
SLO-aware Deployment of Web Applications
Requiring Strong Consistency using Multiple Clouds

Chenhao Qu, Rodrigo N. Calheiros, and Rajkumar Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory

The University of Melbourne, Australia

Email: cqu@student.unimelb.edu.au, {rnc, rbuyya}@unimelb.edu.au

Abstract—Geographically dispersed cloud data centers (DCs)
enable web application providers to improve their services’
response time and availability by deploying application replicas in
multiple DCs. To allow applications requiring strong consistency
to be deployed in multiple clouds, industry and academia have
developed various scalable database systems that can guarantee
strong inter-DC consistency with alleviated network overhead.
For applications using these database systems, it is essential to
take both the network latencies to the end users and the commu-
nication overhead of the databases into account when selecting
the hosting DCs. In this paper, we study how to identify the
satisfactory deployment plan (hosting DCs and request routing)
considering SLO satisfaction, migration cost, and operational cost
for applications using these databases. The proposed approach
involves two steps. First, it searches the deployment plan with
minimum amount of SLO violations using genetic algorithm when
the application is first migrated to the clouds. Then it continuously
optimizes the deployment in a certain time interval according to
the changing workload and the current deployment plan. We
illustrate how our approach works for the applications using two
databases (Cassandra and Galera Cluster), and demonstrate the
effectiveness of our approach through simulation studies using
settings of two example applications (TPC-W and Twissandra).
Our solution is extensible to applications using other database
systems that have similar properties.

Keywords—Multi-cloud, Geographically Dispersed, Web Appli-
cation, Database Consistency, Deployment, Request Routing

I. INTRODUCTION

Web application providers always concern about how to
provide high Quality of Service (QoS) (i.e., low latency and
high availability) to their end users [1]. With the maturity of
Cloud computing, it has become the ideal platform for hosting
web applications, as it not only enables infrastructure to be
scaled up and down according to the real-time traffic, but
also allows easy replication of applications in geographically
dispersed data centers (DCs) so that customers all around the
world can be served with high QoS.

However, when applications are deployed in geographically
dispersed cloud DCs, providers need to handle data consis-
tency across DCs (inter-DC consistency), which is challenging
for some applications requesting strong consistency, e.g., e-
commerce, and banking applications. To make things worse,
traditional inter-DC commit (two-phase commit) involves high
network cost. Therefore, applications often have to adopt even-
tual consistency (asynchronous replication) in order to min-
imize user perceived latencies. This complicates application
logic and forces application developers to handle the conflicts
and errors caused by the inconsistent data [2], even though
such cases are rare in production as data synchronization
usually happens quickly in eventual-consistent databases [3].

After realizing that lack of strong consistency has impaired
developing productivity, industry and academia shift to develop
new databases that can guarantee strong inter-DC consistency
[2], [4]–[10] to help relive the programmers’ coding burden.
Though the inter-DC consistency protocols of these new
databases are often optimized in terms of network overhead,
the resulted network delays are still significant and cannot be
ignored. Thus, to minimize the user perceived response time,
it is essential to take the database network delay into account
when selecting the hosting DCs and when routing requests
originated from different users to the chosen DCs.

In this paper, we aim to minimize the total excess response
time the users may perceive beyond the SLO for applications
with various inter-DC consistency requirements. The proposed
approach benefits the application providers so that they can
enjoy the agility of development brought by the new databases,
and in the meantime keep the extra latencies as low as possible.

The key contributions of the paper are two folded. First,
we propose a genetic algorithm (GA) that searches a deploy-
ment plan (set of DCs and request routing) with minimum
amount of SLO violations when the application is initially
migrated to the cloud. After the initial deployment, the applica-
tion performance may degrade as time passes due to change of
workload distribution. Second, we propose a decision-making
algorithm that continuously optimizes the deployment in order
to balance application performance, redeployment cost, and
operational cost under changing workloads. We exemplify how
of approach works with two widely used databases (Cassandra
[5] and Galera Cluster [4]). To demonstrate the effectiveness
of our approach, we conduct simulation studies using settings
of two real applications (TPC-W [11], an e-commerce website,
and Twissandra [12], a twitter-like social network application).

The rest of the paper is organized as follows. Section
II briefly surveys the existing protocols and databases with
strong inter-DC consistency support. Then we describe the
target applications and their deployment model in Section III.
Section IV explains our approach followed by the performance
evaluation. After that, we discuss some key issues and pitfalls
when extending and using our approach in Section VI. Finally,
we present the related work and conclude the paper.

II. SURVEY OF INTER-DC CONSISTENCY

A. Consistency Protocols
1) Two-phase Commit: Two-phase commit is the simplest

protocol that implements inter-DC transaction commit. Its
basic idea is to use one message round to reach consensus
of whether to commit or rollback among all the participating
processes and another round trip to confirm the action with a

2015 IEEE 8th International Conference on Cloud Computing

2159-6190/15 $31.00 © 2015 IEEE

DOI 10.1109/CLOUD.2015.118

860

Fig. 1: Deployment using 2 DCs

central coordinator. It is used in many distributed databases,
such as Google Spanner [7].

2) Quorum-based Protocols: Quorum-based protocols are
used to manage data replication. When writing an object,
the system writes to a set of object replicas, called a write
quorum. When reading the object, the system fetches it from
possibly another set of replicas, called a read quorum. Strong
consistency for the object can be guaranteed if the summation
of its read and write quorum is larger than the number of
replicas. Some quorum databases [5] also allow users to
sacrifice consistency to availability and performance by set-
ting a weaker quorum [3]. However, quorum-based protocols
alone are not able to support ACID (Atomicity, Consistency,
Isolation, Durability) transactions involving multiple objects.

3) Paxos-based Protocols: Paxos [13] is a family of proto-
cols for reaching consensus in an unreliable distributed envi-
ronment. In database systems, the most common configuration
for the protocol is multi-Paxos [14] with each process act as
proposer, acceptor, and learner. The Paxos protocol proceeds
in rounds. Its basic implementation also involves two steps, a
prepare phase and an accept phase, in the successful case.

In database systems, optimized Paxos protocols are com-
monly combined with two-phase commit to achieve inter-DC
transaction commit. A number of inter-DC transaction commit
protocols are built upon Paxos, e.g., MegaStore [6], Spanner
[7], MDCC [8], Calvin [9], and Replicated Commit [10].

4) Certification-based Commit: Certification-based commit
[15] is a synchronous replication protocol developed based on
the works by Pedone [16], and Kemme and Alonso [17]. The
protocol needs the help of an underlying group communica-
tion system to deliver the commit requests originated from
distributed processes in total and causal order to each process.
When doing write transaction, the request is optimistically
executed until commit point. After that, the process sends the
write change to the whole communication group. The group
then returns a global transaction ID to every process. Since
all requests are delivered in the same order, each process can
deterministically and independently check potential conflicts
in its commit queue using a certification test. The request that
passes the test can return immediately.

B. Databases Supporting Strong Inter-DC Consistency
1) Google’s Systems: Google have been developing dis-

tributed databases that are both highly scalable and strongly
consistent. Their first achievement is MegaStore [6]. It imple-
ments ACID semantics within each entity group (objects stored
together) using synchronous replication based on optimized
Paxos, and transaction across entity groups using two-phase

commit. The second outcome is Spanner [7], which further
supports external consistency (linearizability) with the help of
physically synchronized clocks (GPS and atomic clock). Upon
Spanner, Google built F1 [2], a distributed relational database
system for their critical AdWords platform. It provides more
enriched transaction semantics with high availability and scal-
ability. All Google’s systems remain proprietary and currently
there are no open source analogies available.

2) Open Source Databases: Cassandra [5] is a shared
nothing NoSql database using quorum-based protocol for its
consistency model. It allows users to set individual read and
write quorums at the granularity of query. It also provides lim-
ited transaction support (lightweight-transaction) starting from
version 2.0 using a heavy-weight Paxos consensus protocol,
which requires 4 round-trip messages to complete.

Galera cluster [4] is an open source scalable synchronous
replication solution developed and maintained by Codership
for MySql. Galera’s replication is based on certification-
based commit [15]. Since replication is synchronous, read-only
queries in Galera are always processed locally.

III. APPLICATION AND DEPLOYMENT MODEL

A. Target Applications
We target session-based Internet applications. We assume

the delay of the application is dominated by the round-trip
time (RTT) between different parties, as the processing time of
the request can be considered constant provided that there are
enough computing resources. Therefore, whether the SLOs can
be met is largely determined by the involved network latencies.

To benefit from our work, the application should also
be deployed on geographically dispersed DCs, and some of
its requests should require strong consistency, e.g., a group-
working application that always reflects the newest updates
to its end-users, a social-network application that consistently
and timely shows people’s posts and comments, or a distributed
banking application that perpetually desires ACID semantics.

B. Deployment Model
We assume the whole software stack of the application

(including application servers and underneath databases) is
deployed on multiple geographically dispersed DCs and each
application replica is able to autonomously scale up and down
according to the changing workloads, as shown by the example
in Figure 1. Currently, we suppose all chosen DCs have the
full copy of data. This approach is commonly adopted by
companies, like Facebook [18]. Furthermore, the databases
described in this paper, Cassandra and Galera Cluster, support
only full replication for multi-DC deployment within the same
keyspace or namespace. The target applications should also use
shared-nothing multi-master database clusters, which means
all database queries originated from any server can be served
by database nodes collocated in the same DC. Depending on
the database and requested consistency of the query, we also
consider there are network delays caused by communications
among database cluster nodes in different DCs. All inner-DC
communications, otherwise, are omitted.

We classify users into groups according to their geographic
locations. All the requests from the same location are routed to
the same DC using DNS routing services similar to Amazon
Route 53’s Geo Routing [19].

861

Fig. 2: The Proposed Approach

IV. PROPOSED APPROACH

A. Overview
Our approach requires application administrator to provide

SLO and consistency configuration for each type of request as
illustrated in Figure 2. In addition, it needs the information of
the numbers of requests coming from each location. These data
can be recorded during production. Furthermore, it wants the
network latency data between each DC and each location and
latency data between each DC. Since it is difficult to collect
all the real-time RTT latencies between each location and
DC given the large number of them, we can rely on network
predictors, like the one employed by Grozev and Buyya [20],
to estimate the unknown latencies. Or we can obtain the latency
information from trusted third parties, like NetMetrics [21]
which is a global Internet performance database.

The objective of our work is to select and manage a subset
of DCs to host the application replicas, and in the meantime,
find the optimal request routing according to the chosen DCs,
so that the total amount of estimated SLO1 violations is as
small as possible. The approach involves two steps:

a) Initial Deployment: When the application is initially
migrated to the clouds, our approach aims to select the hosting
DCs and route requests to chosen DCs with minimum amount
of total estimated SLO violations according to the current
geographical distribution of requests2.

b) Deployment Optimization: In the second step, our
approach continuously attempts to maintain high performance
of the application by contracting, optimizing, or expanding the
deployment with acceptable migration3 efforts in response to
the changes of the requests distribution.

In this paper, we use the term expand and contract respec-
tively for increasing and decreasing the number of chosen DCs.
We focus on the geographical distribution of resources instead
of the total resource amount, for which the term commonly
used is scaling up and down.

B. SLO Violation Model
We first propose a model to estimate the amounts of

SLO violations incurred by specific deployment plans. It is
composed of the general model, which views database network

1As we assume the request processing time is constant, the SLO hereafter
is referred to as the desirable total network latency.

2Here distribution of requests refers to the ratio of requests coming from
each geographical location.

3In this paper, migration means deployment change that requires moving
data to another DC, including moving an existing replica to another DC and
deploying a new replica in a DC, but excluding removing an existing replica
from a DC.

TABLE I: Symbols of the General Model

Term Meaning
M Set of available DCs
G Set of geographical locations
I Set of request types
X Set of the chosen DCs to host application replicas
H Number of chosen DCs

N l
i Number of type l requests from location i

T l Latency SLO of type l request
Rij RTT latency between location i and DC j
si Total estimated SLO violations at location i given X
ltlij Estimated network latency of type l request at location i if that request is

served by the application replica placed in DC j

dltlj Database network latency for type l request served in DC j given X
pl Protocol overhead of type l request (number of RTTs)

latencies as a black box and extracts the commonality of
the target applications, and the database model, which allows
providers to plug different databases into the general model.

1) The General Model: For clarity, we introduce a metric
Average Violation Per Request (AVPR), calculated as the
total estimated excess waiting time beyond defined SLOs (SLO
violations) for all requests divided by the total number of
requests, as the optimization target. Using the symbols in Table
I, the general model then is defined as follows:

minimize fAV PR(X) =

∑
i si∑

i

∑
l N

l
i

∀i ∈ G, l ∈ I

subject to X ⊂ M, |X| = H

where si is the amount of total SLO violations at location i.
N l

i is the number of type l requests coming from location i. X
and M respectively represents the set of selected DCs, and the
set of available DCs. H is the number of chosen DCs. G is
the set of geographical locations. I is the set of request types.

When calculating si, we first need to determine the routing
of requests from each location i according to the chosen X. The
DC within X that incurs the least amount of SLO violations
is selected to serve users at location i. The amount of SLO
violations incurred by each DC for serving users at location
i is computed as the sum of all the excessive latencies that
the users are estimated to perceive beyond SLO. Thus, si, in
formula, can be represented as:

si = min
j∈X

(
∑

l
N l

i (lt
l
ij − T l)) ∀ltlij > T l, l ∈ I

where T l is the SLO of type l request. ltlij is the latency of
type l request perceived by users at location i, if it is served
by the replica in DC j, which can be further expanded as:

ltlij = plRij + dltlj j ∈ X, l ∈ I

ltlij is the sum of two parts. The first part is the network latency
between the user location i and the corresponding serving DC
j (plRij). pl is the communication overhead (number of RTTs)
of the communication protocol used by the type l request (e.g.,
2 for HTTP and 4 for HTTPS). Rij is the RTT latency between
location i and DC j. The second part is the database network
latency overhead (dltlj) modelled in the following sub-section.

2) The Database Model: The modelling of database net-
work latency overhead is database-specific. Here we illustrate
how to model that of the two widely-used databases. One is
Cassandra [5], a NoSql database; the other is Galera Cluster
[4], a replication solution for MySql relational database.

862

TABLE II: Symbols of the Cassandra Model

Term Meaning
Rl Set of read queries in type l request
Wl Set of write queries in type l request

Qrlk Read quorum of the kth read query in request type l

Qwl
m Write quorum of the mth write query in request type l

r The replication factor of DCs
α(j, k, X) The function finds the kth shortest RTT latency among all

latencies between each DC within X and DC j

a) The Cassandra Model: The commonly used replica-
tion strategy for Cassandra production cluster using multiple
DCs is symmetric replication, where each DC stores the
same number of replicas [5]. Cassandra uses quorum-based
protocol to implement consistent read/write operations across
replicas, and it supports various consistency configurations at
the granularity of query. Given the set of selected DCs (X),
using the symbols in Table II, its database network overhead
dltlj can be modelled as:

dltlj =
∑

k
α(j, �Qrlk

r
�,X) +

∑
m

α(j, �Qwl
m

r
�,X) ∀k ∈ Rl,m ∈ Wl

j ∈ X, l ∈ I

Rl (Wl) is the set of read (write) queries in type l request,
and Qrlk (Qwl

m) is the read (write) quorum of the kth (mth)
read (write) query in type l request. r is the replication factor
in a DC. The function α(j, k,X) returns the kth shortest RTT
latency among all latencies between each DC within X and
DC j. Follow the work by Shankaranarayanan et al. [22], we
model the delay of the read/write query as the slowest replica’s
response time in the quorum. For example, if the read quorum
is 3 and each DC holds 1 data replica, Cassandra will wait to
receive replies from the 2 replicas located in other DCs as the
network delay to the local copy is orders of magnitude smaller.
Hence, the resulted delay will normally be the second shortest
RTT latency from the local DC j to the other selected DCs.

In Cassandra, the remote replica only replies the digest
of the objects. If the local copy is stale, it will send another
request to fetch the complete data and update all the stale
replicas. Analogy to Shankaranarayanan et al. [22], we ignore
this overhead as such case is rare and, thus, only impose minute
impact on the average delay of all the requests.

The administrator is responsible for deciding the quorum
settings of each query, as besides consistency and performance,
there are other concerns in this process that may complicate the
decision, such as availability (Qr = 1, Qw = H maximizes the
performance for read-intensive applications but is susceptible
to failures). For query requiring strong consistency, application
administrator should specify its read/write quorum so that the
object’s Qr and Qw satisfy Qr+Qw > H . Certainly it is also
possible to set a weaker configuration [3] if strong consistency
is unnecessary.

In Cassandra, the legitimate quorum settings are currently
limited to ONE, TWO, THREE, ALL, and QUORUM (sim-
ple majority). Some configurations are invalid, e.g., (H = 5,
Qr = 2, and Qw = 4), as Qw = 4 is not allowed. However,
we also include these configurations in our evaluations as we
suppose they will be possible in future versions.

b) The Galera Model: In Galera cluster, all read-only
transactions are executed locally while transactions with write
operations are synchronously replicated to all remote replicas

TABLE III: Symbols of the Galera Model

Term Meaning
β(j, X) The function finds the largest RTT latency among all latencies between

each DC within X and DC j

V l Number of transactions that have write operations in request type l

using certification-based commit [15]. As there is no further
group communication involved in the protocol [15] after the
transaction ID is determined, the network latency is dominated
by the DC that has the largest RTT latency to the request
originator. Based on symbols in Table III, dltlj , in this case,
can be simply formulated as:

dltlj = V lβ(j,X) j ∈ X, l ∈ I

where V l is the number of database transactions that have write
operations in type l request, and the function β(j,X) returns
the largest RTT latency among all latencies between each DC
within X and DC j.

Galera nodes may queue the messages before delivering
them because of the group communication overhead. We
neglect this delay because we believe it is unpredictable,
application-specific, and also insignificant compared to the
network transfer delay. To build a more precise model, ap-
plication administrators can profile their applications to obtain
the average queuing time and add this value to the model.

C. Solution for Initial Deployment
1) Hardness of the problem: The problem of moving sev-

eral application replicas to cloud at once falls in the category
of Facility Location Problems [23], which are usually NP-hard
to solve.

Proving by restriction, which consists of showing the target
problem contains an already-known NP-hard problem as a
special case, is the simplest way to prove a problem is NP-
hard. Hereafter, we prove our problem is NP-hard by showing
that the NP-hard k-median problem is a special case of our
problem.

Proof: Suppose eventual consistency is used by all the request
types, then dltlj equals 0 for all j, l. Therefore, ltlij =
minj∈X(p

lRij), which is constant. With fixed amount of
estimated SLO violations between any location i and any
candidate DC j, selecting H DCs from a set of candidate DCs
M to serve customers at a set of locations G with minimum
amount of SLO violations is exactly the k-median problem.

Since our problem is NP-hard, we refer to heuristic ap-
proximation algorithms that can find good enough solutions in
polynomial time.

2) Genetic Algorithm Overview: Our solution is based on
genetic algorithm (GA). Compared with other heuristics, it has
three advantages. The first is that meta-heuristics like GA are
more flexible. For each database, the administrator only needs
to substitute the representation of dltlj to let the algorithm
work. While for other heuristics, such as greedy algorithms,
we find that they are often tightly coupled with the database
models. The second is that GA produces satisfactory results
in our context. We demonstrate that in our experiments. The
last but not least is that it is easy for meta-heuristic algorithms
to incorporate other selection criteria into the existing model,
e.g., number of migrations.

863

Fig. 3: An Example of the Chromosome with 3 chosen DCs

TABLE IV: Symbols of Deployment Optimization

Term Meaning
n migration The function calculates the number of required migrations

t Redeployment interval
U Upper bound of AV PR
L Lower bound of AV PR
W Unit AVPR gain threshold for migration if AV PR of the current

deployment is below U
C Cooling period for contracting the application

3) Genetic Algorithm in Detail: Our GA generates a set
of random solutions at the beginning and then iteratively
performing crossover, mutation, and selection according to
a predefined fitness function. It returns not only the set of
chosen DCs but also the optimal request routing regarding the
chosen DCs. Before calculating fitness value, it computes the
optimal request routing according to the chosen DCs X for
each location. The fitness function of the algorithm is defined
as the fAV PR function in the SLO violation model.

GA requires programmers to encode the solutions using
a specific data structure, called chromosome. In our GA, we
number all the available DCs and encode the solution as an
non-repetitive ascending array, as illustrated in Figure 3. The
number of genes in a chromosome equals the total number of
DCs the provider wants to choose H . Thus, repetitive genes
are not allowed in the chromosome. In addition, we sort the
genes in ascending order for the convenience of programming.

We wrote our own initial population generator, crossover,
and mutation operators. For mutation operation, it first ran-
domly picks one gene in the chromosome. Then it mutates
the value of the gene. The mutated gene should be unique to
all the genes in the previous chromosome. Finally, the new
chromosome is sorted to preserve the ascending property. The
initial population is generated randomly. The genes in an
initial chromosome are generated stochastically one by one
unique to the previously generated genes in the same chromo-
some. After that, the genes are sorted to the ascending order.
For crossover operation, we randomly swap some genes
of the two randomly chosen chromosomes. If the resulted
new chromosomes have repetitive genes, we perform extra
mutations to eliminate repetitions. Then the resulted new genes
are sorted to the ascending order. The algorithm terminates if
not enough progress has been made for some time.

D. Solution for Deployment Optimization
1) Decision-making Algorithm: In this step, we aim to

optimize the deployment according to the given workload
and the current deployment. We propose a decision-making
algorithm (Algorithm 1) for deciding whether and how to
adjust the deployment so that good enough AV PR can be
achieved with acceptable migration effort and operational cost.
To realize that, we require the administrator to specify the
upper threshold of the acceptable AV PR, represented as U ,
and the lower threshold of the AV PR, which is shown as L.

The algorithm uses redeployment heuristics to find the sat-

Algorithm 1: Redeployment Decision-making Algorithm

Input: initial dc num, and t

1 dc num = initial dc num;

2 current plan = first step deployment(dc num);

3 for every t do
/* try to contract the application */

4 if fAV PR(current plan) <
L for consecutively more than C rounds then

5 new plan;

6 for each dc ∈ current plan do
7 contracted plan = current plan.remove(dc);

8 tmp plan =
redeployHeuristic(dc num−1, contracted plan);

9 if tmp plan.isF itter(new plan) then
10 new plan = tmp plan;

11 end
12 end
13 if fAV PR(new plan) < U then
14 current plan = new plan;

15 dc num−−;

16 continue;

17 end
18 end

/* try to optimize the deployment with the
same number of chosen DCs */

19 new plan = redeployHeuristic(dc num, current plan);

20 if worthwhile(current plan, new plan) then
21 current plan = new plan;

22 continue;

23 end
/* expand the application */

24 if fAV PR(new plan) ≥ U then
25 new plan =

redeployHeuristic(+ + dc num, current plan);

26 current plan = new plan;

27 end
28 end

Algorithm 2: Worthwhile Method

Input: current plan, and new plan

1 if fAV PR(current plan) < U && w(new plan) > W then
2 return true;

3 end
4 if fAV PR(current plan) ≥ U && fAV PR(new plan) < U

then
5 return true;

6 end
7 return false;

isfactory redeployment plan. Their objective is to let providers
gain more AV PR improvement from unit migration effort,
which is defined as:

max
U − fAV PR(new)

n migration(new, current)
fAV PR(current) ≥ U ||
new.size < old.size

max
fAV PR(current)− fAV PR(new)

n migration(new, current)
otherwise

Here, n migration(new, current) returns the number of
migrations required to change the current deployment to the
new deployment. The above function means when current

864

(a) AV PR for Twissandra using various SLOs and workloads (b) AV PR for TPC-W using different SLOs and workloads

Fig. 4: Comparing performances of different algorithms using 3 DCs

(a) AV PR for Twissandra read-intensive workload (b) AV PR for Twissandra write-intensive workload

(c) AV PR for TPC-W browsing workload (d) AV PR for TPC-W ordering workload

Fig. 5: Comparing deployments using multiple DCs and optimal deployments using 1 DC

deployment cannot meet the upper bound of AV PR, or the
algorithm is trying to contract the application, the optimization
target is to maximize the AV PR gain from unit migration
effort against the upper bound. Otherwise, it is to maximize
the AV PR gain against the AV PR of the current deployment.

As noted in Algorithm 1, our approach first searches if
there is chance to contract the application when AV PR has
been below the lower bound L for time longer than the cooling
period C (Line 4-18). We introduce the cooling period here
to alleviate oscillation that would cause frequent contraction
and expansion of the application. As removing one DC is
not calculated in the migration effort, when contracting the
application, the algorithm iterates all the possible contract
choices, and tries to find the best redeployment plan. If no
contraction is performed, it then endeavours to find a better de-
ployment with the same number of chosen DCs (Line 19-23).
Redeployment will only be conducted if AV PR improvement
from unit migration effort is beyond an administrator defined
threshold W or the new deployment can reduce the AV PR
to the acceptable level (Algorithm 2). Suppose no deployment
plan that will reduce the AV PR into acceptable level is found,
the algorithm then expands the application (Line 24-28).

Administrators can reset constants U , L, C, and W at any
time according to their own wishes.

2) Redeployment Heuristics: We have come up with two
redeployment heuristics:

Migration-aware Genetic: It simply replaces the fitness
function of the GA used in initial deployment phase with the
previous defined optimization target.

k-Brute Force: Brute-forcedly find the best plan that is
reachable using at most k migrations (feasible for small k if
H , |G|, and |M| are large). In our experiments, we set k to 2.

V. PERFORMANCE EVALUATION

We evaluate our approach using simulations. The settings
of the DCs and networks are described in the next sub-section.
The workloads and baselines used are explained within each
experiment. As GA is stochastic, we run each test 5 times and
report the best result. For the parameters of the GA, we set
the population size to 1000, the crossover rate to 50%, and the
mutation rate to 2%. We select half of the best chromosomes
for reproduction after each iteration.

A. DCs and User Settings
We use the data collected by Zhu et al. [24] for our

experiments due to lack availability of latency data from real
cloud DCs. The dataset uses 307 PlanetLab nodes as the
candidate DCs and 1881 web services discovered by a crawler
as the user locations. Zhu et al. let the PlatetLab nodes ping
the web services and each other to obtain the real RTT latency

865

data. Though PlanetLab nodes are not commercial cloud DCs,
we believe the dataset is still representative to our problems
as they are geographically distributed and can be viewed as
mimics of cloud DCs in which application replicas interact
with each other and end users through WAN.

B. Evaluation of Initial Deployment

1) Workload: We studied two real-world applications and
specified the consistency requirements of all their request
types according to our own judgement. The first application
is the TPC-W workload [11] which mimics an e-business
website. The TPC-W implementation we studied uses MySql
database, which is compatible to the Galera cluster. The second
application is called Twissandra [12], which is an open source
copy of Twitter built on Cassandra.

We generate two different workloads for both of the
applications from each geographical location using normal
distribution. The request mix of TPC-W, is defined by the
browsing and ordering workload included in its benchmark
suite. Roughly, in browsing workload, 75% requests can be
served without inter-DC communications; while in ordering
workload, the number decreases to about 38%. For Twissandra,
the request mix is the ratio of timeline view and tweet oper-
ations. For read-intensive workload, the timeline view/tweet
ratio is set to 9:1; for write-intensive workload, it is 7:3.
We assume strong consistency is required for both of the
operations, which means Qr(timeline view)+Qw(tweet)> H .
We set Qr = 2, Qw = H − 1 for all Twissandra tests using
multiple clouds, as Twissandra is generally read-intensive, and
Qr = 2 can tolerate one DC down when Qw > 1 for
Qr +Qw − 1 DCs.

2) SLO: We specify different latency SLOs as well. The
latency constraint for each request type is set according to
the total network round-trips it requires. Each request type is
respectively given 50ms and 100ms to perform one network
round-trip for Gold and Silver SLO.

3) Necessity of Considering Database Network Latencies:
First, we show that it is important to consider database network
latencies when deploying applications requiring strong inter-
DC consistency. We fix the number of chosen DCs to 3 in
the experiment, and run our consistency-aware GA algorithm
with different levels of SLO and workloads. We compare
the results with a baseline GA algorithm that only considers
network communications between DCs and end users, which
is similar to the setting used in Yu et al.’s work [25]. We run
the baseline and then evaluate the found solutions using the
database latency aware model.

From Figure 4, it is obvious that by omitting database
network latencies, the found solutions result to unacceptably
higher AV PR compared to the database consistency overhead
aware approach, except cases of TPC-W application under
browsing workload. The resulted differences of the two algo-
rithms for TPC-W under browsing workload are much smaller
because the majority of requests (75%) in browsing workload
are served without inter-DC communications. From the results,
we can conclude that it is important to take database network
latencies into account if the inter-DC communication rate is
high in the request mix.

4) Goodness of our GA: We compare the results of our GA
with the optimal results. The optimal solutions are derived by
traversing all the possible solutions in the search space. In our

Fig. 6: Results using fixed deployments and silver SLO

settings, finding optimal results using 3 DCs is the limit on our
desktop testbed, which takes more than 16 hours to finish. As
shown in figure 5, our GA finds the exact optimal deployment
plan for all 8 settings, but using only around 4 minutes.

5) Usefulness of Deploying Applications in Multiple DCs:
Regarding AV PR, we discuss whether it is worth to deploy
applications requiring strong inter-DC consistencies in multiple
DCs. This time, we fix the SLO to silver and run our GA
algorithms with different number of DCs and workloads. The
results are compared with the optimal deployments using one
DC only.

The results presented in Figure 5 indicate that purely from
the performance perspective, deploying applications requiring
strong consistency in multiple DCs is still beneficial. Using
3 DCs generally can reduce the amount of SLO violations to
half of that using optimal single DC deployment. However,
the performance gain from increased number of DCs becomes
negligible when the number of DCs exceeds 4. This effect
justifies our motivation to keep the number of chosen DCs
as small as possible in the deployment optimization phase to
save operational cost. Even though the performance gain is
small, the providers may want to deploy their applications in
larger number of DCs for other benefits, such as availability
and fault-tolerance, which is out of the scope of this paper.

C. Evaluation of Deployment Optimization
1) Workload: We generate a series of workloads of

Twissandra to simulate the expansion of business and workload
increase for the test of our redeployment decision-making
algorithm. We classify the user locations into 11 geographic
categories based on their latencies to all the 307 DCs using K-
means, and we add one category of locations into the workload
per redeployment round. The numbers of requests at the added
locations continuously grow in the following rounds in our
settings to mimic workload increase.

2) Necessity of Deployment Optimization: To illustrate the
necessity of deployment optimization along with the business
expansion and workload increase, we run experiments using
2, and 3 DCs according to the initial workloads and observe
how the performances of the fixed deployments will change in
the later times under varied workload distributions.

As Figure 6 shows, the fixed deployments incur unaccept-
ably high AV PR when the workload has been expanded and
increased, which indicates that redeployment is essential to
maintain acceptable QoS under changing workloads.

3) Our Approach: We test our decision-making algorithm
using the two proposed redeployment heuristics. We compare
the results with one baseline algorithm.

Similar to Algorithm 1, the baseline algorithm tries to
contract the application when AV PR is below the lower
bound L for time longer than the cooling period, and expands

866

(a) AVPR of Deployments (b) Number of Migrations

(c) Number of Chosen DCs

Fig. 7: Results with initial dc = 2, U = 5, L = 3, W = 0.5, C = 1, and silver SLO

the application when U cannot be met. However, it performs
migrations as long as it finds a better deployment plan, no
matter whether the improvement is significant or not compared
to the current deployment. The redeployment heuristic used in
the baseline is called Migration-unaware Genetic. Its target is
always to find the deployment with minimum AV PR, which
is the same GA used in the initial deployment phase.

We run the test with initial dc = 2, U = 5, L = 3,
W = 0.5, C = 1, and silver SLO. Figure 7 shows the
comparison of the AV PR, the number of migrations, and
the number of chosen DCs within each redeployment round
using the proposed and the baseline approaches. Except round
3-5, the baseline algorithm finds the deployment plans with
the smallest AV PR. On the other hand, it incurs the largest
number of migrations. Our approaches, though results a little
more AV PR, manage to maintain the performance under
the upper bound with much less total numbers of migrations
(9:10:24), which shows the effectiveness of our decision-
making algorithm in balancing AV PR and the migration cost.

Comparing the two redeployment heuristics used in our
algorithm, at the 3rd round, 2 brute force heuristic failed
to find a valid redeployment plan using 3 DCs due to its
limitation that, within each round, maximum 2 migrations can
be conducted. Though it greatly outperforms other approaches
in AV PR during round 3 to round 5, it uses one more
DC, which increases the operational cost. The 2 brute force
approach finally takes the chance to contract the application
at round 6 after long passing the cooling period. This is also
due to its limitation, which results it not being able to find a
redeployment plan with AV PR below the upper bound using
3 DCs after the cooling period during round 4 to round 5.

Choosing the right redeployment heuristic is always context
specific. If the workload distribution does not change abruptly,
k brute force is the better choice, as it provides higher
chance for the providers to find the redeployment plan with

optimal AV PR gain from unit migration. For application
providers that have tight operational budget or providers that
are expanding quickly, then migration-aware GA is possibly
the right choice.

VI. DISCUSSIONS

Our approach can be applied to applications using other
database systems, as long as they adopt shared-nothing archi-
tecture, store full copy of data at each site, and employ a known
inter-DC consistency protocol. Though, currently, not many
commercial databases support inter-DC consistency, there are
some emerging ones that satisfy the prerequisites and can be
incorporated in our approach in the future, such as MDCC [8],
Calvin [9], and Replicated Commit [10].

Furthermore, it is difficult to build a precise database
latency model which considers all the factors. Like what we
have done with the Cassandra and Galera model, we believe
a close approximation is enough to meet the purpose as the
special cases only have minute influence on the aggregated
results when the traffic is huge.

Our approach aims to provide performance boost in long-
term. Handling performance issues caused by short-term net-
work instability is out of our scope, and there is no solution
can realize that if application cannot be migrated in short
time. As long as the network latency data used for deployment
plan calculation is close to the network performance in normal
status, our approach is sure to be beneficial.

Providers can either use the current workload or the pre-
dicted workload to generate the redeployment plan. If pre-
dictions can be done accurately, using predicted workload can
further improve the performance by preparing for the workload
changes during the redeployment intervals in advance.

VII. RELATED WORK

Previous works about inter-DC consistency mostly focus
on the database layer. Besides developing databases that are

867

capable of supporting strong inter-DC consistency [2], [4]–
[10], some works have also focused on optimizing the place-
ment of data replicas and their consistency configurations to
reduce the response time and cost in the database layer. These
works usually target quorum-based systems, as they are more
flexible in consistency configurations. SPANStore [26] is a
multi-DC key-value store with quorum consistency. It is able
to transparently place data replicas across geo-distributed DCs
so that total cost of storage and I/O operations is minimized,
and meanwhile, it still can meet its latency, fault-tolerance, and
consistency goals. Shankaranarayanan et al. [22] proposed an
approach to find the optimal configuration of quorum-based
data across multiple DCs (number of replicas, replica place-
ment, Qr, and Qw) so that read/write latency is minimized in
normal case and bounded when one DC is lost. Our work is
different to theirs as we aim to optimize the performance of
the whole application instead of just the read/write latencies
in database. In addition, we strive to build a general approach
that is extensible to support multiple databases.

Many works have studied the application placement prob-
lem in multi-DC context. However, none of them have con-
sidered inter-DC consistency. Yu et al. [25] explored how
to deploy and redeploy standalone application replicas to
minimize total response time or maximize user satisfaction
in changing workload. Zhang et al. [27] proposed an approach
to dynamically place applications in geographically distributed
cloud DCs with limited capacities and volatile costs using con-
trol and game theory. Wu et al. [28] targeted the deployment of
social media applications (e.g., Youtube) using multiple clouds.
Their approach employed a social influence model to predict
the future demand, and then judiciously place the media files
and servers in cloud DCs with minimum cost under latency,
bandwidth, and availability constraints.

VIII. CONCLUSIONS

We proposed an approach to help web application providers
deploy their applications with various inter-DC consistency
requirements across multiple cloud DCs. It generates deploy-
ment plan with minimum amount of SLO violations when
the application is first moved to the cloud using our genetic
algorithm (initial deployment phase), and then it continuously
optimizes the deployment considering SLO satisfaction, mi-
gration cost, and operational cost along with the change of
workload distribution (deployment optimization phase). We
proposed an extensible SLO violation model so that besides the
illustrated database systems (Cassandra and Galera Cluster),
other databases that satisfy certain requirements can be easily
adapted to our approach. To demonstrate the effectiveness
of our approach, we conducted simulation experiments using
settings of two applications (TPC-W and Twissandra).

REFERENCES

[1] “Latency - it costs you,” http://highscalability.com/latency-everywhere-
and-it-costs-you-sales-how-crush-it.

[2] J. Shute et al., “F1: A distributed SQL database that scales,” Proceed-
ings of the VLDB Endowment, vol. 6, no. 11, pp. 1068–1079, 2013.

[3] P. Bailis et al., “Quantifying eventual consistency with PBS,” The VLDB
Journal, vol. 23, no. 2, pp. 279–302, 2015.

[4] Codership, “Galera cluster,” http://galeracluster.com/products/, 2015.

[5] Apache, “Cassandra,” http://cassandra.apache.org/, 2015.

[6] J. Baker et al., “Megastore: Providing scalable, highly available storage
for interactive services,” in Porceddings of the 5th biennial Conference
on Innovative Data Systems Research (CIDR), vol. 11, 2011, pp. 223–
234.

[7] J. C. Corbett et al., “Spanner: Google’s globally-distributed database,”
in Proceedings of OSDI, vol. 1, 2012.

[8] T. Kraska et al., “MDCC: Multi-data center consistency,” in Proceedings
of the 8th ACM European Conference on Computer Systems. ACM,
pp. 113–126.

[9] A. Thomson et al., “Calvin: fast distributed transactions for partitioned
database systems,” in Proceedings of the 2012 ACM SIGMOD Interna-
tional Conference on Management of Data. ACM, pp. 1–12.

[10] H. Mahmoud et al., “Low-latency multi-datacenter databases using
replicated commit,” Proceedings of the VLDB Endowment, vol. 6, no. 9,
pp. 661–672, 2013.

[11] Transaction Processing Performance Council, “TPC-W Workload,” http:
//www.tpc.org/tpcw/, 2015.

[12] Twissandra, “Twissandra,” https://github.com/twissandra/twissandra.

[13] L. Lamport, “The part-time parliament,” ACM Transactions on Com-
puter Systems (TOCS), vol. 16, no. 2, pp. 133–169, 1998.

[14] T. D. Chandra et al., “Paxos made live: an engineering perspective,” in
Proceedings of the Twenty-sixth Annual ACM Symposium on Principles
of Distributed Computing. ACM, pp. 398–407.

[15] Codership, “Certification-based commit,” http://galeracluster.com/
documentation-webpages/certificationbasedreplication.html, 2014.

[16] F. Pedone, “The database state machine and group communication
issues,” Ph.D. dissertation, 1999.

[17] B. Kemme and G. Alonso, “Don’t be lazy, be consistent: Postgres-R,
a new way to implement database replication,” in VLDB, 2000, pp.
134–143.

[18] R. Nishtala et al., “Scaling memcache at facebook,” in Proceedings
of the 10th USENIX conference on Networked Systems Design and
Implementation. USENIX Association, Conference Proceedings, pp.
385–398.

[19] Amazon, “Route 53 Update - Geo Routing,” http://aws.amazon.com/
blogs/aws/route-53-domain-reg-geo-route-price-drop/, 2015.

[20] N. Grozev and R. Buyya, “Multi-cloud provisioning and load distribu-
tion for three-tier applications,” ACM Transactions on Autonomous and
Adaptive Systems (TAAS), vol. 9, no. 3, p. 13, 2015.

[21] “NetMetrics,” https://www.ookla.com/netmetrics, 2015.

[22] P. Shankaranarayanan et al., “Performance sensitive replication in geo-
distributed cloud datastores,” in Proceedings of 44th International
Conference on Dependable Systems and Networks (DSN), 2014.

[23] D. B. Shmoys et al., “Approximation algorithms for facility location
problems,” in Proceedings of the Twenty-ninth Annual ACM Symposium
on Theory of Computing. ACM, Conference Proceedings, pp. 265–274.

[24] Z. Jieming et al., “Scaling service-oriented applications into geo-
distributed clouds,” in proceedings of the 7th International Symposium
on Service Oriented System Engineering (SOSE), pp. 335–340.

[25] K. Yu et al., “A user experience-based cloud service redeployment
mechanism,” in Proceedings of the 2011 IEEE International Conference
on Cloud Computing (CLOUD), pp. 227–234.

[26] Z. Wu et al., “SPANStore: cost-effective geo-replicated storage span-
ning multiple cloud services,” in Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, 2013.

[27] Q. Zhang et al., “Dynamic service placement in geographically dis-
tributed clouds,” in Proceedings of the 2012 IEEE 32nd International
Conference on Distributed Computing Systems (ICDCS), pp. 526–535.

[28] Y. Wu et al., “Scaling social media applications into geo-distributed
clouds,” in Proceedings of the 2012 IEEE INFOCOM. IEEE, pp.
684–692.

868

