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Workflow management systems (WMS) support the composition and deployment of 
workflow-oriented applications in distributed computing environments. They hide the 
complexity of managing large-scale applications, which includes the controlling data 
pipelining between tasks, ensuring the application's execution, and orchestrating the distributed 
computational resources to get a reasonable processing time. With the increasing trends of 
scientific workflow adoption, the demand to deploy them using a third-party service begins to 
increase. Workflow-as-a-service (WaaS) is a term representing the platform that serves the 
users who require to deploy their workflow applications on third-party cloud-managed 
services. This concept drives the existing WMS technology to evolve towards the development 
of the WaaS cloud platform. Based on this requirement, we extend CloudBus WMS 
functionality to handle the workload of multiple workflows and develop the WaaS cloud 
platform prototype. We implemented the Elastic Budget-constrained resource Provisioning 
and Scheduling algorithm for Multiple workflows (EBPSM) algorithm that is capable of 
scheduling multiple workflows and evaluated the platform using two bioinformatics 
workflows. Our experimental results show that the platform is capable of efficiently handling 
multiple workflows execution and gaining its purpose to minimize the makespan while meeting 
the budget. 

Keywords: Scientific workflow, Cloud computing, Workflow management system, 
Bioinformatics workflow, Budget-constrained scheduling. 

1. Introduction 
Workflow is a computational model that represents the application tasks and its related flow of 
data in the form of interconnected nodes. The applications that utilize the workflow model 
consist of several complexes, large-scale applications, and involve a vast amount of data. 
Therefore, these workflows are usually deployed in the distributed systems that have massive 
computational resources such as cluster, grid, and cloud computing environments. 

To manage the complexity of executing workflows, its interaction with the users, and its 
connectivity to the resources in distributed systems, the researchers utilize the toolkit called 
workflow management system (WMS). The WMS hides the complicated orchestration 
between those coordinated components. It needs to be noted that the interconnected tasks 
within a workflow have strict dependencies in which the following tasks can be executed 
whenever the earlier tasks that become its dependencies have finished their execution. 
Therefore, the critical responsibility of this WMS includes the management of data movement, 
the scheduling of tasks and preserving their dependencies, and the provisioning of required 
computational resources from the external distributed systems. 



A conventional WMS is designed to manage the execution of a single workflow application. 
In this case, a WMS is tailored to a particular workflow application to ensure the efficient 
execution of the workflow. It is not uncommon for a WMS to be built by a group of researchers 
to deploy a specific application of their research projects. With the advent of the computational 
infrastructure and the rising trends of workflow model adoption within the scientific 
community, there is a demand to provide the execution of workflow as a service. Therefore, 
there is an idea to elevate the functionality of WMS to provide the service for executing 
workflows in the clouds called the Workflow-as-a-Service (WaaS) cloud platform. 

Developing the WaaS cloud platform means leveraging the WMS functionality and minimizing 
any specific application-tailored in the component of the system. This challenge arises with 
several issues related to the resource provisioning and scheduling aspect of the WMS. In this 
work, we focus on designing the resource provisioning and scheduling module within the 
existing CloudBus WMS [1] for the WaaS cloud platform development. We modify the 
scheduling modules to fit into the requirements by building on the capability for scheduling 
multiple workflows. In summary, the main contributions of this chapter are: 

• The development of WaaS cloud platform by extending CloudBus WMS. 
• The implementation of EBPSM algorithm that is designed to handle multiple 

workflows scheduling within WaaS cloud platform. 
• The case study to analyse the performance of WaaS cloud platform by deploying 

bioinformatics workflow applications in real cloud computing environments. 

The rest of this chapter is organized as follows. Section 2 reviews works of that are related to 
our discussion. Section 3 describes the development of WaaS cloud platform and its 
requirements. Furthermore, Section 4 explains the case study of executing multiple workflows 
in WaaS cloud platform. Finally, the Section 5 summarizes the findings and discusses the future 
directions. 

2. Related Work 
WMS technology has evolved since the era of cluster, grid, and current cloud computing 
environments. A number of widely used WMS were initially built by groups of multi-
disciplinary researchers to deploy the life-science applications of their research projects 
developed based on the computational workflow model. Each of them has a characteristic 
tailored to their requirements. However, to the best of our knowledge, the existing WMS 
systems are not designed for handling multiple workflows execution as it becomes the main 
requirement for WaaS cloud platform. Therefore, the case study of several prominent WMS is 
plentiful and worth to be explored further for the development of such a platform. The summary 
of these characteristics is depicted in Table 1. 

ASKALON [2] is a framework for development and runtime environments for scientific 
workflows built by a group from The University of Innsbruck, Austria. Along with 
ASKALON, the group released a novel workflow language standard developed based on the 
XML called Abstract Workflow Description Language (AWDL) [3]. ASKALON has a tailored 
implementation of wien2k workflow [4], a material science workflow for performing electronic 
structure calculations using density functional theory based-on the full-potential augmented 
plane-wave to be deployed within the Austrian Grid Computing network. 

 



Table 1: Summary of various WMS features. 

Main features ASKALON Galaxy HyperFlow Kepler Pegasus Taverna CloudBus 

Workflow 
Engine 

Service-
oriented   -     

GUI-
supported   -     

Provenance-
empowered        

Distributed 
Environments 

Grid-
enabled        

Cloud-
enabled        

Container-
enabled -   -  - - 

Serverless-
enabled - -  - - - - 

 

Another project is Galaxy [5], a web-based platform that enables users to share workflow 
projects and provenance. It connects to myExperiments [6], a social network for sharing the 
workflow configuration and provenance among the scientific community. It is a prominent 
WMS and widely used for in silico experiments [7] [8] [9]. 

A lightweight WMS, HyperFlow [10]  is a computational model, programming approach, and 
also a workflow engine for scientific workflows from AGH University of Science and 
Technology, Poland. It provides a simple declarative description based on JavaScript. 
HyperFlow supports the workflow deployment in container-based infrastructures such as 
docker and Kubernetes clusters. HyperFlow is also able to utilize the serverless architecture for 
deploying Montage workflow in AWS Lambda and Google Function, as reported by Malawski 
et al. [11]. 

Kepler [12] is a workflow management system developed by a collaboration of universities, 
including UC Davis, UC Santa Barbara, and UC San Diego, United States. It is a WMS that is 
built on top of the data flow-oriented Ptolemy II system [13] from UC Berkeley. Kepler has 
been adopted in various scientific projects including the fluid dynamics [14]  and computational 
biology [15]. This WMS provides compatibility to run on different platforms, including 
Windows, OSX, and Unix systems. 

Another project is Pegasus [16], one of the prominent WMS that is widely adopted for projects 
that make an essential breakthrough to scientific discovery from The University of Southern 
California, United States. Pegasus runs the workflows on top of HTCondor [17] and supports 
the deployment across several distributed systems, including grid, cloud, and container-based 
environments. The Pegasus WMS has a contribution to the LIGO projects involved in the 
gravitational wave detection [18]. 

Furthermore, there is also Taverna [19], a workflow management system from The University 
of Manchester that as recently accepted under the Apache Incubator project. Taverna is 
designed to enable various deployment models from the standalone, server-based, portal, 
clusters, grids, to the cloud environments. Taverna has been used in various in silico 
bioinformatics projects, including several novel Metabolomics research [20] [21]. 



Finally, the CloudBus WMS [1], a cloud-enabled WMS from The University of Melbourne, is 
the center of discussion in this chapter. Its functionality evolves to support the development of 
the WaaS cloud platform. 

3. Prototype of WaaS Cloud Platform 
In this section, we discuss a brief development of the CloudBus WMS and the WaaS cloud 
platform development. We describe the evolving functionality of CloudBus WMS in its first 
release to handle the deployment in the grid computing environment up to the latest version 
that provides the cloud-enabled functionality to give an overview of how the distributed 
systems trend changes how the WMS works. Furthermore, we present the extension related to 
the scheduler component of this WMS to support the development of the WaaS cloud platform. 

3.1. CloudBus Workflow Management System 
The earliest version of the WMS from the CLOUDS lab was designed for grid computing 
environments under the name of GridBus Workflow Enactment Engine in 2008. The core 
engine in this WMS was called a workflow enactment engine that orchestrated the whole 
workflow execution. The engine interacts with users through the portal that manages workflow 
composition and execution planning. This engine also equipped with the ability to interact with 
grid computing environments through the grid resource discovery to find the possible grid 
computational infrastructure, the dispatcher that sends the tasks to the grids for the execution, 
and the data movement to manage data transfer in and out through HTTP and GridFTP 
protocols. The Gridbus Workflow Enactment Engine was tested and evaluated using a case 
study of fMRI data analysis in the medical area. The architectural reference to this Gridbus 
Workflow Engine and its case study can be referred to the paper by Yu and Buyya [22]. 

The second version of the GridBus Workflow Enactment Engine was released in 2011, built 
with plugin support for deployment in cloud computing environments. In this version, the 
engine is equipped with the components that enable it to utilize several types of external 
computational resources, including grid and cloud environments. Therefore, it was renamed to 
CloudBus Workflow Engine. In addition to this functionality, the CloudBus Workflow Engine 
was tested and evaluated for scientific workflow execution on top of the Aneka Cloud 
Enterprise platform [23] and Amazon Elastic Compute Cloud (EC2) using a case study of 
evolutionary multiobjective optimization technique based on a genetic algorithm. We 
suggested that readers refer to the architectural design and case study implementation published 
by Pandey et al. [24]. 

The latest release of the CloudBus Workflow Engine in 2016 was the implementation of a 
comprehensive cloud-enabled functionality that allows the engine to lease the computational 
resources dynamically from the IaaS cloud providers. This version introduces a Cloud 
Resource Manager module that enables the platform to manage the resources (i.e., Virtual 
Machines) from several IaaS cloud providers related to its automated provisioning, integrating 
to the resource pool, and terminating the VMs based on the periodic scanning of the 
implemented algorithm. Along with the dynamic functionality of cloud resources management, 
the WMS is also equipped with a dynamic algorithm to schedule workflows which able to 
estimate the tasks' runtime based on the historical data from the previous workflows' execution. 
This version is known as the CloudBus Workflow Management System (WMS). The 
architectural reference and its case study on Astronomical application Montage can be referred 
to the paper by Rodriguez and Buyya [1]. 



 
Figure 1: Architectural reference on the WaaS cloud platform. 

3.2. WaaS Cloud Platform Development 
The CloudBus WMS is continuously adapting to the trends of the distributed systems 
infrastructures from cluster, grid, to the cloud environments. With the increasing popularity of 
the computational workflow model across scientific fields, we extend the CloudBus WMS to 
serve as a platform that provides the execution of workflow as a service. Therefore, we design 
the reference to the WaaS cloud platform based on the structure of CloudBus WMS. Five 
entities compose the WaaS cloud platform, they are portal, engine, monitoring service, 
historical database, and plugins to connect to distributed computing environments. This 
structure is similar to the previous CloudBus WMS architecture. The architectural reference 
for the platform can be seen in Figure. 1. 

Portal: an entity that is responsible for bridging the WaaS cloud platform to the users. The 
portal serves as the user interface in which users can submit the job, including composing, 
editing, and defining the workflow QoS requirements. It interacts with the engine to pass on 
the submitted workflows for scheduling. It also interacts with the monitoring service so that 
the users can monitor the progress of the workflows' deployment. Finally, the engine sends 
back the output data after it finished the execution through this entity. The change from the 
previous CloudBus WMS functionality is the capability of the portal to handle the workload of 
multiple workflows. 

Monitoring Service: an entity that is responsible for monitoring the workflow execution and 
resources running within the WaaS cloud platform that is provisioned from the clouds. Five 



components in this entity are the Workflow Monitor that tracks the execution of the jobs, the 
Resource Monitor which tracks the VMs running in the platform, the Cloud Information 
Services that discover the available VM types and images of the IaaS clouds profile, the Cloud 
Resource Manager that manages the provisioning of cloud resources, and the VM Lifecycle 
Manager which keeps tracking the VMs’ status before deciding to terminate them. 

This entity interacts with the portal to provide the monitoring information of workflows' 
execution. On the other hand, it also interacts with the engine to deliver the status of job 
execution for scheduling purposes and the state of the computational resource availability. We 
changed the provisioning algorithm, which is managed by the cloud resource manager and the 
VM lifecycle manager, based on the EBPSM algorithm. Both the cloud resource manager and 
the VM lifecycle manager control the VMs provisioning by keeping track of the idle status of 
each VM. They will be terminated if the idle time exceeded the thresholdidle. This provisioning 
algorithm is depicted in Algorithm 1. Finally, this entity saves the historical data of tasks' 
execution into the historical database based on an HSQL database where the information is 
used to estimate the tasks' runtime. 

Engine: an entity that is responsible for the orchestration of the whole execution of workflows. 
This entity interacts with the other objects of the WaaS cloud platform, including the third-
party services outside the platform. Moreover, it takes the workflows' job from the portal and 
manages the execution of tasks. The scheduler that is part of this entity schedules each task 
from different workflows and allocates them to the available resources maintained by the 
monitoring service. It also sends the request to the plugins, JClouds API, for provisioning new 
resources if there is no available idle VMs to reuse. 

Task scheduler, the core of the engine, is modified to adapt to the EBPSM algorithm that 
manages the scheduling of multiple workflows. Within the task scheduler, there is a component 
called the WorkflowCoordinator that creates the Task Manager(s) responsible for scheduling 
each task from the pool of tasks. To manage the arriving tasks from the portal, we create a new 
class WorkflowPoolManager responsible for periodically releasing ready tasks for scheduling 
and keeping track of the ownership of each task. 

Prediction component within the task scheduler is responsible for estimating the runtime of the 
task, which becomes a pre-requisite of the scheduling. We modify the PredictRuntime 
component to be capable of building an online incremental learning model. This learning model 
is a new approach for estimating the runtime for scientific workflows implemented in the WaaS 
cloud platform. While previously, this module utilizes the statistical analysis approach. 

Historical database: an HSQL database used to store the historical data of tasks' execution. 
The information, then, is used to estimate the tasks' runtime. In this platform, we add the 
submission time variables to the database, since this information is used to build the prediction 
model to estimate the runtime. 

Plugins: a JClouds API responsible for connecting the WaaS cloud platform to third party 
computational resources. Currently, the platform can connect to several cloud providers, 
including Amazon Elastic Compute Cloud (EC2), Google Cloud Engine, Windows Azure, and 
OpenStack-based NeCTAR clouds. It sends the request to provision and terminates resources 
from the cloud providers. 

 



 
Figure 2: Class diagram reference on the scheduler extension of the WaaS cloud platform. 

Finally, the modified components within the WaaS cloud platform from the previous version 
of the CloudBus WMS are marked with the red-filled diagram in Figure. 1 and the class 
diagram reference to the WaaS cloud platform scheduler extension are depicted in Figure. 2. 

3.3. Implementation of Multiple Workflows Scheduling Algorithm 
Elastic Budget-constrained resource Provisioning and Scheduling algorithm for Multiple 
workflows is a dynamic heuristic algorithm designed for WaaS cloud platform. The algorithm 
was designed to schedule tasks from multiple workflows driven by the budget to minimize the 
makespan. EBPSM distributes the budget to each of its tasks in the first step, and then, it 
manages the tasks from different workflows to schedule based on its readiness to run (i.e., 
parents' tasks finished the execution). 

Furthermore, the algorithm looks for idle resources that can finish the tasks as fast as possible 
without violating its assigned budget. This algorithm enforces the reuse of already provisioned 
resources (i.e., virtual machines) and sharing them between tasks from different workflows. 
This policy was endorsed to handle the uncertainties in the clouds, including VM performance 
variability, VM provisioning, and deprovisioning delays, and the network-related overhead that 
incurs within the environments. Whenever a task finishes, the algorithm redistributes the 
budget for the task's children based on the actual cost. In this way, the uncertainties, as 
mentioned earlier from cloud computing environments, can be further mitigated before creating 
a snowball effect for the following tasks. 

The scheduling phase of the EBPSM algorithm was mainly implemented in the task scheduler, 
a part of the engine. The WorkflowPoolManager class receives the workflows' jobs and 
distributes the budget to the tasks as described in Algorithm 2. It keeps track of the workflows' 
tasks before placing the ready tasks on the priority queue based on the ascending Earliest Finish 
Time (EFT). Then, the WorkflowCoordinator creates a task manager for each task that is 
pooled from the queue. In the resource provisioning phase, the task scheduler interacts with the 
cloud resource manager in the monitoring resource to get the information of the available VMs. 
The task scheduler sends the request to provision a new VM if there are no VMs available to 
reuse. The implementation of this phase involving several modules from different components 
of the WaaS cloud platform. The detail of this scheduling is depicted in Algorithm 3. 

The post-scheduling of a task ensures budget preservation by calculating the actual cost and 
redistributing the workflows' budget. This functionality was implemented in the task scheduler 
with additional information related to the clouds from the cloud information service, which 



maintains the cloud profile such as the VM types, and the cost of the billing period. The detail 
of the budget re-distribution procedure is described in Algorithm 4. 

In this work, we implemented a version of the EBPSM algorithm without the container. We 
did not need the container-enabled version as we only used bioinformatics workflow 
applications that did not have conflicting software dependencies and libraries. The enablement 
for microservices and serverless-supported WaaS cloud platform is left for further 
development. For more details on the EBPSM versions and their budget distribution strategies, 
we suggested the readers to refer to the papers by Hilman et al. [25] [26]. 

 

Algorithm 1: Resource Provisioning  Algorithm 3: Scheduling 
procedure manageResource 

VMidle = all leased VMs that are idle 
thresholdidle = idle time threshold 
for each vmidle ϵ VMidle do 

tidle = idle time of vm 
if tidle ≥ thresholdidle then 

terminate vmidle 
end if 

end for 
end procedure 
 

 q = queueing tasks for scheduling 
procedure scheduledQueuedTasks(q) 

sort q by ascending EFT 
while q is not empty do 

t = q.poll 
vm = null 
if there are idle VMs then 

VMidle = set of all idle VMs 
vm = vm ϵ VMidle that can finish t 
within t.budget with the fastest 
execution time 

else 
vmt = fastest VM type within 
t.budget 
vm = provisionVM(vmt) 

end if 
scheduleTask(t, vm) 

end for 
end procedure 

  
Algorithm 2: Budget Distribution  
β = workflow’s budget 
T = set of tasks in the workflow 
procedure distributeBudget (β, T) 

S = tasks’ estimated execution order 
l = tasks’ level in the workflow 
for each task t ϵ T do 

allocateLevel(t, l) 
initiateBudget(0, t) 

end for 
for each level l do 

Tl = set of all tasks in level l 
sort Tl based on ascending EFT 
put(Tl, S) 

end for 
while β > 0 do 

t = S.poll 
𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  = cost of task t in vmt 
vmt = chosen VM type 
allocateBudget(𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 , t) 
β = β - 𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  

end while 
end procedure 

 
 
 
 
 
 
  
 Algorithm 4: Budget Update 
 procedure updateBudget(T) 

tf = completed task 
Tu = set of unscheduled t ϵ T 
βu = total sum of t.budget, where t ϵ Tu 
sb = spare budget 
if 𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣

𝑣𝑣𝑓𝑓  ≤ (tf.budget + sb) then 
sb = (tf.budget + sb) - 𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣

𝑣𝑣𝑓𝑓  
βu = βu + sb 

else 
debt = 𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣

𝑣𝑣𝑓𝑓  – (tf.budget + sb) 
βu = βu – debt 

end if 
distributeBudget(βu, Tu) 

end procedure 

 
 
 
 
 
 
 
 
 
 
 
 
 

 



4. Case Studies and Performance Evaluation 
In this section, we present the case study of multiple workflows execution within a WaaS cloud 
platform prototype. We address the workload of bioinformatics workflows and its preparation 
for the execution. Furthermore, we also describe the technical infrastructure and its 
experimental design to deploy the platform and present the results from the experiment. 

4.1. Bioinformatics Applications Workload 
Many bioinformatics cases have adopted the workflow model for managing its scientific 
applications. An example is myExperiments [6] that has a broader scope to connect various 
bioinformatics workflows users. This social network for scientists who utilize the workflows 
for managing their experiments, stores almost four thousand workflows software, 
configurations, and datasets with more than ten thousand members. We explored two 
prominent bioinformatics workflows in the area of genomics analysis [27] and drug discovery 
[28] for the case study. 

4.1.1. Identifying Mutational Overlapping Genes 
The first bioinformatics case was based on the 1000 Genomes Project1, an international 
collaboration project to build a human genetic variation catalogue. Specifically, we used an 
existing 1000 Genome workflow2 to identify overlapping mutations in humans’ genes. The 
overlapping mutations were statistically calculated in a rigorous way to provide an analysis of 
possible disease-related mutations across human populations based on their genomics 
properties. This project has an impact on evolutionary biology. Examples include a project 
related to the discovery of full genealogical histories of DNA sequences [29]. 

The workflow consists of five tasks that have different computational requirements [30]. They 
are individuals, individuals_merge, sifting, mutations_overlap, and frequency. Individuals 
performs data fetching and parsing of the 1000 genome project data that listed all Single 
Nucleotide Polymorphism (SNPs) variation in the chromosome. This activity involves a lot of 
I/O reading and writing system call. Individuals_merge showed similar properties, as it was a 
merging of individuals outputs that calculate different parts of chromosomes data. Furthermore, 
sifting calculates the SIFT scores of all SNPs variants. This task has a very short runtime. 
Finally, mutations_overlap calculates the overlapping mutations genes between a pair of 
individuals while frequency calculates the total frequency of overlapping mutations genes 
between several random individuals. 

The 1000 Genome workflow takes two inputs, the chromosome data and its haplotype 
estimation (i.e., phasing) using the shapeit method. The entry tasks were individuals, which 
extract each individual from chromosome data, and sifting that calculates the SIFT scores from 
the phasing data. Furthermore, in the next level, individuals_merge merged all output from 
individuals and then, its output along with the sifting output becomes the input for the exit tasks 
of mutation_overlap and frequency. For our study, we analyzed the data corresponding to two 
chromosomes (chr21 and chr22) across five populations: African (AFR), Mixed American 
(AMR), East Asian (EAS), European (EUR), and South Asian (SAS). Furthermore, the 
structure of the workflow is shown in Figure. 3a. 

 
1 http://www.internationalgenome.org/about 
2 https://github.com/pegasus-isi/1000genome-workflow 
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Figure 3: Bioinformatics workflow applications 
 

4.1.2. Virtual Screening for Drug Discovery 
The second bioinformatics case used in this study was the virtual screening workflow. Virtual 
screening is a novel methodology that utilized several computational tools to screen a large 
number of molecules' libraries for possible drug candidates [31]. In simple terms, this (part of) 
drug discovery process involves two types of molecules, target receptors, and ligands that 
would become the candidates of drugs based on its binding affinity to the target receptor. This 
technique rises in popularity as the in-silico infrastructure and information technology are 
getting better. The virtual screening saves many resources of scientists for in-vitro and in-vivo 
that require wet-lab experiments. 

There are two main approaches in carrying out the virtual screening, ligand-based, and 
receptor-based virtual screening [32]. The ligand-based virtual screening relies on the 
similarity matching of ligands' libraries to the already known active ligand(s) properties. This 
activity is computationally cheaper than the other approach, as it depends only on the 
computation of the features of the molecules. On the other hand, the receptor-based virtual 
screening requires the calculation for both of the target receptors and the ligands to evaluate 
the possible interaction between them in a very intensive simulation and modelling. However, 
since the error rate of ligand-based virtual screening is relatively higher than the structure-
based, this approach is applied as a filter step when the number of ligands involved in the 
experiments is quite high. 

In this study, we used a virtual screening workflow using AutoDock Vina [33], a molecular 
docking application for structure-based virtual screening. In particular, we took a virtual 
screening case of one receptor and ligands with various sizes and search spaces of the docking 
box taken from the Open Science Grid Project developed by the Pegasus group3. The receptor-
ligand docking tasks in this workflow can be executed in parallel as in the bag of the tasks 
application model. Moreover, AutoDock Vina is a CPU-intensive application that can utilize 
the multi-CPU available in a machine to speed up the molecular docking execution. Therefore, 
two-level parallelism can be achieved to speed up the workflows, the parallel execution of 
several receptor-ligand docking tasks on different machines, and the multi-CPU parallel 
execution of a docking task within a machine. The structure of the virtual screening workflows 
is depicted in Figure. 3b. 

 
3 https://github.com/pegasus-isi/AutoDock-Vina-Workflow 



Table 2: Various budgets used in evaluation 

Name β1 β2 β3 β4 
1000 Genome Workflow 
chr21 $0.1 $0.25 $0.45 $0.65 
chr22 $0.1 $0.25 $0.45 $0.65 
Virtual Screening Workflow 
vina01 $0.05 $0.15 $0.25 $0.35 
vina02 $0.01 $0.04 $0.06 $0.08 

     
4.1.3. Workload Preparation 
The Pegasus group has developed the tools to generate both the 1000 Genome and Virtual 
Screening workflow based on the XML format. We converted the DAG generated from the 
tools into the xWFL, the format used by the WaaS cloud platform. Based on this converted-
DAG, we prepared two versions of the 1000 Genome workflows, which take two different 
chromosomes of chr21 and chr22 as input. Furthermore, we created two types of workflows 
that take as input two different sets of 7 ligands molecules for Virtual Screening. 

We installed five applications for the 1000 Genome workflow in a custom VM image for the 
worker nodes. These applications are based on the Mutation_Sets project4 and are available in 
the 1000 Genome workflow project. It needs to be noted that the mutation_overlap and 
frequency tasks were python-based applications and have a dependency to the python-numpy 
and python-matplotlib modules. On the other hand, the only application that needs to be 
installed for the Virtual Screening workflow was AutoDock Vina, which can be installed 
without any conflicting dependencies with the other workflow applications. Therefore, in this 
scenario, we did not encounter the conflicting dependencies problem. 

We composed a workload that consists of 20 workflows with the types as mentioned earlier of 
applications that were randomly selected based on a uniform distribution. We also modelled 
four different arrival rates of those workflows based on a Poisson distribution from 0.5 
workflows per minute (wf/m), which represents the infrequent requests, up to 12 wf/m that 
reflect the busiest hours. Each workflow was assigned a sufficient budget based on our initial 
deployment observation. We defined four different budgets for each workflow from β1 to β4, 
which represents the minimum to the maximum willingness of users to spend for particular 
workflows' execution. These budgets can be seen in Table 2. 

4.2. Experimental Infrastructure Setup 
Three components need to be deployed to ensure the running of the WaaS cloud platform. The 
first is the master node containing the core of the workflow engine. This master node is the 
component that manages the lifecycle of workflows execution and responsible for the 
automated orchestration between every element within the platform. The second component is 
a storage node which stores all the data involved in the execution of the workflows. This storage 
manages the intermediate data produced between parents and children tasks' execution and acts 
as a central repository for the WaaS cloud platform. Finally, the worker node(s) is the front 
runner(s) to execute the workflows' tasks submitted into the platform. The worker node(s) 
provisioning and lifespans are controlled based on the scheduling algorithms implemented in 
the core of the workflow engine.  

 
4 https://github.com/rosafilgueira/Mutation\_Sets 



 

Figure 4: Architectural reference on the WaaS cloud platform nodes deployment 

For this experiment, we arranged these components on virtual machines with different 
configurations and setup. The master node was installed on Ubuntu 14.04. 6 LTS virtual 
machine running in a local HP Laptop with Intel(R) Core(TM) i7-56000 CPU @ 2.60 GHz 
processor and 16.0 GB RAM. This virtual machine was launched using VMWare Workstation 
15 player with 8.0 GB RAM and 60.0 GB hard disk storage. Moreover, we deployed the storage 
node on a cloud instance provided by The Melbourne Research Cloud5 located in the 
melbourne-qh2-uom availability zone. This virtual machine was installed Ubuntu 14.04.6 LTS 
operating systems based on the uom. general.1c4g flavour with 1 vCPU, 4 GB RAM, and an 
additional 500 GB hard disk storage. 

Furthermore, the worker node(s) were dynamically provisioned on Amazon Elastic Compute 
Cloud (EC2) Asia Pacific Sydney region using a custom prepared VM image equipped with 
the necessary software, dependencies, and libraries for executing 1000 Genome and Virtual 
Screening workflows. We used four different types and configurations for the worker nodes 
based on the family of T2 instances. The T2 instances family equipped with the high-frequency 
processors and have a balance of compute, memory, and network resources. Finally, the 
architectural reference for the nodes' deployment and its configuration are depicted in Figure. 
4 and Table. 3 respectively. 

Table 3: Configuration of virtual machines used in evaluation 

Name vCPU Memory Price per second 
CLOUDS Lab Local Desktop 
Master Node 4 8192 MB N/A 
Melbourne Research Cloud 
Storage Node 1 4096 MB N/A 
Amazon EC2 
Worker Node    

t2.micro 1 1024 MB $0.0000041 
t2.small 1 2048 MB $0.0000082 

t2.medium 2 4096 MB $0.0000164 
t2.large 2 8192 MB $0.0000382 

 
5 https://research.unimelb.edu.au/infrastructure/research-computing-services/services/research-cloud 
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Figure 5: Makespan and cost of chr22 workflow on homogeneous environment 

 
4.3. Results and Analysis 
In this section, we present the comparison of EBPSM and First Come First Serve (FCFS) 
algorithm, as the default scheduler, in a single workflow and homogeneous settings to ensure 
the fair evaluation. Then, it was followed by a thorough analysis of the EBPSM performance 
on a workload of multiple workflows in a heterogeneous environment represented by different 
arrival rates of workflows to the WaaS cloud platform. 

4.3.1. More Cost to Gain Faster Execution 
The purpose of this particular experiment is to evaluate our proposed EBPSM algorithm for 
the WaaS platform compared to the default scheduler of the CloudBus WMS. This default 
scheduler algorithm did not rely on an estimate of tasks' runtime. It scheduled each task based 
on the first-come, first-served policy into a dedicated resource (i.e., VM) and terminated the 
resource when the particular task has finished the execution. Furthermore, this default 
scheduler was not equipped with the capability to select the resources in heterogeneous 
environments. Therefore, it only works for homogeneous cluster settings (i.e., clusters of one 
VM type only). Then, to have a fair comparison to the default scheduler, we modified the 
EBPSM algorithm to work for a single workflow in a homogeneous environment. We removed 
the module that enables EBPSM to select the fastest resources based on the task's sub-budget 
and let the algorithm provision a new VM if there are no idle VMs available to reuse, which 
means hiding the budget-driven ability of the algorithm. 

In Figure. 5a, we can see that the homogeneous version of EBPSM was superior to the default 
scheduler on all scenarios. In this experiment, the default scheduler provisioned 26 VMs for 
each situation, while EBPSM only leased 14 VMs. In this case, we argue that the delays in 
initiating the VMs, which include the provisioning delay and delays in configuring the VM 
into the WaaS platform, have a significant impact on the total makespan. Therefore, the 
EBPSM can gain an average speedup of 1.3x faster compared to the default scheduler. 
However, this enhancement comes with a consequence of additional monetary cost. 

Figure. 5b showed that there is an increase in monetary cost for executing the workflows. The 
EBPSM algorithm lets the idle VM to active for a certain period before being terminated, 
hoping that the next ready tasks would reuse it. This approach produced a higher cost compared 
to the immediate resource termination of the default scheduler approach. The average increase  
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Figure 6: Cost and budget analysis on workload with different arrival rate 

was 40% higher than the default scheduler. Is it worth to spend 40% more cost to gain 1.3x 
faster makespan? Further evaluation, such as Pareto analysis, needs to be done. However, more 
rapid responses to events such as modelling the storm, tsunami, and bush fires in the emergency 
disaster situation, or predicting the cell location for critical surgery are undoubtedly worth more 
resources to be spent. 

4.3.2. Budget Met Analysis 
To evaluate the budget-constrained multiple workflows deployment, we analyzed the 
performance of the EBPSM against its primary objective, meeting the budget. Two metrics 
were used in this analysis, the number of successful cases in meeting the budget, and the cost 
per budget ratio for any failed ones. 

In this experiment, we observed the EBPSM performance in various arrival rate scenarios to 
see if this algorithm can handle the workload both in peak and non-peak hours. Figure. 6a 
showed that in the non-peak hours, the EBPSM could achieve 85% of the budget met while in 
the busier environment, this percentage increases up to 95%. In the peak-hours, there are more 
VMs to reuse and less idle time that makes the platform more efficient. However, it needs to 
be noted that there might exist some variability in the Amazon Elastic Compute Cloud (EC2) 
performance that might impact the results. Thus, the graphs did not show a linear convergence. 
Nevertheless, 85% of the budget-met percentage showed satisfactory performance. 

The result of failed cases is depicted in Figure. 6b. From this figure, we can confirm the 
superiority of EBPSM for the peak-hours scenarios. The violation of the user-defined budget 
was not more than 15% in the peak-hours while the number increases up to 40% can be 
observed in the non-peak hours' settings. On average, the budget violation was never higher 
than 14% for all arrival rate schemes. Still and all, this violation was inevitable due to the 
performance variation of the Amazon Elastic Compute Cloud (EC2) resources. 

Table 4: Comparison of chr22 workflow in two environments 

Name Makespan (s) Cost ($) 
Minimum Maximum Minimum Maximum 

Single – Homogeneous 2187 1125 0.084 0.499 
Multiple – Heterogeneous 1819 1013 0.062 0.471 
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Figure 7: Makespan of 1000 Genome workflows on workload with different arrival rate 
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Figure 8: Makespan of virtual screening workflows on workload with different arrival rate 

 
4.3.3. Makespan Evaluation 
It is essential to analyze the impact of scheduling multiple workflows on each of the workflows' 
makespan. We need to know whether sharing the resources between various users with 
different workflows is worth it and more efficient compared to a dedicated resource scenario 
in deploying the workflows. Before we discussed further, let us revisit the Figure. 5a, which 
showed the result of a single 1000 Genome (chr22) workflow execution in a homogeneous 
environment. Then, we compared it to the Figure. 7b that presented the result for the same 1000 
Genome (chr22) workflow in multiple workflows scenario and heterogeneous environment. If 
we zoomed-in to the two figures, we could observe that EBPSM can further reduce both the 
makespan and the cost for the workflow in the latter scenario. We extracted these details of 
both scenarios into Table 4. 

Let us continue the discussion for the makespan analysis. Figure. 7a, 7b, 8a, and 8b depicted 
the makespan results for 1000 Genome (chr21, chr22) and Virtual Screening (vina01, vina02) 
respectively. If we glanced, there was no linear pattern showing the improvement of EBPSM 
performance over the different arrival rates of workflows. Nevertheless, if we observed further 
and split the view into two (i.e., peak hours and non-peak hours), we can see that the EBPSM,  
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Figure 9: Average VM utilization and VM usage on workload with different arrival rate 

in general, produced better results for the peak-hour scenarios except for some outlier from 
1000 Genome (chr22) and Virtual Screening (vina01) workflows. We thought that this might 
be caused by the number of experiments and the size of the workload. This is an important note 
to be taken as, due to the limited resources, we could not deploy workload with the scale of 
hundreds, even thousands of workflows. 

4.3.4. VM Utilization Analysis 
Finally, the last aspect to be evaluated regarding the EBPSM performance was VM utilization. 
It was the most important thing to be pointed out when discussing the policy of sharing and 
reusing computational resources. In Figure. 9a, we can see the increasing trend in VM 
utilization percentage along with the arrival rate of workflows on the platform. The average 
utilization upsurge for each scenario was 4%. The minimum utilization rate was 20% produced 
by the 0.5 wf/m scenario and the maximum of 36% for the 12 wf/m scenario.  

We argue that the VM utilization rate had a connection to the number of VMs used during the 
execution. Figure. 9b depicted the number of VMs used in this experiment. We can observe 
that the overall number of VMs was declining along with the arrival rate of workflows. The 
average number of decreases was 20% for all VM types. The lowest drop was for the t2.large 
by 15%, and the highest drop was for the t2.medium by 25%. Meanwhile, the t2.small 
decreased by 22% and t2.micro by 16% respectively. The EBPSM algorithm always preferred 
to the fastest VM type and re-calculate and redistribute the budget after each task finished 
execution. Hence, in this case, the exit tasks might use more VMs of the cheapest type if the 
budget has been used up by the earlier tasks. Therefore, t2.large as the fastest VM type along 
with t2.micro as the cheapest would always be preferred compared to the other VM type. 

From this experiment, we concluded that in the WaaS cloud platform where the number of 
workflows involved is high, the scheduling algorithm must be able to maintain the low number 
of VMs being provisioned. Any additional VM leased means the higher possibility of incurring 
more delays related to the provisioning, initiating, and configuring the VMs before being 
allocated for executing the abundance of tasks. 



5. Conclusions and Future Work 
The workflow management systems (WMS) have a crucial responsibility in executing 
scientific workflows. It manages the complicated orchestration process in scheduling the 
workflows and provisioning the required computational resources during the execution of 
scientific workflows. With the increasing trends of outsourcing computational power to third 
party cloud providers, there is a consideration to escalate the standalone execution of scientific 
workflows to the platform that provides the particular service. In this case, there is an emerging 
concept of a Workflow-as-a-Service (WaaS), extending the conventional WMS functionality 
to ensure the execution of scientific workflows as a utility service in a WaaS cloud platform. 

In this work, we extended the CloudBus WMS by modifying several components for it capable 
of scheduling multiple workflows to develop the WaaS cloud platform. We implemented the 
EBPSM algorithm, budget-constrained scheduling algorithm designed for the WaaS platform 
that is capable of minimizing the makespan while meeting the budget. Furthermore, we 
evaluated the system prototype using two bioinformatics workflows applications with various 
scenarios. The experiment results demonstrate that the WaaS cloud platform, along with the 
EBPSM algorithm, is capable of executing a workload of multiple bioinformatics workflows. 

As this work primarily focused on designing the WaaS scheduler functionality, further 
development of the WaaS cloud platform would be focused on developing the WaaS portal. It 
is the interface that connects the platform with the users. In this case, the users are expected to 
be able to compose and define their workflow's job, submit the job and the data needed, monitor 
the execution, retrieving the output from the workflow's execution. Finalizing the server-based 
functionality is another to-do list so that the WaaS cloud platform can act as a fully functional 
service platform in the clouds. 

Finally, we plan to enable the WaaS cloud platform for deploying workflows on microservices 
technology such as container technology, serverless computing, and unikernels system to 
accommodate the rising demand of the Internet of Things (IoT) workflows. This IoT demand 
is increasing along with the shifting from centralized infrastructure to distributed cloud 
computing environments. The shifting is manifested through the rising trends of edge and fog 
computing environments. 
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