
Workflow-as-a-Service Cloud Platform and
Deployment of Bioinformatics Workflow Applications

Muhammad H. Hilman, Maria A. Rodriguez, and Rajkumar Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory

School of Computing and Information Systems
The University of Melbourne, Australia

Email: hilmanm@student.unimelb.edu.au, {maria.read, rbuyya}@unimelb.edu.au

Workflow management systems (WMS) support the composition and deployment of
workflow-oriented applications in distributed computing environments. They hide the
complexity of managing large-scale applications, which includes the controlling data
pipelining between tasks, ensuring the application's execution, and orchestrating the distributed
computational resources to get a reasonable processing time. With the increasing trends of
scientific workflow adoption, the demand to deploy them using a third-party service begins to
increase. Workflow-as-a-service (WaaS) is a term representing the platform that serves the
users who require to deploy their workflow applications on third-party cloud-managed
services. This concept drives the existing WMS technology to evolve towards the development
of the WaaS cloud platform. Based on this requirement, we extend CloudBus WMS
functionality to handle the workload of multiple workflows and develop the WaaS cloud
platform prototype. We implemented the Elastic Budget-constrained resource Provisioning
and Scheduling algorithm for Multiple workflows (EBPSM) algorithm that is capable of
scheduling multiple workflows and evaluated the platform using two bioinformatics
workflows. Our experimental results show that the platform is capable of efficiently handling
multiple workflows execution and gaining its purpose to minimize the makespan while meeting
the budget.

Keywords: Scientific workflow, Cloud computing, Workflow management system,
Bioinformatics workflow, Budget-constrained scheduling.

1. Introduction
Workflow is a computational model that represents the application tasks and its related flow of
data in the form of interconnected nodes. The applications that utilize the workflow model
consist of several complexes, large-scale applications, and involve a vast amount of data.
Therefore, these workflows are usually deployed in the distributed systems that have massive
computational resources such as cluster, grid, and cloud computing environments.

To manage the complexity of executing workflows, its interaction with the users, and its
connectivity to the resources in distributed systems, the researchers utilize the toolkit called
workflow management system (WMS). The WMS hides the complicated orchestration
between those coordinated components. It needs to be noted that the interconnected tasks
within a workflow have strict dependencies in which the following tasks can be executed
whenever the earlier tasks that become its dependencies have finished their execution.
Therefore, the critical responsibility of this WMS includes the management of data movement,
the scheduling of tasks and preserving their dependencies, and the provisioning of required
computational resources from the external distributed systems.

A conventional WMS is designed to manage the execution of a single workflow application.
In this case, a WMS is tailored to a particular workflow application to ensure the efficient
execution of the workflow. It is not uncommon for a WMS to be built by a group of researchers
to deploy a specific application of their research projects. With the advent of the computational
infrastructure and the rising trends of workflow model adoption within the scientific
community, there is a demand to provide the execution of workflow as a service. Therefore,
there is an idea to elevate the functionality of WMS to provide the service for executing
workflows in the clouds called the Workflow-as-a-Service (WaaS) cloud platform.

Developing the WaaS cloud platform means leveraging the WMS functionality and minimizing
any specific application-tailored in the component of the system. This challenge arises with
several issues related to the resource provisioning and scheduling aspect of the WMS. In this
work, we focus on designing the resource provisioning and scheduling module within the
existing CloudBus WMS [1] for the WaaS cloud platform development. We modify the
scheduling modules to fit into the requirements by building on the capability for scheduling
multiple workflows. In summary, the main contributions of this chapter are:

• The development of WaaS cloud platform by extending CloudBus WMS.
• The implementation of EBPSM algorithm that is designed to handle multiple

workflows scheduling within WaaS cloud platform.
• The case study to analyse the performance of WaaS cloud platform by deploying

bioinformatics workflow applications in real cloud computing environments.

The rest of this chapter is organized as follows. Section 2 reviews works of that are related to
our discussion. Section 3 describes the development of WaaS cloud platform and its
requirements. Furthermore, Section 4 explains the case study of executing multiple workflows
in WaaS cloud platform. Finally, the Section 5 summarizes the findings and discusses the future
directions.

2. Related Work
WMS technology has evolved since the era of cluster, grid, and current cloud computing
environments. A number of widely used WMS were initially built by groups of multi-
disciplinary researchers to deploy the life-science applications of their research projects
developed based on the computational workflow model. Each of them has a characteristic
tailored to their requirements. However, to the best of our knowledge, the existing WMS
systems are not designed for handling multiple workflows execution as it becomes the main
requirement for WaaS cloud platform. Therefore, the case study of several prominent WMS is
plentiful and worth to be explored further for the development of such a platform. The summary
of these characteristics is depicted in Table 1.

ASKALON [2] is a framework for development and runtime environments for scientific
workflows built by a group from The University of Innsbruck, Austria. Along with
ASKALON, the group released a novel workflow language standard developed based on the
XML called Abstract Workflow Description Language (AWDL) [3]. ASKALON has a tailored
implementation of wien2k workflow [4], a material science workflow for performing electronic
structure calculations using density functional theory based-on the full-potential augmented
plane-wave to be deployed within the Austrian Grid Computing network.

Table 1: Summary of various WMS features.

Main features ASKALON Galaxy HyperFlow Kepler Pegasus Taverna CloudBus

Workflow
Engine

Service-
oriented -

GUI-
supported -

Provenance-
empowered

Distributed
Environments

Grid-
enabled

Cloud-
enabled

Container-
enabled - - - -

Serverless-
enabled - - - - - -

Another project is Galaxy [5], a web-based platform that enables users to share workflow
projects and provenance. It connects to myExperiments [6], a social network for sharing the
workflow configuration and provenance among the scientific community. It is a prominent
WMS and widely used for in silico experiments [7] [8] [9].

A lightweight WMS, HyperFlow [10] is a computational model, programming approach, and
also a workflow engine for scientific workflows from AGH University of Science and
Technology, Poland. It provides a simple declarative description based on JavaScript.
HyperFlow supports the workflow deployment in container-based infrastructures such as
docker and Kubernetes clusters. HyperFlow is also able to utilize the serverless architecture for
deploying Montage workflow in AWS Lambda and Google Function, as reported by Malawski
et al. [11].

Kepler [12] is a workflow management system developed by a collaboration of universities,
including UC Davis, UC Santa Barbara, and UC San Diego, United States. It is a WMS that is
built on top of the data flow-oriented Ptolemy II system [13] from UC Berkeley. Kepler has
been adopted in various scientific projects including the fluid dynamics [14] and computational
biology [15]. This WMS provides compatibility to run on different platforms, including
Windows, OSX, and Unix systems.

Another project is Pegasus [16], one of the prominent WMS that is widely adopted for projects
that make an essential breakthrough to scientific discovery from The University of Southern
California, United States. Pegasus runs the workflows on top of HTCondor [17] and supports
the deployment across several distributed systems, including grid, cloud, and container-based
environments. The Pegasus WMS has a contribution to the LIGO projects involved in the
gravitational wave detection [18].

Furthermore, there is also Taverna [19], a workflow management system from The University
of Manchester that as recently accepted under the Apache Incubator project. Taverna is
designed to enable various deployment models from the standalone, server-based, portal,
clusters, grids, to the cloud environments. Taverna has been used in various in silico
bioinformatics projects, including several novel Metabolomics research [20] [21].

Finally, the CloudBus WMS [1], a cloud-enabled WMS from The University of Melbourne, is
the center of discussion in this chapter. Its functionality evolves to support the development of
the WaaS cloud platform.

3. Prototype of WaaS Cloud Platform
In this section, we discuss a brief development of the CloudBus WMS and the WaaS cloud
platform development. We describe the evolving functionality of CloudBus WMS in its first
release to handle the deployment in the grid computing environment up to the latest version
that provides the cloud-enabled functionality to give an overview of how the distributed
systems trend changes how the WMS works. Furthermore, we present the extension related to
the scheduler component of this WMS to support the development of the WaaS cloud platform.

3.1. CloudBus Workflow Management System
The earliest version of the WMS from the CLOUDS lab was designed for grid computing
environments under the name of GridBus Workflow Enactment Engine in 2008. The core
engine in this WMS was called a workflow enactment engine that orchestrated the whole
workflow execution. The engine interacts with users through the portal that manages workflow
composition and execution planning. This engine also equipped with the ability to interact with
grid computing environments through the grid resource discovery to find the possible grid
computational infrastructure, the dispatcher that sends the tasks to the grids for the execution,
and the data movement to manage data transfer in and out through HTTP and GridFTP
protocols. The Gridbus Workflow Enactment Engine was tested and evaluated using a case
study of fMRI data analysis in the medical area. The architectural reference to this Gridbus
Workflow Engine and its case study can be referred to the paper by Yu and Buyya [22].

The second version of the GridBus Workflow Enactment Engine was released in 2011, built
with plugin support for deployment in cloud computing environments. In this version, the
engine is equipped with the components that enable it to utilize several types of external
computational resources, including grid and cloud environments. Therefore, it was renamed to
CloudBus Workflow Engine. In addition to this functionality, the CloudBus Workflow Engine
was tested and evaluated for scientific workflow execution on top of the Aneka Cloud
Enterprise platform [23] and Amazon Elastic Compute Cloud (EC2) using a case study of
evolutionary multiobjective optimization technique based on a genetic algorithm. We
suggested that readers refer to the architectural design and case study implementation published
by Pandey et al. [24].

The latest release of the CloudBus Workflow Engine in 2016 was the implementation of a
comprehensive cloud-enabled functionality that allows the engine to lease the computational
resources dynamically from the IaaS cloud providers. This version introduces a Cloud
Resource Manager module that enables the platform to manage the resources (i.e., Virtual
Machines) from several IaaS cloud providers related to its automated provisioning, integrating
to the resource pool, and terminating the VMs based on the periodic scanning of the
implemented algorithm. Along with the dynamic functionality of cloud resources management,
the WMS is also equipped with a dynamic algorithm to schedule workflows which able to
estimate the tasks' runtime based on the historical data from the previous workflows' execution.
This version is known as the CloudBus Workflow Management System (WMS). The
architectural reference and its case study on Astronomical application Montage can be referred
to the paper by Rodriguez and Buyya [1].

Figure 1: Architectural reference on the WaaS cloud platform.

3.2. WaaS Cloud Platform Development
The CloudBus WMS is continuously adapting to the trends of the distributed systems
infrastructures from cluster, grid, to the cloud environments. With the increasing popularity of
the computational workflow model across scientific fields, we extend the CloudBus WMS to
serve as a platform that provides the execution of workflow as a service. Therefore, we design
the reference to the WaaS cloud platform based on the structure of CloudBus WMS. Five
entities compose the WaaS cloud platform, they are portal, engine, monitoring service,
historical database, and plugins to connect to distributed computing environments. This
structure is similar to the previous CloudBus WMS architecture. The architectural reference
for the platform can be seen in Figure. 1.

Portal: an entity that is responsible for bridging the WaaS cloud platform to the users. The
portal serves as the user interface in which users can submit the job, including composing,
editing, and defining the workflow QoS requirements. It interacts with the engine to pass on
the submitted workflows for scheduling. It also interacts with the monitoring service so that
the users can monitor the progress of the workflows' deployment. Finally, the engine sends
back the output data after it finished the execution through this entity. The change from the
previous CloudBus WMS functionality is the capability of the portal to handle the workload of
multiple workflows.

Monitoring Service: an entity that is responsible for monitoring the workflow execution and
resources running within the WaaS cloud platform that is provisioned from the clouds. Five

components in this entity are the Workflow Monitor that tracks the execution of the jobs, the
Resource Monitor which tracks the VMs running in the platform, the Cloud Information
Services that discover the available VM types and images of the IaaS clouds profile, the Cloud
Resource Manager that manages the provisioning of cloud resources, and the VM Lifecycle
Manager which keeps tracking the VMs’ status before deciding to terminate them.

This entity interacts with the portal to provide the monitoring information of workflows'
execution. On the other hand, it also interacts with the engine to deliver the status of job
execution for scheduling purposes and the state of the computational resource availability. We
changed the provisioning algorithm, which is managed by the cloud resource manager and the
VM lifecycle manager, based on the EBPSM algorithm. Both the cloud resource manager and
the VM lifecycle manager control the VMs provisioning by keeping track of the idle status of
each VM. They will be terminated if the idle time exceeded the thresholdidle. This provisioning
algorithm is depicted in Algorithm 1. Finally, this entity saves the historical data of tasks'
execution into the historical database based on an HSQL database where the information is
used to estimate the tasks' runtime.

Engine: an entity that is responsible for the orchestration of the whole execution of workflows.
This entity interacts with the other objects of the WaaS cloud platform, including the third-
party services outside the platform. Moreover, it takes the workflows' job from the portal and
manages the execution of tasks. The scheduler that is part of this entity schedules each task
from different workflows and allocates them to the available resources maintained by the
monitoring service. It also sends the request to the plugins, JClouds API, for provisioning new
resources if there is no available idle VMs to reuse.

Task scheduler, the core of the engine, is modified to adapt to the EBPSM algorithm that
manages the scheduling of multiple workflows. Within the task scheduler, there is a component
called the WorkflowCoordinator that creates the Task Manager(s) responsible for scheduling
each task from the pool of tasks. To manage the arriving tasks from the portal, we create a new
class WorkflowPoolManager responsible for periodically releasing ready tasks for scheduling
and keeping track of the ownership of each task.

Prediction component within the task scheduler is responsible for estimating the runtime of the
task, which becomes a pre-requisite of the scheduling. We modify the PredictRuntime
component to be capable of building an online incremental learning model. This learning model
is a new approach for estimating the runtime for scientific workflows implemented in the WaaS
cloud platform. While previously, this module utilizes the statistical analysis approach.

Historical database: an HSQL database used to store the historical data of tasks' execution.
The information, then, is used to estimate the tasks' runtime. In this platform, we add the
submission time variables to the database, since this information is used to build the prediction
model to estimate the runtime.

Plugins: a JClouds API responsible for connecting the WaaS cloud platform to third party
computational resources. Currently, the platform can connect to several cloud providers,
including Amazon Elastic Compute Cloud (EC2), Google Cloud Engine, Windows Azure, and
OpenStack-based NeCTAR clouds. It sends the request to provision and terminates resources
from the cloud providers.

Figure 2: Class diagram reference on the scheduler extension of the WaaS cloud platform.

Finally, the modified components within the WaaS cloud platform from the previous version
of the CloudBus WMS are marked with the red-filled diagram in Figure. 1 and the class
diagram reference to the WaaS cloud platform scheduler extension are depicted in Figure. 2.

3.3. Implementation of Multiple Workflows Scheduling Algorithm
Elastic Budget-constrained resource Provisioning and Scheduling algorithm for Multiple
workflows is a dynamic heuristic algorithm designed for WaaS cloud platform. The algorithm
was designed to schedule tasks from multiple workflows driven by the budget to minimize the
makespan. EBPSM distributes the budget to each of its tasks in the first step, and then, it
manages the tasks from different workflows to schedule based on its readiness to run (i.e.,
parents' tasks finished the execution).

Furthermore, the algorithm looks for idle resources that can finish the tasks as fast as possible
without violating its assigned budget. This algorithm enforces the reuse of already provisioned
resources (i.e., virtual machines) and sharing them between tasks from different workflows.
This policy was endorsed to handle the uncertainties in the clouds, including VM performance
variability, VM provisioning, and deprovisioning delays, and the network-related overhead that
incurs within the environments. Whenever a task finishes, the algorithm redistributes the
budget for the task's children based on the actual cost. In this way, the uncertainties, as
mentioned earlier from cloud computing environments, can be further mitigated before creating
a snowball effect for the following tasks.

The scheduling phase of the EBPSM algorithm was mainly implemented in the task scheduler,
a part of the engine. The WorkflowPoolManager class receives the workflows' jobs and
distributes the budget to the tasks as described in Algorithm 2. It keeps track of the workflows'
tasks before placing the ready tasks on the priority queue based on the ascending Earliest Finish
Time (EFT). Then, the WorkflowCoordinator creates a task manager for each task that is
pooled from the queue. In the resource provisioning phase, the task scheduler interacts with the
cloud resource manager in the monitoring resource to get the information of the available VMs.
The task scheduler sends the request to provision a new VM if there are no VMs available to
reuse. The implementation of this phase involving several modules from different components
of the WaaS cloud platform. The detail of this scheduling is depicted in Algorithm 3.

The post-scheduling of a task ensures budget preservation by calculating the actual cost and
redistributing the workflows' budget. This functionality was implemented in the task scheduler
with additional information related to the clouds from the cloud information service, which

maintains the cloud profile such as the VM types, and the cost of the billing period. The detail
of the budget re-distribution procedure is described in Algorithm 4.

In this work, we implemented a version of the EBPSM algorithm without the container. We
did not need the container-enabled version as we only used bioinformatics workflow
applications that did not have conflicting software dependencies and libraries. The enablement
for microservices and serverless-supported WaaS cloud platform is left for further
development. For more details on the EBPSM versions and their budget distribution strategies,
we suggested the readers to refer to the papers by Hilman et al. [25] [26].

Algorithm 1: Resource Provisioning Algorithm 3: Scheduling
procedure manageResource

VMidle = all leased VMs that are idle
thresholdidle = idle time threshold
for each vmidle ϵ VMidle do

tidle = idle time of vm
if tidle ≥ thresholdidle then

terminate vmidle
end if

end for
end procedure

 q = queueing tasks for scheduling
procedure scheduledQueuedTasks(q)

sort q by ascending EFT
while q is not empty do

t = q.poll
vm = null
if there are idle VMs then

VMidle = set of all idle VMs
vm = vm ϵ VMidle that can finish t
within t.budget with the fastest
execution time

else
vmt = fastest VM type within
t.budget
vm = provisionVM(vmt)

end if
scheduleTask(t, vm)

end for
end procedure

Algorithm 2: Budget Distribution
β = workflow’s budget
T = set of tasks in the workflow
procedure distributeBudget (β, T)

S = tasks’ estimated execution order
l = tasks’ level in the workflow
for each task t ϵ T do

allocateLevel(t, l)
initiateBudget(0, t)

end for
for each level l do

Tl = set of all tasks in level l
sort Tl based on ascending EFT
put(Tl, S)

end for
while β > 0 do

t = S.poll
𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = cost of task t in vmt
vmt = chosen VM type
allocateBudget(𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 , t)
β = β - 𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

end while
end procedure

 Algorithm 4: Budget Update
 procedure updateBudget(T)

tf = completed task
Tu = set of unscheduled t ϵ T
βu = total sum of t.budget, where t ϵ Tu
sb = spare budget
if 𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣

𝑣𝑣𝑓𝑓 ≤ (tf.budget + sb) then
sb = (tf.budget + sb) - 𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣

𝑣𝑣𝑓𝑓
βu = βu + sb

else
debt = 𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣

𝑣𝑣𝑓𝑓 – (tf.budget + sb)
βu = βu – debt

end if
distributeBudget(βu, Tu)

end procedure

4. Case Studies and Performance Evaluation
In this section, we present the case study of multiple workflows execution within a WaaS cloud
platform prototype. We address the workload of bioinformatics workflows and its preparation
for the execution. Furthermore, we also describe the technical infrastructure and its
experimental design to deploy the platform and present the results from the experiment.

4.1. Bioinformatics Applications Workload
Many bioinformatics cases have adopted the workflow model for managing its scientific
applications. An example is myExperiments [6] that has a broader scope to connect various
bioinformatics workflows users. This social network for scientists who utilize the workflows
for managing their experiments, stores almost four thousand workflows software,
configurations, and datasets with more than ten thousand members. We explored two
prominent bioinformatics workflows in the area of genomics analysis [27] and drug discovery
[28] for the case study.

4.1.1. Identifying Mutational Overlapping Genes
The first bioinformatics case was based on the 1000 Genomes Project1, an international
collaboration project to build a human genetic variation catalogue. Specifically, we used an
existing 1000 Genome workflow2 to identify overlapping mutations in humans’ genes. The
overlapping mutations were statistically calculated in a rigorous way to provide an analysis of
possible disease-related mutations across human populations based on their genomics
properties. This project has an impact on evolutionary biology. Examples include a project
related to the discovery of full genealogical histories of DNA sequences [29].

The workflow consists of five tasks that have different computational requirements [30]. They
are individuals, individuals_merge, sifting, mutations_overlap, and frequency. Individuals
performs data fetching and parsing of the 1000 genome project data that listed all Single
Nucleotide Polymorphism (SNPs) variation in the chromosome. This activity involves a lot of
I/O reading and writing system call. Individuals_merge showed similar properties, as it was a
merging of individuals outputs that calculate different parts of chromosomes data. Furthermore,
sifting calculates the SIFT scores of all SNPs variants. This task has a very short runtime.
Finally, mutations_overlap calculates the overlapping mutations genes between a pair of
individuals while frequency calculates the total frequency of overlapping mutations genes
between several random individuals.

The 1000 Genome workflow takes two inputs, the chromosome data and its haplotype
estimation (i.e., phasing) using the shapeit method. The entry tasks were individuals, which
extract each individual from chromosome data, and sifting that calculates the SIFT scores from
the phasing data. Furthermore, in the next level, individuals_merge merged all output from
individuals and then, its output along with the sifting output becomes the input for the exit tasks
of mutation_overlap and frequency. For our study, we analyzed the data corresponding to two
chromosomes (chr21 and chr22) across five populations: African (AFR), Mixed American
(AMR), East Asian (EAS), European (EUR), and South Asian (SAS). Furthermore, the
structure of the workflow is shown in Figure. 3a.

1 http://www.internationalgenome.org/about
2 https://github.com/pegasus-isi/1000genome-workflow

(a) 1000 Genome workflow (b) Autodock Vina worflow

Figure 3: Bioinformatics workflow applications

4.1.2. Virtual Screening for Drug Discovery
The second bioinformatics case used in this study was the virtual screening workflow. Virtual
screening is a novel methodology that utilized several computational tools to screen a large
number of molecules' libraries for possible drug candidates [31]. In simple terms, this (part of)
drug discovery process involves two types of molecules, target receptors, and ligands that
would become the candidates of drugs based on its binding affinity to the target receptor. This
technique rises in popularity as the in-silico infrastructure and information technology are
getting better. The virtual screening saves many resources of scientists for in-vitro and in-vivo
that require wet-lab experiments.

There are two main approaches in carrying out the virtual screening, ligand-based, and
receptor-based virtual screening [32]. The ligand-based virtual screening relies on the
similarity matching of ligands' libraries to the already known active ligand(s) properties. This
activity is computationally cheaper than the other approach, as it depends only on the
computation of the features of the molecules. On the other hand, the receptor-based virtual
screening requires the calculation for both of the target receptors and the ligands to evaluate
the possible interaction between them in a very intensive simulation and modelling. However,
since the error rate of ligand-based virtual screening is relatively higher than the structure-
based, this approach is applied as a filter step when the number of ligands involved in the
experiments is quite high.

In this study, we used a virtual screening workflow using AutoDock Vina [33], a molecular
docking application for structure-based virtual screening. In particular, we took a virtual
screening case of one receptor and ligands with various sizes and search spaces of the docking
box taken from the Open Science Grid Project developed by the Pegasus group3. The receptor-
ligand docking tasks in this workflow can be executed in parallel as in the bag of the tasks
application model. Moreover, AutoDock Vina is a CPU-intensive application that can utilize
the multi-CPU available in a machine to speed up the molecular docking execution. Therefore,
two-level parallelism can be achieved to speed up the workflows, the parallel execution of
several receptor-ligand docking tasks on different machines, and the multi-CPU parallel
execution of a docking task within a machine. The structure of the virtual screening workflows
is depicted in Figure. 3b.

3 https://github.com/pegasus-isi/AutoDock-Vina-Workflow

Table 2: Various budgets used in evaluation

Name β1 β2 β3 β4
1000 Genome Workflow
chr21 $0.1 $0.25 $0.45 $0.65
chr22 $0.1 $0.25 $0.45 $0.65
Virtual Screening Workflow
vina01 $0.05 $0.15 $0.25 $0.35
vina02 $0.01 $0.04 $0.06 $0.08

4.1.3. Workload Preparation
The Pegasus group has developed the tools to generate both the 1000 Genome and Virtual
Screening workflow based on the XML format. We converted the DAG generated from the
tools into the xWFL, the format used by the WaaS cloud platform. Based on this converted-
DAG, we prepared two versions of the 1000 Genome workflows, which take two different
chromosomes of chr21 and chr22 as input. Furthermore, we created two types of workflows
that take as input two different sets of 7 ligands molecules for Virtual Screening.

We installed five applications for the 1000 Genome workflow in a custom VM image for the
worker nodes. These applications are based on the Mutation_Sets project4 and are available in
the 1000 Genome workflow project. It needs to be noted that the mutation_overlap and
frequency tasks were python-based applications and have a dependency to the python-numpy
and python-matplotlib modules. On the other hand, the only application that needs to be
installed for the Virtual Screening workflow was AutoDock Vina, which can be installed
without any conflicting dependencies with the other workflow applications. Therefore, in this
scenario, we did not encounter the conflicting dependencies problem.

We composed a workload that consists of 20 workflows with the types as mentioned earlier of
applications that were randomly selected based on a uniform distribution. We also modelled
four different arrival rates of those workflows based on a Poisson distribution from 0.5
workflows per minute (wf/m), which represents the infrequent requests, up to 12 wf/m that
reflect the busiest hours. Each workflow was assigned a sufficient budget based on our initial
deployment observation. We defined four different budgets for each workflow from β1 to β4,
which represents the minimum to the maximum willingness of users to spend for particular
workflows' execution. These budgets can be seen in Table 2.

4.2. Experimental Infrastructure Setup
Three components need to be deployed to ensure the running of the WaaS cloud platform. The
first is the master node containing the core of the workflow engine. This master node is the
component that manages the lifecycle of workflows execution and responsible for the
automated orchestration between every element within the platform. The second component is
a storage node which stores all the data involved in the execution of the workflows. This storage
manages the intermediate data produced between parents and children tasks' execution and acts
as a central repository for the WaaS cloud platform. Finally, the worker node(s) is the front
runner(s) to execute the workflows' tasks submitted into the platform. The worker node(s)
provisioning and lifespans are controlled based on the scheduling algorithms implemented in
the core of the workflow engine.

4 https://github.com/rosafilgueira/Mutation_Sets

Figure 4: Architectural reference on the WaaS cloud platform nodes deployment

For this experiment, we arranged these components on virtual machines with different
configurations and setup. The master node was installed on Ubuntu 14.04. 6 LTS virtual
machine running in a local HP Laptop with Intel(R) Core(TM) i7-56000 CPU @ 2.60 GHz
processor and 16.0 GB RAM. This virtual machine was launched using VMWare Workstation
15 player with 8.0 GB RAM and 60.0 GB hard disk storage. Moreover, we deployed the storage
node on a cloud instance provided by The Melbourne Research Cloud5 located in the
melbourne-qh2-uom availability zone. This virtual machine was installed Ubuntu 14.04.6 LTS
operating systems based on the uom. general.1c4g flavour with 1 vCPU, 4 GB RAM, and an
additional 500 GB hard disk storage.

Furthermore, the worker node(s) were dynamically provisioned on Amazon Elastic Compute
Cloud (EC2) Asia Pacific Sydney region using a custom prepared VM image equipped with
the necessary software, dependencies, and libraries for executing 1000 Genome and Virtual
Screening workflows. We used four different types and configurations for the worker nodes
based on the family of T2 instances. The T2 instances family equipped with the high-frequency
processors and have a balance of compute, memory, and network resources. Finally, the
architectural reference for the nodes' deployment and its configuration are depicted in Figure.
4 and Table. 3 respectively.

Table 3: Configuration of virtual machines used in evaluation

Name vCPU Memory Price per second
CLOUDS Lab Local Desktop
Master Node 4 8192 MB N/A
Melbourne Research Cloud
Storage Node 1 4096 MB N/A
Amazon EC2
Worker Node

t2.micro 1 1024 MB $0.0000041
t2.small 1 2048 MB $0.0000082

t2.medium 2 4096 MB $0.0000164
t2.large 2 8192 MB $0.0000382

5 https://research.unimelb.edu.au/infrastructure/research-computing-services/services/research-cloud

(a) Makespan (b) Cost

Figure 5: Makespan and cost of chr22 workflow on homogeneous environment

4.3. Results and Analysis
In this section, we present the comparison of EBPSM and First Come First Serve (FCFS)
algorithm, as the default scheduler, in a single workflow and homogeneous settings to ensure
the fair evaluation. Then, it was followed by a thorough analysis of the EBPSM performance
on a workload of multiple workflows in a heterogeneous environment represented by different
arrival rates of workflows to the WaaS cloud platform.

4.3.1. More Cost to Gain Faster Execution
The purpose of this particular experiment is to evaluate our proposed EBPSM algorithm for
the WaaS platform compared to the default scheduler of the CloudBus WMS. This default
scheduler algorithm did not rely on an estimate of tasks' runtime. It scheduled each task based
on the first-come, first-served policy into a dedicated resource (i.e., VM) and terminated the
resource when the particular task has finished the execution. Furthermore, this default
scheduler was not equipped with the capability to select the resources in heterogeneous
environments. Therefore, it only works for homogeneous cluster settings (i.e., clusters of one
VM type only). Then, to have a fair comparison to the default scheduler, we modified the
EBPSM algorithm to work for a single workflow in a homogeneous environment. We removed
the module that enables EBPSM to select the fastest resources based on the task's sub-budget
and let the algorithm provision a new VM if there are no idle VMs available to reuse, which
means hiding the budget-driven ability of the algorithm.

In Figure. 5a, we can see that the homogeneous version of EBPSM was superior to the default
scheduler on all scenarios. In this experiment, the default scheduler provisioned 26 VMs for
each situation, while EBPSM only leased 14 VMs. In this case, we argue that the delays in
initiating the VMs, which include the provisioning delay and delays in configuring the VM
into the WaaS platform, have a significant impact on the total makespan. Therefore, the
EBPSM can gain an average speedup of 1.3x faster compared to the default scheduler.
However, this enhancement comes with a consequence of additional monetary cost.

Figure. 5b showed that there is an increase in monetary cost for executing the workflows. The
EBPSM algorithm lets the idle VM to active for a certain period before being terminated,
hoping that the next ready tasks would reuse it. This approach produced a higher cost compared
to the immediate resource termination of the default scheduler approach. The average increase

(a) Percentage of budget met (b) Cost per budget ratio

Figure 6: Cost and budget analysis on workload with different arrival rate

was 40% higher than the default scheduler. Is it worth to spend 40% more cost to gain 1.3x
faster makespan? Further evaluation, such as Pareto analysis, needs to be done. However, more
rapid responses to events such as modelling the storm, tsunami, and bush fires in the emergency
disaster situation, or predicting the cell location for critical surgery are undoubtedly worth more
resources to be spent.

4.3.2. Budget Met Analysis
To evaluate the budget-constrained multiple workflows deployment, we analyzed the
performance of the EBPSM against its primary objective, meeting the budget. Two metrics
were used in this analysis, the number of successful cases in meeting the budget, and the cost
per budget ratio for any failed ones.

In this experiment, we observed the EBPSM performance in various arrival rate scenarios to
see if this algorithm can handle the workload both in peak and non-peak hours. Figure. 6a
showed that in the non-peak hours, the EBPSM could achieve 85% of the budget met while in
the busier environment, this percentage increases up to 95%. In the peak-hours, there are more
VMs to reuse and less idle time that makes the platform more efficient. However, it needs to
be noted that there might exist some variability in the Amazon Elastic Compute Cloud (EC2)
performance that might impact the results. Thus, the graphs did not show a linear convergence.
Nevertheless, 85% of the budget-met percentage showed satisfactory performance.

The result of failed cases is depicted in Figure. 6b. From this figure, we can confirm the
superiority of EBPSM for the peak-hours scenarios. The violation of the user-defined budget
was not more than 15% in the peak-hours while the number increases up to 40% can be
observed in the non-peak hours' settings. On average, the budget violation was never higher
than 14% for all arrival rate schemes. Still and all, this violation was inevitable due to the
performance variation of the Amazon Elastic Compute Cloud (EC2) resources.

Table 4: Comparison of chr22 workflow in two environments

Name Makespan (s) Cost ($)
Minimum Maximum Minimum Maximum

Single – Homogeneous 2187 1125 0.084 0.499
Multiple – Heterogeneous 1819 1013 0.062 0.471

(a) chr21 (b) chr22

Figure 7: Makespan of 1000 Genome workflows on workload with different arrival rate

(a) vina01 (b) vina02

Figure 8: Makespan of virtual screening workflows on workload with different arrival rate

4.3.3. Makespan Evaluation
It is essential to analyze the impact of scheduling multiple workflows on each of the workflows'
makespan. We need to know whether sharing the resources between various users with
different workflows is worth it and more efficient compared to a dedicated resource scenario
in deploying the workflows. Before we discussed further, let us revisit the Figure. 5a, which
showed the result of a single 1000 Genome (chr22) workflow execution in a homogeneous
environment. Then, we compared it to the Figure. 7b that presented the result for the same 1000
Genome (chr22) workflow in multiple workflows scenario and heterogeneous environment. If
we zoomed-in to the two figures, we could observe that EBPSM can further reduce both the
makespan and the cost for the workflow in the latter scenario. We extracted these details of
both scenarios into Table 4.

Let us continue the discussion for the makespan analysis. Figure. 7a, 7b, 8a, and 8b depicted
the makespan results for 1000 Genome (chr21, chr22) and Virtual Screening (vina01, vina02)
respectively. If we glanced, there was no linear pattern showing the improvement of EBPSM
performance over the different arrival rates of workflows. Nevertheless, if we observed further
and split the view into two (i.e., peak hours and non-peak hours), we can see that the EBPSM,

(a) Average VM utilization (b) VM usage

Figure 9: Average VM utilization and VM usage on workload with different arrival rate

in general, produced better results for the peak-hour scenarios except for some outlier from
1000 Genome (chr22) and Virtual Screening (vina01) workflows. We thought that this might
be caused by the number of experiments and the size of the workload. This is an important note
to be taken as, due to the limited resources, we could not deploy workload with the scale of
hundreds, even thousands of workflows.

4.3.4. VM Utilization Analysis
Finally, the last aspect to be evaluated regarding the EBPSM performance was VM utilization.
It was the most important thing to be pointed out when discussing the policy of sharing and
reusing computational resources. In Figure. 9a, we can see the increasing trend in VM
utilization percentage along with the arrival rate of workflows on the platform. The average
utilization upsurge for each scenario was 4%. The minimum utilization rate was 20% produced
by the 0.5 wf/m scenario and the maximum of 36% for the 12 wf/m scenario.

We argue that the VM utilization rate had a connection to the number of VMs used during the
execution. Figure. 9b depicted the number of VMs used in this experiment. We can observe
that the overall number of VMs was declining along with the arrival rate of workflows. The
average number of decreases was 20% for all VM types. The lowest drop was for the t2.large
by 15%, and the highest drop was for the t2.medium by 25%. Meanwhile, the t2.small
decreased by 22% and t2.micro by 16% respectively. The EBPSM algorithm always preferred
to the fastest VM type and re-calculate and redistribute the budget after each task finished
execution. Hence, in this case, the exit tasks might use more VMs of the cheapest type if the
budget has been used up by the earlier tasks. Therefore, t2.large as the fastest VM type along
with t2.micro as the cheapest would always be preferred compared to the other VM type.

From this experiment, we concluded that in the WaaS cloud platform where the number of
workflows involved is high, the scheduling algorithm must be able to maintain the low number
of VMs being provisioned. Any additional VM leased means the higher possibility of incurring
more delays related to the provisioning, initiating, and configuring the VMs before being
allocated for executing the abundance of tasks.

5. Conclusions and Future Work
The workflow management systems (WMS) have a crucial responsibility in executing
scientific workflows. It manages the complicated orchestration process in scheduling the
workflows and provisioning the required computational resources during the execution of
scientific workflows. With the increasing trends of outsourcing computational power to third
party cloud providers, there is a consideration to escalate the standalone execution of scientific
workflows to the platform that provides the particular service. In this case, there is an emerging
concept of a Workflow-as-a-Service (WaaS), extending the conventional WMS functionality
to ensure the execution of scientific workflows as a utility service in a WaaS cloud platform.

In this work, we extended the CloudBus WMS by modifying several components for it capable
of scheduling multiple workflows to develop the WaaS cloud platform. We implemented the
EBPSM algorithm, budget-constrained scheduling algorithm designed for the WaaS platform
that is capable of minimizing the makespan while meeting the budget. Furthermore, we
evaluated the system prototype using two bioinformatics workflows applications with various
scenarios. The experiment results demonstrate that the WaaS cloud platform, along with the
EBPSM algorithm, is capable of executing a workload of multiple bioinformatics workflows.

As this work primarily focused on designing the WaaS scheduler functionality, further
development of the WaaS cloud platform would be focused on developing the WaaS portal. It
is the interface that connects the platform with the users. In this case, the users are expected to
be able to compose and define their workflow's job, submit the job and the data needed, monitor
the execution, retrieving the output from the workflow's execution. Finalizing the server-based
functionality is another to-do list so that the WaaS cloud platform can act as a fully functional
service platform in the clouds.

Finally, we plan to enable the WaaS cloud platform for deploying workflows on microservices
technology such as container technology, serverless computing, and unikernels system to
accommodate the rising demand of the Internet of Things (IoT) workflows. This IoT demand
is increasing along with the shifting from centralized infrastructure to distributed cloud
computing environments. The shifting is manifested through the rising trends of edge and fog
computing environments.

References

[1] M. A. Rodriguez and R. Buyya, “Scientific Workflow Management System for Clouds,” in
Software Architecture for Big Data and the Cloud, Morgan Kaufmann, 2017, pp. 367-387.

[2] T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem, F. Nerieri, S. Podlipnig, J. Qin, M.
Siddiqui, H.-L. Truong, A. Villazon and M. Wieczorek, “ASKALON: A Development and Grid
Computing Environment for Scientific Workflows,” in Workflows for e-Science: Scientific
Workflows for Grids, London, Springer, 2007, pp. 450-471.

[3] J. Qin and T. Fahringer, Scientific Workflows: Programming, Optimization, and Synthesis with
ASKALON and AWDL, Springer, 2014.

[4] P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka and J. Luitz, “WIEN2K, An Augmented
Plane Wave+ Local Orbitals Program for Calculating Crystal Properties,” Vienna University of
Technology, Vienna, 2001.

[5] J. Goecks, A. Nekrutenko and J. Taylor, “Galaxy: A Comprehensive Approach for Supporting
Accessible, Reproducible, and Transparent Computational Research in The Life Sciences,”
Genome Biology, vol. 11, no. 8, p. R86, 2010.

[6] C. A. Goble, J. Bhagat, S. Aleksejevs, D. Cruickshank, D. Michaelides, D. Newman, M.
Borkum, S. Bechhofer, M. Roos and P. Li, “myExperiment: A Repository and Social Network
for the Sharing of Bioinformatics Workflows,” Nucleic Acids Research, vol. 38, pp. 677-682,
2010.

[7] D. R. Bharti, A. J. Hemrom and A. M. Lynn, “GCAC: Galaxy Workflow System for Predictive
Model Building for Virtual Screening,” BMC Bioinformatics, vol. 19, no. 13, p. 550, 2019.

[8] M. W. C. Thang, X. Y. Chua, G. Price, D. Gorse and M. A. Field, “MetaDEGalaxy: Galaxy
Workflow for Differential Abundance Analysis of 16s Metagenomic Data,” F1000Research,
vol. 8, p. 726, 2019.

[9] D. Eisler, D. Fornika, L. C. Tindale, T. Chan, S. Sabaiduc, R. Hickman, C. Chambers, M.
Krajden, D. M. Skowronski, A. Jassem and W. Hsiao, “Influenza Classification Suite: An
Automated Galaxy Workflow for Rapid Influenza Sequence Analysis,” Influenza and Other
Respiratory Viruses, 2020.

[10] B. Balis, “HyperFlow: A Model of Computation, Programming Approach and Enactment
Engine for Complex Distributed Workflows,” Future Generation Computer Systems, vol. 55,
pp. 147-162, 2016.

[11] M. Malawski, A. Gajek, A. Zima, B. Balis and K. Figiela, “Serverless Execution of Scientific
Workflows: Experiments with HyperFlow, AWS Lambda and Google Cloud Functions,” Future
Generation Computer Systems, 2017.

[12] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher and S. Mock, “Kepler: An Extensible
System for Design and Execution of Scientific Workflows,” in Proceedings of The 16th
International Conference on Scientific and Statistical Database Management, 2004.

[13] J. Davis, M. Goel, C. Hylands, B. Kienhuis, E. A. Lee, J. Liu, X. Liu, L. Muliadi, S.
Neuendorffer and J. Reekie, “Overview of the Ptolemy Project,” 1999.

[14] P. Korambath, J. Wang, A. Kumar, J. Davis, R. Graybill, B. Schott and M. Baldea, “A Smart
Manufacturing Use Case: Furnace Temperature Balancing in Steam Methane Reforming
Process via Kepler Workflows,” Procedia of Computer Science, vol. 80, pp. 680-689, 2016.

[15] P. C. Yang, S. Purawat, P. U. Ieong, M. T. Jeng, K. R. DeMarco, I. Vorobyov, A. D.
McCulloch, I. Altintas, R. E. Amaro and C. E. Clancy, “A Demonstration of Modularity, Reuse,
Reproducibility, Portability and Scalability for Modeling and Simulation of Cardiac
Electrophysiology Using Kepler Workflows,” PLOS Computational Biology, vol. 15, no. 3, pp.
1-19, 2019.

[16] E. Deelman, K. Vahi, M. Rynge, R. Mayani, R. daSilva, G. Papadimitriou and M. Livny, “The
Evolution of the Pegasus Workflow Management Software,” Computing in Science
Engineering, vol. 21, no. 4, pp. 22-36, 2019.

[17] D. Thain, T. Tannenbaum and M. Livny, “Distributed Computing in Practice: The Condor
Experience,” Concurrency - Practice and Experience, vol. 17, no. 2-4, pp. 323-356, 2005.

[18] E. Deelman, C. Kesselman, G. Mehta, L. Meshkat, L. Pearlman, K. Blackburn, P. Ehrens, A.
Lazzarini, R. Williams and S. Koranda, “GriPhyN and LIGO, Building a Virtual Data Grid for
Gravitational Wave Scientists,” in High Performance Distributed Computing, 2002.

[19] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen, S. Soiland-Reyes, I.
Dunlop, A. Nenadic, P. Fisher, J. Bhagat, K. Belhajjame and F. Bacall, “The Taverna Workflow
Suite: Designing and Executing Workflows of Web Services on the Desktop, Web or in the
Cloud,” Nucleic Acids Research, vol. 41, no. 1, pp. 557-561, 2013.

[20] B. B. Misra, “Open-Source Software Tools, Databases, and Resources for Single-Cell and
Single-Cell-Type Metabolomics,” in Single Cell Metabolism: Methods and Protocols, New
York, Springer, 2020, pp. 191-217.

[21] R. Tsonaka, M. Signorelli, E. Sabir, A. Seyer, K. Hettne, A. Aartsma-Rus and P. Spitali,
“Longitudinal Metabolomic Analysis of Plasma Enables Modeling Disease Progression in
Duchenne Muscular Dystrophy Mouse Models,” Human Molecular Genetics, 2020.

[22] J. Yu and R. Buyya, “Gridbus Workflow Enactment Engine,” in Grid Computing:
Infrastructure, Service, and Applications, CRC Press, 2018.

[23] C. Vecchiola, X. Chu and R. Buyya, “Aneka: A Software Platform for .NET-based Cloud
Computing,” in High Speed and Large Scale Scientific Computing, Amsterdam, IOS Press,
2009, pp. 267-295.

[24] S. Pandey, D. Karunamoorthy and R. Buyya, “Workflow Engine for Clouds,” in Cloud
Computing, John Wiley & Sons, Ltd, 2011, pp. 321-344.

[25] M. H. Hilman, M. A. Rodriguez and R. Buyya, “Task-Based Budget Distribution Strategies for
Scientific Workflows with Coarse-Grained Billing Periods in IaaS Clouds,” in Proceedings of
The 13th IEEE International Conference on e-Science, Auckland, 2019.

[26] M. H. Hilman, M. A. Rodriguez and R. Buyya, “Resource-sharing Policy in Multi-tenant
Scientific Workflow as a Service Platform,” arXiv, 2019.

[27] M. P. Mackley, B. Fletcher, M. Parker, H. Watkins and E. Ormondroyd, “Stakeholder Views on
Secondary Findings in Whole-genome and Whole-exome Sequencing: A Systematic Review of
Quantitative and Qualitative Studies,” Genetics in Medicine, vol. 19, no. 3, pp. 283-293, 2017.

[28] D. Dong, Z. Xu, W. Zhong and S. Peng, “Parallelization of Molecular Docking: A Review,”
Current Topics in Medicinal Chemistry, vol. 18, no. 12, pp. 1015-1028, 2018.

[29] J. Kelleher, Y. Wong, A. W. Wohns, C. Fadil, P. K. Albers and G. McVean, “Inferring Whole-
genome Histories in Large Population Datasets,” Nature Genetics, vol. 51, no. 9, pp. 1330-
1338, 2019.

[30] M. H. Hilman, M. A. Rodriguez and R. Buyya, “Task Runtime Prediction in Scientific
Workflows Using an Online Incremental Learning Approach,” in Proceedings of the 11th
IEEE/ACM International Conference on Utility and Cloud Computing, Zurich, 2018.

[31] A. Gimeno, M. J. Ojeda-Montes, S. Tomás-Hernández, A. Cereto-Massagué, R. Beltrán-Debón,
M. Mulero, G. Pujadas and S. Garcia-Vallvé, “The Light and Dark Sides of Virtual Screening:
What Is There to Know?,” International Journal of Molecular Sciences, vol. 20, no. 6, 2019.

[32] C. Grebner, E. Malmerberg, A. Shewmaker, J. Batista, A. Nicholls and J. Sadowski, “Virtual
Screening in the Cloud: How Big Is Big Enough?,” Journal of Chemical Information and
Modeling, 2019.

[33] O. Trott and A. J. Olson, “AutoDock Vina: Improving the Speed and Accuracy of Docking with
A New Scoring Function, Efficient Optimization, and Multithreading,” Journal of
Computational Chemistry, vol. 31, no. 2, pp. 455-461, 2010.

	1. Introduction
	2. Related Work
	3. Prototype of WaaS Cloud Platform
	3.1. CloudBus Workflow Management System
	3.2. WaaS Cloud Platform Development
	3.3. Implementation of Multiple Workflows Scheduling Algorithm

	4. Case Studies and Performance Evaluation
	4.1. Bioinformatics Applications Workload
	4.1.1. Identifying Mutational Overlapping Genes
	4.1.2. Virtual Screening for Drug Discovery
	4.1.3. Workload Preparation

	4.2. Experimental Infrastructure Setup
	4.3. Results and Analysis
	4.3.1. More Cost to Gain Faster Execution
	4.3.2. Budget Met Analysis
	4.3.3. Makespan Evaluation
	4.3.4. VM Utilization Analysis

	5. Conclusions and Future Work
	References

