
Workflow execution. In the middle layer, a set of session beans manage users’ requests, which
in turn are forwarded to the backend (bottom) layer, which handles persistence of Workflow
description and input files and their submission via the Gridbus Broker interface. Figure 5(b)
depicts possible user activities and their flow through the layered portal architecture. A typical
activity consists of workflow design by means of the Workflow Editor Java Applet, which
generates a Workflow description XML file. Subsequently, the description file is loaded on the
submission page, which requests the user to upload all input files referenced in the description
file. Once all files were uploaded the submission page allows the user to submit the workflow
and consequently monitor its progress.

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 00:1–7
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(a)

(b)

Figure 5. Gridbus Workflow Portal. (a) Layered Architecture of the Gridbus Workflow Portal. (b)
Activities the portal supports.
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Figure 6. Interaction between Gridbus Workflow Editor and GWFE.

We now describe in more detail the Workflow Editor, the Workflow Monitor, and the
Workflow Engine.

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 00:1–7
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Workflow Editor: The Gridbus workflow editor provides a Graphical User Interface
(GUI) and allows users to create new and modify existing workflows, based on an XML-based
workflow language (xWFL) utilizing the drag and drop facilities. Using the editor, expert users
can design and create the workflows for complex scientific procedures following the workflow
language and the nature of application, whereas primitive users can reuse these workflows with
some minor changes. In the editor, workflows are created graphically as a Directed acyclic
Graph (DAG) with some nodes and links. The node represents the computational activities of
a particular task in the workflow and a link is used to specify the data flow between two tasks.

Figure 7 shows the schema of task definition using xWFL. < task > is a set of instructions
to be executed in a resource. The element < executable > is used to define the information
about the task, corresponding I/O model as well as the input and output data. xWFL supports
both abstract and concrete workflows. The users can either specify the location of a particular
service providing a required application in < service > or leave it to the engine to identify their
providers dynamically at run-time. < input > and < output > are used to define the input
and output data of a task respectively. Each data is associated with a unique port number
of that task. Input can be both file and message whereas output can be only file. Figure 6
shows the schema of the links using xWFL. The element < links > is a set of definitions of
the links in a workflow. Each link, < link > is associated with an output task (from where
a file is generated) and an input task (which requires that file) as well as their corresponding
port numbers.

The Gridbus workflow editor provides the following advantages to the users:

Portal-based editor : As the workflow editor can be accessed through the workflow portal,
users can create or edit and save their workflows in the server and can access them from
anywhere and whenever required. Moreover, the users have no application dependencies on
their side regarding the editor tool, and can get a pervasive access mechanism to the editor.

Hiding complexity: In general, the underlying structure of workflows is represented as XML
description, which is parsed by the workflow engines. However, representing workflows in XML
description demands advanced skill from workflow designers such as thorough understating of
workflow language e.g. xWFL, and expertise of managing XML files from various namespaces.
Gridbus workflow editor hides these complexities from scientists and researchers by providing
a GUI. Users only need to draw boxes for tasks and lines for connecting them, and specify
their properties. The editor compiles it and generates the XML description of the workflow
automatically. Workflow editor integration with the GWFE via xWFL is shown in Figure 6.

Ease of use: Gridbus workflow editor provides a drag and drop facility to draw the workflow
using boxes and lines. The common edit operations such as cut, copy, paste are provided. It
also supports usual file operations such as create, open and save. Furthermore, users can
simultaneously see the equivalent XML description of the graphical representation of the
workflow. They can also save the graphical representation as an image.

Interoperability: The editor can generate the graphical representation of the workflow from
its XML description if it is created following the schema of xWFL. Thus, if any scientist or
researcher creates workflow and saves it as XML file, others can reuse that by opening it using
Gridbus workflow editor, and modifying according to their needs.
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<task name="softmean"> 
      <executable> 
            <name value="softmean" I_OModel="sychronizing" />  
            <service serviceID="a7" />  
            <input> 
                  <port number="0" type="msg" value="atlas-linear" arg="true" />  

 <port number="1" type="msg" value="y" arg="true" />  
 <port number="2" type="msg" value="null" arg="true" />  
 <port number="3" type="msg" value="*reslice.img" arg="true" /> 
 <port number="4" type="file" value="." arg="false" />  
 <port number="5" type="file" value="." arg="false" /> 

     </input> 
            <output> 
     <port number="6" type="file" value="atlas-linear.hdr" />  

 <port number="7" type="file" value="atlas-linear.img" />  
 <port number="8" type="file" value="*reslice.hdr" />  
 <port number="9" type="file" value="*reslice.img" />  

    </output> 
  </executable> 

</task> 

<links> 
      <link> 
           <from task=" reslice1" port="7" />  
        <to task="softmean" port="4" /> 
      </link> 
      <link> 
           <from task=" reslice1" port="8" />  
        <to task="softmean" port="5" /> 
      </link> 
      <link> 
           <from task="softmean" port="6" />  
        <to task="alignwarpAL1" port="6" /> 

  </link> 
   <link> 

           <from task="softmean" port="7" />  
        <to task="alignwarpAL1" port="7" /> 

  </link> 
   <link> 

           <from task="softmean" port="8" />  
        <to task="alignwarpAL1" port="8" /> 

  </link> 
   <link> 

           <from task="softmean" port="9" />  
        <to task="alignwarpAL1" port="9" /> 

  </link> 
</links> 

(a) (b)

Figure 7. Defining task and links in an IR workflow using xWFL. (a) task. (b) links.

Workflow Monitor: The Gridbus Workflow Monitor provides a GUI for viewing the
status of each task in the workflow. Users can easily view the ready, executing, stage-in, and
completed tasks as depicted in Figure 8. Task status is represented using different colors. Users
can also view the site of execution of each task, the number of tasks being executed (in case
of a parameter sweep type of application) and the failure history of each task. The workflow
structure is editable such that users can drag tasks and group or separate tasks of interest
when there are numerous tasks in the workflow. The monitor interacts with the GWFE using
an event mechanism by using the tuple space model. In the backend, a database server stores
the states of each task for each application workflow. Whenever any task changes state, the
monitoring interface is notified and the status values are stored. This enables multiple users
to access the monitoring interface from different locations. The monitoring interface does not
have support for deletion and insertion of individual tasks at run-time. However, users can
add and delete tasks at the time of construction using the Gridbus editor.

Gridbus Workflow Engine: Scientific application portals submit task definitions along
with their dependencies in the form of the workflow language to GWFE. Then the GWFE
schedules the tasks in the workflow application through Grid middleware services and manages
the execution of tasks on the Grid resources. The key components of GWFE are: workflow
submission, workflow language parser, resource discovery, dispatcher, data movement and
workflow scheduler.

GWFE is designed to support an XML-based WorkFlow Language (xWFL). This facilitates
user level planning at the submission time. The workflow language parser converts workflow
description from XML format to Tasks, Parameters, Data Constraint (workflow dependency),
Conditions, etc., that can be accessed by workflow scheduler. The resource discovery component
of GWFE can query Grid Information Services such as Globus MDS, directory service, and
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replica catalogues, to locate suitable resources for execution of the tasks in the workflow by
coordinating with middleware technologies such as Gridbus Broker [21]. GWFE uses Gridbus
Broker for deploying and managing task execution on various middlewares as a dispatcher
component. Gridbus Broker as a middleware mediates access to distributed resources by (a)
discovering resources, (b) deploying and monitoring task execution on selected resources, (c)
accessing data from local or remote data source during task execution, and (d) collating and
presenting results.

GWFE is designed to be loosely-coupled and flexible using a tuple spaces model, event-
driven mechanism, and subscription/notification approach in the workflow scheduler, which
is managed by the workflow coordinator component. The data movement component of
GWFE enables data transfers between Grid resources by using SFTP and GridFTP protocols.
The workflow executor is the central component in GWFE. With the help from dispatcher
component it interacts with the resource discovery component to find suitable Grid resources at
run time, submits a task to resources, and controls input data transfer between task execution
nodes.

Algorithm 1 Just-In-Time Scheduler
1: for each root task ti ∈ Troots do
2: Assign ti to an available compute resource ck

3: end for
4: repeat
5: for all ti ∈ Tnonroots do
6: Assign ready task ti to any available compute resource ck

7: end for
8: Dispatch all the mapped tasks
9: Wait for POLLING TIME

10: Update the ready task list
11: until there are unscheduled tasks in the ready list

In addition to the random and round-robin scheduling policies, GWFE has a level based
scheduling policy that allows the resource allocation decision to be made at the time of task
submission. Algorithm 1 lists the scheduling algorithm that we used for scheduling the IR
workflow. Tasks at the top level (that have no parent) are assigned to resources that have not
exceeded their job limit. Tasks become ready as a result of their parents finishing execution
and producing valid data. A list is formed to store these tasks. This list is updated during
the polling time. The scheduler then assigns these ready tasks to resources based on the
availability of each resource. The optimum choice for polling time depends on the number of
tasks in the application, resource management policies, scheduler overhead etc.

We have a mechanism to specify the location to store the intermediate data. For data-
intensive applications, such as the one presented in this paper, data cannot be stored in the
compute nodes due to their size. So we store it in centralized locations. For those applications
that are less data-intensive, the compute node that executes the tasks may store the data
locally until the workflow finishes execution. Depending on the user’s requirements, the data
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can then be either migrated to a centralized server after the execution or deleted from the
compute nodes after certain number of executions. Data provenance in workflows has been a
challenging research topic.

In our current implementation, we handle failures by resubmitting the tasks to resources
that do not have failure history for those tasks. Task resubmission and task duplication have
been one of the commonly used techniques for handling failures. Fault tolerance could also be
achieved by checkpointing the execution of workflows, which we leave for our future work.

5. EXPERIMENTAL EVALUATION

The IR application together with GWFE was demonstrated at the First IEEE International
Scalable Computing Challenge (SCALE 2008) in conjunction with CCGrid 2008, May 19-22,
2008, using resources provided by SUNY at Binghamton and the University of Melbourne. The
application was also demonstrated at the Fourth IEEE International Conference on e-Science,
December 10-12, 2008. For this paper we executed the application on Grid’5000 [5]. We now
describe the experiment setup, results obtained, and observations.

Table II. Grid’5000 sites used; # cores (n), # tasks (t) executed and average computation time (C̄)
(in seconds) taken on each site for each experimental group.

Site
Name

10Sub 10Sub (G) 20Sub 20Sub (G) 40Sub 40Sub (G)
#n #t C̄ #n #t C̄ #n #t C̄ #n #t C̄ #n #t C̄ #n #t C̄

bordeaux 32 19 189 16 10 83 20 58 141 0 0 0 20 114 235 62 76 306
lille 16 22 267 12 14 586 64 76 187 16 45 383 20 121 282 44 105 297
lyon 6 12 17 6 8 443 24 43 226 8 22 672 6 62 226 6 18 626
nancy 10 31 120 0 0 0 14 70 126 0 0 0 10 88 131 0 0 0
orsay 10 36 26 8 16 337 0 0 0 4 10 54 10 79 289 20 83 431
rennes 10 13 38 0 0 0 14 57 97 0 0 0 0 0 0 0 0 0
sophia 12 24 121 40 24 137 0 0 0 28 58 174 20 135 178 28 121 468
toulouse 20 27 219 12 12 639 20 60 249 20 29 586 20 125 374 0 0 0
TOTAL 116 184 94 84 156 364 76 164 106 724 160 403

5.1. Experiment Setup

Workflow Configuration: We executed the IR workflow using 40, 20, 10, and 2 subjects.
By varying the number of subjects used we calculated the makespan of the workflow, total
storage space required for execution, and parallelism that can be achieved. We grouped the
tasks when there was more than a single sequential task between two synchronizing tasks, as
depicted in Figure 2. Grouping tasks implicitly demands more than one task to be executed
at the same site where it is submitted, unlike the ungrouped version where all tasks would be
distributed.

Resource Configuration: We used the resources provided by Grid’5000 as depicted
in Figure 11. The Grid’5000 project provides a highly reconfigurable, controllable, and
monitorable experimental Grid platform gathering 9 sites geographically distributed in France
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(a) (c)

(b) (d)

Figure 8. Grid Portal. (a) Workflow editor. (b) The submission interface. (c) Workflow monitor showing
status of tasks in colors (cyan = ready, yellow = submitting, green = executing, blue = done). (d)

Multiple workflow runs and output.

featuring a total of 5000 processors [5]. Table II lists the Grid’5000 sites used for the experiment.
The resources were reserved for the duration of the experiment. The reservation ensured that
the Grid resources were dedicated to our experiment. We used resources with the ‘x86 64’ CPU
architecture with AMD Opteron Processors-246, 248, 250, 252, and 275. We used 8 out of the
9 sites (excluding Grenoble). The distributed resources across 8 sites have varying network
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Figure 9. (a) Comparison of makespan of workflow according to the number of subjects used. (b)
Data size according to the number of subjects used. (c) Comparison of makespan between grouped

and ungrouped tasks (see Figure 2 for grouping of tasks).

interconnection bandwidth, number of cores per CPU, CPU frequency, memory, and storage
space available [5].

The characteristics of Grid’5000 resources does not vary across 9 sites so much to abruptly
affect our application performance. Also, Grid’5000 mandates the users to reserve the necessary
nodes before execution. This scenario led us to use a basic level scheduling algorithm as listed
in Algorithm 1.

Performance Metrics: As a measure of performance, we used average makespan as the
primary metric. Makespan of each workflow is measured by taking the difference between the
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Figure 10. Number of tasks executed vs. Time: Parallelism that was achieved in the system. (a) Number
of tasks executed in time for 40 subjects. (b) Number of tasks executed in time for 20 subjects. (c)
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Figure 11. Grid’5000 Network [5].

submission time of the first submitted task and the output arrival time of the last exit task
to be executed on the system. Makespan also includes the staging-in of the input files to the
entry tasks and the staging-out of the results from the exit tasks.
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5.2. Results and Observations

Table II lists the number of cores used at each site, the number of tasks submitted to the site
and the average computation time used at the site for each experiment group. Figure 5 depicts
the total makespan for different subjects, comparison of makespan between grouped and un-
grouped tasks of the workflow and the size of data produced during the execution. FIgure 5
depicts parallelism of tasks executed in time by the GWFE for 40, 20, 10 and 2 subjects.

Execution of the IR workflow on the Grid showed significant advantages over a single
machine. The total makespan of the workflow decreased considerably from 2.5 days in a single
machine to approximately 3 hours on the Grid. The storage requirements were distributed
among the resources used. As the number of subjects used was increased, the makespan
increased slightly. This can be attributed to the increase in execution time of synchronizing
tasks and the coordination time required by the system for additional tasks. The main point
to be noted is that as the number of subjects was increased, the average makespan remained
within similar bounds and did not increase exponentially, as can be seen for 40, 20, and 10
subjects in Figure 5 (a). By inference for more than 40 subjects the makespan should not
increase by more than double the difference between the 40 subject and 20 subject makespan.

Grouping of tasks reduced the transmission of data between individual tasks as they were
executed on the same machine the group was submitted to. Also, no coordination was required
for the individual tasks in the group. This contributed to the reduced makespan in the case of
grouped tasks. Figure 5(c) shows that the grouping of tasks that have higher value of standard
deviation of execution did not yield an optimized makespan. Ungrouping tasks with higher
execution time and a higher standard deviation value gave lower makespan than the grouped
version (center of the graph) of that set of tasks. Tasks with lower execution time and lower
standard deviation value had lower makespan value when grouped than when ungrouped.

The size of data produced during the execution of the workflow increased when the number
of subjects was increased. The input data size (16MB per subject) was low in comparison to
the total data produced during the execution as shown in Figure 5(b).

Due to the use of highly available resources, almost all the workflow’s ready tasks were
executed in parallel, as depicted in Figure 5. The graph shows the plot of tasks that finished
execution versus time. At a certain interval in the beginning of execution most of the tasks
finished execution at the same time showing the parallelism of execution of tasks. Most of the
grouped tasks finished execution at the beginning of the execution interval unlike ungrouped
tasks. This early execution behaviour helped reduce the makespan of the whole workflow as
the grouped tasks executed more than one task at a time through a bash script, which is seen
as a single task by the resource. In the case of ungrouped tasks each task needed to be mapped
onto a resource and as the resource approached its maximum job limit, no more tasks could be
submitted to it. This is also the reason that fewer grouped tasks were executed on the system
than ungrouped tasks after 100 seconds.

We used a just-in-time scheduling algorithm to schedule tasks in the workflow, as listed in
Algorithm 1. As the tasks became ready the scheduler was able to find the available resource
and then submitted the task to it for execution. Failure of tasks was handled on a per task
basis. When tasks failed, they were re-submitted to another resource, which did not have a
failure history for those tasks. Although some tasks failed to execute and were rescheduled,
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their total count was very small. Tasks can fail due to many reasons. In our experiment, failures
occured when a task finishes execution without throwing any errors but the data produced by
the task is not complete. In such cases, the child tasks that depend on that data always fail.
We can resolve this fault by resubmitting the immediate parent task and all its child tasks for
execution.

The workflow was executed multiple times by changing the parameters of the workflow
with the help of the Grid Portal. This feature provided flexibility while executing grouped
and ungrouped versions of the workflow for each of the 40,20,10 and 2 subjects. Without this
feature, orchestrating the whole experiment would have taken a longer amount of time than
executing the application on a single machine.

6. CONCLUSION AND FUTURE WORK

In this work, we presented the processing of a compute and data-intensive brain imaging
application in the form of a workflow on the Grid. We implemented the components in the
context of executing Image Registration (IR) for fMRI studies. We used the Gridbus Workflow
Engine as workflow management system and the Gridbus Broker as the mediator to access
the distributed resources. We have described in detail all the components of our system. Our
experiments demonstrated that the IR procedure can have significantly reduced makespan,
greater distribution of storage space and increased flexibility when executed on the Grid.
Our analysis and the results of this neuroscience application show that there exists a greater
motive and higher potential in strengthening collaboration between eScience communities and
industry.

As part of our continuing efforts, we are enhancing the GWFE to support SLA based
workflow scheduling. We are also working on scheduling algorithms that minimize usage of
bandwidth for data-intensive workflow applications yet maintaining users’ quality of service.
The scheduling algorithms should be more generic and should consider Grid resources whose
performance and availability are dynamically changing. Also, for workflows with large number
of tasks, it is necessary to checkpoint the states of tasks and track provenance of data so that
failures can be handled gracefully without repeating the execution of completed tasks. We
could also provide mechanisms for changing the structure of the workflow at run-time. The
exploration of these optimizations techniques and flexibility to the user is an important area
of future research.
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