
QoS-aware Deployment of Network of Virtual Appliances across Multiple Clouds

Amir Vahid Dastjerdi, Saurabh Kumar Garg, and Rajkumar Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory,

Department of Computer Science and Software Engineering, The University of Melbourne, Parkville, VIC 3010, Australia,
[amirv, sgarg, raj]@csse. unimelb.edu.au

Abstract—Cloud computing paradigm allows on-demand
access to computing and storages services over the Internet. To
solve the complexity of application deployment in Cloud
infrastructure, virtual appliances, pre-configured, ready-to-
run applications are emerging as a breakthrough technology.
However, an automated approach for deploying network of
appliances is required to guarantee minimum deployment cost,
low latency, and high reliability. In this paper, we propose and
compare two different deployment approaches: Forward-
checking-based backtracking (FCBB) and genetic-based. They
take into account Quality of Service (QoS) criteria such as
reliability, data communication cost, and latency between
multiple Clouds to choose the most appropriate combination of
virtual machines and appliances. We evaluate our approach
using a real case study and different request types.
Experimental results show both algorithms reach near optimal
solution. Further, we investigate effects of factors such as
latency requirements, and data communication between
appliances on the performance of the algorithms and
placement of appliances across multiple Clouds.

Keywords- Cloud computing; Virtual appliance; Quality of
service; Service-Level Agreements (SLA);

I. INTRODUCTION
Cloud computing is “a large-scale distributed computing

paradigm that is driven by economies of scale, in which a
pool of abstracted virtualized, dynamically-scalable,
managed computing power, storage, platforms, and services
are delivered on-demand to external customers over the
Internet” [2]. Clouds can be classified according to their
service types and deployment models [3].

As noted by Ian Foster et al. [2], clusters, supercomputers,
and partially grid relied on non-Service Oriented
Architecture (SOA) application, while Cloud focuses on Web
2.0 and SOA. Although Clouds adopted standard
communication protocols such as HTTP, and SOAP, the
integration and interoperability of all services and finally
service deployment remain as major challenges. To
overcome deployment problems such as root privilege
requirements and library dependencies, virtual appliance
technology is adopted as a major Cloud component [2].
Virtual appliances are a set of virtual images including
optimized operating systems, pre-built, and pre-configured,
ready-to-run applications which proved to be a better service
deployment solution [5].

Cloud deployment includes two main phases: discovery
and selection. In the discovery phase, all virtual units and
appliances that satisfy users’ goals and Quality of Service

(QoS) requirements are retrieved. Then, in the selection
phase, all the combinations of virtual units and appliances
are evaluated and ranked based on user preferences and the
top combination in the ranked list are returned as the best
composition. A framework for service discovery and
deployment in Cloud was introduced in our previous work
[9]. In this paper, we focus on QoS-based virtual unit and
appliance selection.

Figure 1. Network of Virtual Appliances Deployment in Multiple Clouds

Environment

We investigate a solution considering user’s objective and
constraints that offers a selection strategy for deploying a
group of connected appliances (as shown in Figure 1) in an
environment where multiple Clouds are offering their
services in the form of virtual units and appliances. In the
selection problem, we have users’ requests with different
latency, reliability and budget constraints, and the objective
of minimizing the deployment cost. Moreover, we have
various combinations of appliances and virtual units in the
Cloud market. The problem is to find a composition that
adheres to the user constraints and minimizes the cost of
deployment. The deployment problem maps to multi-
dimensional knapsack problem due to multiple QoS
constraints. The Multidimensional Knapsack problem is
classified as NP-hard optimization problem [11]. It consists
of selecting a subset of alternatives in a way that the total
profit of the selected alternatives is maximized while a set of
knapsack constraints are satisfied.

Since by migrating to Cloud, Cloud customers are moving
their data and services out of their direct control, they are

2011 Third IEEE International Conference on Coud Computing Technology and Science

978-0-7695-4622-3/11 $26.00 © 2011 IEEE

DOI 10.1109/CloudCom.2011.62

415

typically concerned about the reliability of Cloud providers’
operations. However, this QoS dimension has not been
investigated in Cloud provisioning studies [7, 8]. Moreover,
since multiple providers are offering different appliances and
virtual units with different pricing in the market, it is
important to exploit the benefit of hosting appliances on
multiple providers to reduce the cost and provide better QoS.
However, this could be only possible if high throughput and
low latency can be guaranteed among different selected
Clouds. Therefore, the latency constraint between nodes has
to be considered as another QoS criteria in the selection
problem. This paper considers reliability and latency
between virtual appliances as the main QoS criteria for
designing service selection strategy. In our work, we
carefully model the QoS criteria in the problem and then
tackle it by two different approaches namely genetic-based
and Forward-checking-based backtracking (FCBB)
algorithm.

Furthermore, the paper shows effects of data transfer rate
between appliances on the performance of algorithms and
compares effects of latency requirements and data transfer
rates between appliances on their placement across multiple
Clouds.

The major contributions of this paper are: 1) modeling
relevant QoS criteria, namely as latency, cost (data transfer
cost, virtual unit, and appliance cost), and reliability for
selection of the best virtual appliances and units in Cloud
computing environment, 2) presenting and evaluating two
different selection approaches to help users in deploying
network of appliances on the multiple Clouds based on their
QoS preferences. For that purpose various types of requests
(with different network load between appliances) are
generated, and data from 12 real Clouds was collected, and
3) investigating effects of factors such as latency
requirements, and data communication on the cost of
appliance placement and the selection of providers.

II. MOTIVATION SCENARIO AND CHALLENGES
To study user requirements and concerns for deploying a

network of appliances on Clouds, we give an example of a
real world case study with known network traffics between
appliances. A good example of network of virtual appliances
(a set of appliances in the form of a connected graph which
have data communication among them) is multi-tier
applications supporting web-based services. Each tier has
communication requirements as characterized in the research
conducted by Diniz Ersoz et al. [1]. They considered a data
center with 11 dedicated nodes of a 96-nodes Linux cluster
and host an e-business web site encompassing 11 appliances:
2 front-end Web-Servers (WS) in its web tier, 3 Databases
(DB) in its database tier and 6 Application Servers (AS) in
between.

An administrator of the e-Business web site might be
interested in migration of the appliances to the Cloud in
order to save on upfront infrastructure and maintenance
costs, as well as to gain the advantage of on-demand scaling.
In addition, to allow disaster recovery and geography-
specific service offering, he prefers multiple Cloud
deployment. For such deployment, he faces several

challenges such as: 1) what is the best strategy for placing
appliances across Cloud providers? Should they be placed
based on the traffic they exchange, therefore placing those
with higher connectivity closer to each other to decrease
latency and data transfer cost?, 2) is it economical to do so?
(how much is the Cloud deployment cost), 3) if appliances
are placed across multiple providers, how the latency
between different providers affects the web site
performance?, and 4) how can the most reliable Cloud
services be selected for the deployment?

In this work, our proposed algorithms help to answer the
above questions by selecting the most suitable virtual
appliance and virtual unit services based on the application
requirements. Our solution minimizes the cost of migration
to Cloud while considering user’s concerns in regards to
reliability and latency. In order to translate the user QoS
requirements in terms of reliability, latency and
communication costs, we have considered three metrics
which are explained in the next section.

III. QOS CRITERIA
The three QoS criteria considered in the selection problem

are reliability, cost, and latency.

A. Reliability

For measuring Cloud providers’ reliability we introduce
SLA Confidence Level (SCL) which is a metric to measure
how reliable are services of each provider based on the
binding SLAs. SCL values are computed by a third party that
is responsible for monitoring the SLA of provider based on
the following equation:

SCL= where: =

Where the is SLA confidence level for QoS criteria j
of a Cloud service; is the importance of the criteria j for
user; k is the number of monitored QoS criteria. is a
is monitored value of quality of service criteria j in the
period of t. and is promised value for the QoS criteria in
the period of t.

We modeled “availability” for SCL generation, as current
Cloud providers only include “availability” in their SLAs.
For example, a provider with promised availability of 99%
for 365 days and monitored availability of 98% for 365 days
has a better SCL compared to a provider with same promised
availability and 95% of monitored availability. The reliability
in our work is considered as a user constraint for each Cloud
service.

B. Cost

Cost is a non-functional requirement of a user who wants
to deploy a network of appliances on Cloud. In our problem,
minimization of deployment cost is considered as the
objective of users. The deployment cost in our selection
problem includes monetary cost of leasing virtual units as
well as appliances and communication costs [20]. The
communication monetary cost for connected virtual
appliances depends on how much data they exchange and
can be determined by the following factors: 1) One time

416

communication message size and 2) Communication rate
(how often two appliances communicate), which can be
calculated based on request inter-arrival rate.

C. Latency

Latency can have a significant impact on e-Business web
sites performance and consequently on the end user
experience. Therefore, we have considered it in the selection
problem as one of the user’s constraints. It is assumed that
customers have different constraints for the latency between
appliances which have to be satisfied with the selection of
proper Cloud providers.

IV. ARCHITECTURE
As illustrated in Figure 2, deployment process consists of

following phases:
 In phase � Service requestor specifies requirements for

each vertex, connectivity, latency constraints between
vertices, and hardware requirements like CPU, storage,
and memory.

 In phase � Software requirements used as an input for
discovering the best suited appliances among various
repositories of virtual appliance providers which named
as virtual market place by VMware. Simultaneously
Hardware requirement used by ontology-based
matchmaker in discovery component [9] to search for the
best available virtual units advertised.

 Phase � deals with building the Open Virtualization
Format (OVF) package and its metadata based on
discovered virtual appliances from external appliance
providers. The OVF [33] is a hypervisor-neutral (the
OVF doesn’t rely on the use of specific hypervisor or
virtualization platform), and open specification for the
packaging and distribution of virtual appliances
composed of one or more VMs.

 During phase � the selection component uses user
preferences regarding latency, SCL and cost to select the
best virtual appliance and virtual unit combination for the
group of appliances connected together. Consequently, in
this phase the selection component sends a query to the
monitoring third party and acquires the associated SCL to
each service provider.

 Finally in phase � SLA will be negotiated and contract
will be achieved between the SLA managers and selected
virtual unit and appliance providers. Enforceable SLA
will be signed by both parties and is kept in a repository
and continuously monitored by the third party.

V. PROBLEM FORMULATION
The Cloud selection problem consists of finding the

composition of appliances and virtual units for the customers
that minimizes the deployment cost and adheres to the
reliability and latency constraints. In this section the problem
is formally defined.

Figure 2. Architecture of Appliance Deployment in

Multiple Cloud Environment

 Provider model
Let m be the total number of providers. Each provider is

represented as
Pk : ({a}, {vm }, Cdatain(Pk), Cdataout(Pk));

Where a, vm, Cdatain(Pk) and Cdataout(Pk) denotes
appliance, virtual machine, Cost of internal data transfer and
Cost of external data transfer respectively. A virtual
appliance a can be represented by a tuple of four elements:
appliance type, cost, license type, and size.

a: {ApplianceType; Cost; LicenseType; Size}

A virtual machine vm can be formally described as a tuple
with two elements as shown below.

vm: {MachineT ype; Cost}

 User request model
The user request for deployment of his application can be

translated into a connected graph G (V, E) where each vertex
represents a server (virtual appliance running on a virtual
unit). Server corresponding to a vertex v is represented as:

Each edge indicates that vertex v and v’ are
connected. The data transfer between these connected
vertexes (i.e., one server to another) is given by D.

The objective of user is to minimize the deployment cost
of his whole application on multiple Cloud providers’
infrastructure, given a lease period of “T” (unit) and budget
b. The users has constraint for reliability (SCLv) of the
provider on which server should be hosted and also latency

417

constraint ((L(e{v,v’}) where v,v’) that represents
maximum acceptable latency between servers. The cost of
renting a server includes the cost of virtual unit and virtual
appliance. Let appliance for Sv be rented from provider Pk
and virtual unit from provider Pl. The cost of server Sv as
shown below is cost of appliance () and virtual
unit (plus cost of transferring the appliance if the
appliance and virtual unit providers are not same.

Let Sv={ av,Pk , vmv,pl } and Sv’={ av’,Pk’ , vmv’,pl’ } be two
connected vertexes (servers) by edge ; and Pk ,
Pl, Pk’ and Pl’ are the providers using whose resources
Servers Sv and Sv’ are deployed. The data transfer cost
between two servers is given by:

Therefore, the total cost of hosting user’s application on
the multiple clouds is given by:

 Problem Formulation
The objective of the user is to minimize the deployment

cost of his whole application on multiple cloud infrastructure
(Pk.0<k<m). Thus, the mathematical model is given by:

Where, is the latency between Cloud
infrastructures where server and are hosted, and
SCL() is the reliability of the Cloud infrastructure where
server is hosted.

VI. ALGORITHMS
To tackle the mentioned problem, one may consider a

greedy algorithm [8]. However, it cannot be directly adopted
to solve the selection problem, as it is not capable of
satisfying the budget constraint and latency constraints
between vertices. Another approach which can be used to
solve the problem is finding all possible compositions using
exhaustive search, comparing their overall cost, and selecting
the composition with the lowest cost that satisfies budget,
reliability, and latency constraints. This approach can find
the optimal solution; however, the computation cost of the
algorithm is high due to NP hardness of the problem [8,18].
In order to deal with the aforementioned challenges in
following we describe two selection algorithms: Forward-

checking-based backtracking (FCBB) and the genetic-based
Cloud virtual appliance and unit selection.

A. Forward-checking- based -backtracking (FCBB)
In FCBB the process of searching providers begins from

a start node (vertex) Sv which has minimum deployment
cost (including appliance and virtual unit cost) and for all its
children there can be found at least one provider that satisfies
all constraints(partial forward checking) [Algorithm FCBB1:
lines 14-18]. The partial forward checking on the problem
constraints is added to the algorithm to avoid back jumps in
the circumstances where latency constraints of the users are
comparatively tight.

Then, Sv is added to the processed node list. After that,

the algorithm processes all the children of Sv which are not
processed, and for each child of Sv, providers are selected
using the selection function [Algorithm FCBB lines:9-12]
such that 1) latency and SCL constraints are satisfied with all
the connected processed nodes (backward checking) , 2) they
can pass forward checking and 3) they have minimum
communication (to already processed nodes) and
combination cost [Algorithm FCBB1: lines:20-23].

418

After selection of all the unprocessed children of the start
node Sv, the similar search and selection process is done
recursively for all the grand children of start node Sv
[Algorithm 1 lines: 13-15]. If selection function does not find
any set of providers, it moves back and replaces the parent
node with the second best set of providers in Combination
list (Backtrack) [Algorithm FCBB lines: 6 and 11].

B. Genetic- based Virtual Unit and Appliance Provider
Selection
Since genetic approaches have shown potential for

solving optimization problems [13], this class of search
strategies was utilized in our problem. The adoption of
genetic-based approaches for the selection problem involves
4 steps.

The first step is to plan the chromosome, which consists
of multiple genes. In our problem, each vertex in the graph
of request is represented by a gene. The second step is to
create the population, hence each gene represents a value
which pointed to a combination of virtual unit and appliance
service (which satisfies requirements of corresponding
vertex) in a sorted (based on the combination cost) list.
Implementation of fitness function is the third step. The
fitness values are then used in a process of natural selection
to choose which potential solutions will continue on to the
next generation, and which will die out. The fitness function
as shown in Equation (1) is equal to the total cost of the
solution. However, if constraints are violated then the
penalty function is applied. Designing penalty function for
genetic-based approach is not a trivial task. Several
techniques have been applied in our work until a proper
penalty function was found that is capable of handling
constraints in the problem. The penalty function is
constructed as a function of the sum of number of violations
for each constraint multiplied by constants as shown in
Equation (2). In the penalty function, Age is the age of
chromosome, ki is the constant which differs from a
constraint to another constraint, NVi is number of cases that
violate the constraints and NNVi is the number of cases that
do not violate the constraints. In addition, to discard the
infeasible solutions in early generations, infeasible solutions
with lower age are penalized heavier. Finally, the last step is
the evolution of the population based on the genetic operator.
The genetic operator adopted for our work is Java Genetic
Algorithm Package (JGAP) natural selector [14].

Where, = (2)

VII. EXPERIMENTAL TEST BED MODELLING
To evaluate the proposed algorithms and study placement

of appliances, essential input data using real experiments was
collected. The collected data can be classified either in data
for providers modeling, and data for user request modeling.
Providers Modeling: A set of 12 real Cloud providers are
selected namely: Amazon, Zerigo, Softlayer, VMware,
Bitnami, rpath, Turnkeylinux, Rackspace, GoGrid,
ReliaCloud, Lindoe, and Prgmr. Their virtual units and
appliances have been modeled in our system. In addition,
latency data between Cloud providers and SCL for each of
them have been measured. The following subsections
describe the data collected in detail.

1) Virtual Unit and Appliance Modeling: We built an
aggregated repository of virtual appliance and virtual unit
services based on the advertised services by Cloud providers.
Services contain information regarding cost, virtual
appliance size, and data communication cost inside and
outside of Clouds.

2) Latency and reliability (SCL) calculation: The
latency data between Cloud providers has been collected
over the past three months using the Cloud harmony [23]
service. Data collection was conducted twice daily at random
times. Tests consist of pinging to determine latency. Table I
shows mean latency between EC2 and 3 different virtual unit
providers as a sample. Max, min and average of latency
between providers are 58.94, 2.51 and 29.88 (ms)
respectively. In addition, Panopta (a monitoring tool) is used
to supply SCL input data, Table I demonstrates how a
sample of SCL input data looks like for 3 Cloud Providers
service uptime for the last 365 days.
Generation of requests for experiments: The request
generation involves three steps. Firstly, number of servers
requested by the user and requirements of each server in
terms of virtual unit and appliance types are determined.
Next, connected vertices in request are identified. Finally,
data transfer rates between connected appliances are
identified. For experimental evaluation two classes of
requests are used, i.e., a real case study and randomly
generated requests.

TABLE I. LATENCY BETWEEN CLOUDS AND SCL INPUT DATA [23]

Cloud A Cloud B Latency
(ms)

Cloud B
Monitored
Availability

Cloud B
Promised

Availability
Ec2 Rackspace 49.8 99.996% 100%

Ec2 GoGrid 8.9 99.999% 100%

Ec2 Lindoe 5.01 99.999% 100%

TABLE II. REQUEST TYPES

Request
Type

Request
Graph
Density

Request Inter-
Arrival Rate

DB ↔ AS

Request Inter-
Arrival Rate

WS ↔ As
Strongly

Connected 0.85 Log-normal
(1.4719, 2.2075)

Weibull
(0.70906 ,10.185)

Moderately
Connected 0.50 Log-normal

(1.1695 1.9439)
Weibull

(0.41371 1.1264)

Poorly
Connected 0.25 Log-normal

(0.8912 1.6770)
Weibull

(0.24606 0.03548)

419

1) modeling user requests using a real case study
For the real case study example, we use the three-tier

data centre scenario presented by Ersoz et al. [1]. Required
virtual unit and appliance type for each vertex is assigned
based on the scenario. They implemented an e-Business web
site that encompasses 11 appliances: 2 front-end web-servers
(WS) in its web tier, 3 databases (DB) in its database tier and
6 application servers (AS) in between. In their work, three-
tier data centre architecture was used to collect the network
load between appliances. Each of the nodes have 4 GB of
system memory, 64-bit AMD Opteron processors. Two
different workloads, RUBiS [25] and SPECjApp-Server2004
[16] are used by them. However, our focus is on the RUBiS
which implements an e-Business web site. That web site
includes 27 interactions which can be carried out from a
client browser. Their analysis of experiments results has
been represented by various distributions of request inter-
arrival times, and data size between tiers for 15 minutes runs
of the RUBiS workload with 800, 1600, and 3200 clients
(number of clients causes different request inter-arrival rates
which is used to generate different requests types). This data
which is shown in Table II is used to calculate the network
traffic between connected appliances.
2) modeling user requests for extensive experiment study

Three classes of user requests (network of appliances)
namely strongly, moderately, and poorly connected are
created as shown in Table II which differs from each other in
communicated message sizes, message inter-arrival rates,
and graph density (proportion of the number of edges in
request graph to total possible number of edges) of the
request graph. The reason for building 3 classes of requests
is to study the effect of network traffic and request graph
density on performance of selection algorithms. For each
vertex, we randomly assign a required virtual unit and
appliance type, and then we use random graph generation
technique to identify which vertices are connected. All
generated network of appliances are following the topology
presented by Ersoz et al. [1]. Next, based on which types of
appliances are connected to each other, data transfer rates are
assigned to them according to Table II. For example if one
appliance is a database and the other one is application server
and the request is in category of strongly connected, then the
request inter-arrival rate is Log-normal(1.4719, 2.2075). In
addition, to investigate effects of message size on the
performance of algorithms, two classes of requests with
different message sizes are created using workload ‘a’ [1] (e-
Business application with small message size) and ‘b’ [24]
(98 World cup with large message size).

VIII. EXPERIMENTAL RESULTS
The experiments aim at: a) comparing the proposed

heuristics with Exhaustive Search (ES) using the real case
study, b) evaluating effects of variation in request types on
algorithms performance and execution time, c) analyzing
effects of variation in request types and latency constraints
on distribution factor.

A. Comparison with Exhaustive Search (ES)
Figure 3 shows how close the proposed algorithms are to

the Exhaustive Search (ES) for the case study. Both of them
could reach the same solution achieved with ES. As
evidenced by Table III, the mean execution time for finding
the solution using exhaustive search of solution space is
extremely high comparing to our proposed algorithms. The
execution time for the ES approach rises further
exponentially with the computation effort for larger number
of servers and providers; therefore, it cannot be considered as
a practical solution for the selection problem with
constraints. To further examine the near-optimality of FCBB
and the genetic approach, we conducted extensive
experiments with 10 different requests (in terms of service
requirements, graph density, message size, and request inter-
arrival time) for each category of 10, 15, and 20 servers. The
results are shown in Table IV, where we can clearly observe
that on average, the difference with deployment cost of ES
results is just 7% for the FCBB and 1% for genetic approach.
Therefore, FCBB and genetic approach can reach the near-
optimal solution without much computation cost.

B. Results of variation in request types on algorithms
performance and execution time
Figure 4 and 5 depict the performance of our algorithms

for different request types (strongly, moderately, and loosely
connected) with different number of servers. In the case of
workload ‘a’, as message size is small, differences are not
much, except in strongly connected requests (Figure 4a) and
especially for the case of 100 servers where genetic-based
approach can save approximately 3% of cost. In other cases
of workload ‘a’ when vertices are moderately or poorly
connected the genetic-based approach has better or relatively
same performance (regarding the cost) compare to the FCBB
algorithm. However, when the message size is larger
(workload ‘b’), as shown in Figure 5a), genetic algorithm in
almost all cases outperforms the FCBB algorithm. In Table
V, mean execution time for 20 experiments in relation to the
number of servers for group of requests is given which
shows the execution time of FCBB is negligible compare to
genetic. It also shows that adding “forwards checking”
feature successfully decreases execution time especially for
the requests which require more than 10 servers and
therefore it outperform the discard subset algorithm offered
in [18] regarding the execution time while they both could
result in same objective values for all cases.

Therefore, it can be concluded that the performance of
algorithms differs from one workload to another and when
there exists a workload with small message size (like the e-
Business workload ’a’ [1]) performance difference of
algorithms is low. In such cases FCBB can be used to save
on execution time. However, when the message size
increases [24] then they show comparatively higher
differences, therefore, when users are looking for the least
deployment cost instead of the execution time, the genetic-
based approach is more appropriate.

420

 Figure 3. Performance Evaluation for Case Study

 (a) Strongly connected (b) Moderately Connected (c) Loosely Connected

Figure 4. Change in Connectivity for Workload a

 (a) Strongly connected (b) Moderately Connected (c) Loosely Connected

Figure 5. Change in Connectivity for Workload b

C. Effects of variation in request types and latency
constraints on distribution factor
In this experiment, the objective is to study the possibility

of network of appliances placement on different providers
rather than one. For this purpose a metric named
“distribution factor” is designed, which shows proportion of
the number of different providers selected to the total
number of providers. Table VI shows how a request type
(data transfer rate, and graph density as explained in Table
II) affects the distribution factor. For the loosely connected
request with loose latency requirement, we can conclude that
considering multiple cloud providers decrease the
deployment cost while still we can maintain the performance
(by adhering to latency constraint). For all cases from 10 to
100 servers when there is higher data transfer and number of
connection between vertices the distribution factor decrease
dramatically. For majority of cases, it decreases by more
than 75 %. It means that FCBB selection algorithms have a
tendency to select the same virtual unit provider for all
vertices to save on communication cost. The same trend can
be observed for the genetic-based approach. When the
latency is tight, still if we consider multiple providers for

deployment the cost is lower. Nevertheless, the distribution
factor decreases by 25%.

Consequently, the experiments show that network of
appliances with higher graph densities and data transfer are
less likely to be distributed across multiple providers and
they are expected to have higher deployment cost.

TABLE V. MEAN EXECUTION TIME (S)

Algorithm
Number of servers

10 25 50 75 100
FCBB 0.103 0.115 0.288 0.407 0.841

Discarding
subset 0.138 0.271 0.849 2.339 6.091

genetic 31.997 144.426 497.377 1288.056 1814.488

TABLE VI. DISTRIBUTION FACTOR

Request type Number of servers
10 25 50 75 100

Loosely connected & loose
latency 44% 55% 55% 55% 44%

Strongly connected 11% 11% 11% 11% 11%
Tight latency 22% 44% 33% 33% 33%

TABLE III. MEAN EXECUTION TIME FOR CASE STUDY

Algorithm Mean Execution time(s)

FCBB 0.102
genetic 36.393

Exhaustive Search (ES) 3248.152

TABLE IV. MEAN EXHAUSTIVE SEARCH(ES)
COSTS/ALGORITHMS COSTS

Algorithm

Number of servers
10 15 20

ES/ FCBB 0.9841 0.9175 0.9013
ES/genetic 0.9952 0.9868 0.9923

421

IX. RELATED WORK
The concept of virtual appliances was originally

introduced to simplify the deployment and management of
desktop personal computers in enterprise and home
environments [26]. Then they have been adapted in Grid and
Cluster Computing environments to simplify the
deployments [27]. Now with the emergence of Cloud
Computing, which utilizes virtualization to provide elastic
usage of resources, virtual appliances are becoming the
preferred technology to deploy applications on virtual
machines with minimum effort.

Sun et al. [5] showed that by utilizing virtual appliances,
the deployment process of virtual machines can be made
simpler and easier. Wang et al. [29] presented a framework to
improve the efficiency of resource provisioning in large data
centers using virtual appliances. Similarly, a framework for
service deployment in Cloud based on virtual appliances and
virtual machines has been introduced in our previous work
[9]. That research focused on selecting suitable virtual
machines using ontology based discovery model, packaging,
and deploying them along with virtual appliances in the
Cloud platform, and monitoring the service levels using third
parties. In this work, we are concentrating on QoS-based
virtual unit and appliance composition where multiple
appliances need to be deployed across multiple Clouds with
acceptable latency and reliability to achieve users’ business
objectives.

A single virtual appliance on a virtual unit will not be
able to fulfill all the requirements of a business problem.
Inevitably we will require more than one virtual appliance
and unit working together to provide a complete solution.
Hence it is important to develop compositions of virtual unit
and appliances. Konstantinou et al. [30] proposed an
approach to plan, model, and deploy virtual appliance
compositions. In their approach, the solution model and the
deployment plan for virtual appliance composition in Cloud
platform are developed by skilled users and executed by
unskilled users. As cited by them, the contribution has not
offered an approach for selection of virtual appliance and
machine providers. In our work, however, we consider that
users will be only aware of the high level components that
are required for the composition to address their business
objectives and our solution provides an approach to select
the best composition based on their functional and QoS
requirements. Similarly Chieu et al. [31] proposed the use of
composite appliances to automate the deployment of
integrated solutions. However in their work as well, QoS
objectives are not considered when building the composition.

Characteristics of the appliance selection and
composition in Cloud differ from works done in other
contexts such as Grid and web services. Grid Computing
aims to ”enable resource sharing and coordinated problem
solving in dynamic, multi-institutional virtual
organizations”[2]. Therefore, the QoS management and
composition works in this context mainly focus on load
balancing (applying queuing theory and market driven
strategy [15]) and fair distribution of resources among
service requests [21, 22]. Most of these works proposed

constraint satisfaction based matchmaking algorithm (CS-
MM) and other artificial intelligence based optimization
techniques to improve the performance of scheduling.
However, In Service Oriented Architecture’s (SOA) context
the main concern is defining QoS language [6,12] to express
user preferences and QoS properties of the service (semantic
based [17, 19]). In this context, for automated web services
composition, various techniques such as workflow and AI
planning have been adapted [32].

However in the context of Cloud computing, selection
objective is not a fair distribution of resources between
requesters, because in Cloud resources can be considered as
infinite [20]. Instead, Cloud customers have emphasized
more on QoS dimensions such as reliability, and cost [2].
Therefore, in this work we present a novel way to measure
composition reliability and suitability based on Service-
Level Agreements (SLA). In addition, the data transfer cost
[20] is also included in our deployment cost. The importance
of modeling data transfer cost can be realized by the example
of deployment in Amazon Cloud where data transfer costs
approximately $100 per terabyte. These costs quickly add up
and become a great concern for the administrator.

In comparison with our approach for appliance
composition, works that applied Analytical Hierarchy
Process (AHP) and Multi-Attribute Utility Theory (MAUT)
[12], can only perform well when number of explicitly given
alternatives is small and number of objectives are limited. In
contrast, as shown in section VIII, our approach can deal
efficiently with a large number of Cloud services in the
repository (1200 services). Similarly another work has
utilized Intutitionistic Fuzzy Set (IFS) for ranking service
compositions in the context of Grid and SOA [28].
Nevertheless it does not deal with users’ constraints such as
latency and budget. Moreover, when the problem is NP-hard
the execution time is not acceptable. In addition, composition
optimization approaches have been categorized by Jaeger et
al. [18] to four types namely pattern based, discarding subset,
bottom-up selection, and the greedy. Among them discarding
subset has the best performance compare to the others when
selection problem includes users constraints for QoS criteria.
Consequently, we have compared our approach with
discarding subset and as shown in section VIII; our approach
has lower execution time. In summary, our work is unique in
dealing with Cloud specific appliance composition
challenges such as placement issues which includes cost of
appliance transfer, other ongoing data transfer costs, and
inter-cloud latency.

X. CONCLUSIONS
In this paper, we investigated Cloud provider selection

problem for deploying a network of appliances. We proposed
new QoS criteria and the problem of deployment is
formulated and tackled by two approaches namely FCBB
and genetic-based selection. We evaluated the proposed
approaches by a real case study using real data collected
from 12 Cloud providers, which showed that proposed
approaches deliver near-optimal solution. Next, they were
tested with different types of requests. The results show that
when message size increases approaches present

422

comparatively higher differences, and if execution time is
not the main concern of users, genetic-based selection in
most cases achieves better value for the objective function.
In contrast, if the massage size between appliances is small,
FCBB can be used to save on execution time. Further, based
on conducted experiments, we found out that network of
appliances with higher graph density and data transfer are
less likely (in contrast to requests with lower data transfer) to
be distributed across multiple providers. However, for
requests with tight latency requirements, appliances are still
placed across multiple providers to save on deployment cost.
In future, we plan to investigate integration of SLA-based
discovery and selection to our system to further enhance QoS
for end users.

REFERENCES
[1] D. Ersoz, et al., “Characterizing Network Traffic in a Cluster-based,

Multi-tier Data Center”, The 27th Int’l Conf on Distributed
Computing Systems , 2007.

[2] I. Foster, et al. , “Cloud Computing and Grid Computing 360-Degree
Compared”, IEEE Grid Computing Environments Workshop, 2008.

[3] Peter Mell and Tim Grance, The NIST Definition of Cloud
Computing, Version 15, 10-7-09.

[4] Amazon EC2, [Online]. Available: http://aws.amazon.com/ec2/
[5] C. Sun, L. He, et al., “Simplifying Service Deployment with Virtual

appliances”, IEEE Int’l Conf on Services Computing, 2008.
[6] I. Toma, et al., “Modelling QoS characteristics in WSMO”, In 1st

Workshop on Middleware for Service-oriented Computing, New
York, USA, 2006.

[7] M. M. Hassan, et al., “Multi-objective Optimization Model for
Partner Selection in a Market-Oriented Dynamic Collaborative Cloud
Service Platform”, The 21st IEEE Int’l Conf on Tools with Artificial
Intelligence, 2009.

[8] W. Zeng, et al., “Cloud service and service selection algorithm
research”, The 1st ACM/SIGEVO Summit on Genetic and
Evolutionary Computation (GEC '09), ACM, 2009, pp. 1045-1048.

[9] A. Vahid-Dastjerdi, et al., “An Effective Architecture for Automated
Appliance Management System Applying Ontology-Based Cloud
Discovery”, The 10th IEEE/ACM Int’l Symposium on Cluster, Cloud,
and Grid Computing, 2010.

[10] H-Q Yu and S. Reiff-Marganiec, “Non-functional property based
service selection: A survey and classification of approaches”, In Proc.
of 2nd Non Functional Properties and Service Level Agreements in
SOC Workshop (NFPSLASOC’08), Dublin, Ireland, 2008.

[11] V. Chvatal, “A greedy heuristic for the set-covering problem.”
Mathematics of Operations Research, 1979, 4(3):233-235.

[12] V. X. Tran, et al. 2009. "A new QoS ontology and its QoS-based
ranking algorithm for Web services", Simulation Modelling Practice
and Theory 17(8): 1378-1398.

[13] C.A. Coello Coello, “A comprehensive survey of evolutionary-based
multiobjective optimization techniques”, Knowledge and Information
Systems. An International Journal, 1(3):269–308, 1999.

[14] Jgap [Online].http://jgap.sourceforge.net
[15] X. Wang, K. Yue, J. Z. Huang, A. Zhou, “Service Selection in

Dynamic Demand-Driven Web Services”, IEEE Int’l Con on Web
Services (ICWS'04), IEEE CS Press, 2004.

[16] J2EE. [Online]. Available from http://java.sun.com/j2ee/.
[17] J. M. Garcia, et al., “QoS-Aware Semantic Service Selection: An

Optimization Problem”, The IEEE Congress on Services, 2008.
[18] Jaeger, M. and G. Rojec-Goldmann, “SENECA – Simulation of

Algorithms for the Selection of Web Services for Compositions”, In
6th VLDB Workshop on Technologies for E-Services , Norway,2005.

[19] I. Toma, et al., “A Multi-criteria Service Ranking Approach Based on
Non-Functional Properties Rules Evaluation”, The 5th Int’l Conf on
Service-Oriented Computing, Springer, 2007.

[20] M. Armbrust, et al., “Above the Clouds: A Berkeley view of Cloud
computing”, Technical Report UCB/EECS-2009-28, EECS
Department, University of California, Berkeley, 2009.

[21] S. A. Ludwig and S. M. S. Reyhani, “Selection Algorithm for Grid
Services based on a Quality of Service Metric”, The 21st Int’l Symp
on High Performance Computing Systems and Applications, 2007.

[22] G. Tapashree, S. A. Ludwig, “Comparison of Service Selection
Algorithms for Grid Services: Multiple Objective Particle Swarm
Optimization and Constraint Satisfaction Based Service Selection”,
The 20th IEEE Int’l Conf on Tools with Artificial Intelligence.

[23] Cloudharmony. [Online]. http://Cloudharmony.com
[24] M. Arlitt and T. Jin. A workload characterization study of the 1998

world cup web site. IEEE Network, 14(3), 2000.
[25] E. Cecchet, et al., “Performance and Scalability of EJB Applications”,

The 17th SIGPLAN Conf on Object-oriented programming, systems,
languages, and applications, 2002.

[26] Sapuntzakis, et al., Virtual appliances for deploying and maintaining
software, in ‘Proceedings of the 17th USENIX conference on System
administration’, 2009.

[27] K.Keahey & T.Freeman, “Contextualization: Providing one-click
virtual clusters”, in ‘Fourth IEEE International Conference on
eScience’, Indiana, USA, 2008.

[28] P.Wang, “Qos-aware web services selection with intuitionistic fuzzy
set under consumer's vague perception”, Expert Systems with
Applica- tions 36(3), 4460-4466, 2009.

[29] Wang, et al., “An autonomic provisioning framework for outsourcing
data center based on virtual appliances”, Cluster Computing 11(3),
229-245, 2008.

[30] Konstantinou et al., “An architecture for virtual solution composition
and deployment in infrastructure clouds”, in Proceedings of the 3rd
international workshop on Virtualization technologies in distributed
computing, 2009.

[31] Chieu, et al., “Solution-based deployment of complex application
services on a Cloud”, in 2010 IEEE International Conference on
Service Operations and Logistics and Informatics (SOLI), 2010.

[32] X. Su, J. Rao, “A Survey of Automated Web Service Composition
Methods”, in Proceedings of First International Workshop on
Semantic Web Services and Web Process Composition, 2004.

[33] DMTF (n.d.), `Open virtualization format', http://
www.dmtf.org/standards/ovf.

423

