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• Cloud pricing should consider both
cloud service providers’ cost and
customers’ value propositions.

• Cloud market segmentation can dif-
ferentiate various customers’ val-
ues.

• Value-based cloud pricing provides
a better solution for a cloud service
provider to maximize its profit.

• Four types of cloud pricing models
illustrate a comprehensive frame-
work of the cloud pricing process.

• Genetic Algorithm offers a conve-
nient solution of optimizing each
optimal price for each pricing model.
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a b s t r a c t

Cloud price modeling is the major challenge facing many cloud computing practitioners and re-
searchers in the field of cloud economics, which is also known as ‘‘Cloudonomics.’’ Previous attempts
mainly focused on a uniform market and used existing price models to explain the issue of revenue
maximization for cloud service providers (CSPs) from a cost or internal rationality perspective but
paid less attention to the cloud market segmentation for cloud business customers from a surplus
value or external rationality perspective. This study considers both aspects of the value proposition.
Based on the assumptions of the customers’ utility values for different market segments, we establish a
framework of value-based pricing strategy and demystify the process of modeling and optimizing cloud
prices for CSP to maximize its profits. This framework is built upon the theory of value co-creation for
both customers and CSPs to form a business partnership. We show how to create four cloud pricing
models, namely: on-demand, bulk-selling, reserved, and bulk + reserved. We also demonstrate how
to identify the optimal price point of each model to maximize CSP’s profit by genetic algorithm. We
exhibit that reserved, bulk + reserved, on-demand, and bulk-selling can deliver a profit margin of
203%, 183%, 166%, and 157% for CSPs respectively. While the reserved model provides the highest
profit margin, it does not necessarily mean that CSPs should adopt one model only. We provide a
novel solution that allows CSPs to achieve the maximum profit by offering multiple pricing models
simultaneously to various customers in the segmented market. We argue CSPs should capitalize
on cloud pricing rather than price to gain more cloud market share and profit. Thus, we present
state-of-the-art cloud pricing for segmented business to business cloud market.
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1. Introduction

Value-based cloud price modeling for different cloud market
segments [1] is vital to all Cloud Service Providers (CSPs) as it
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will not only impact on CSP’s profitability but also determine the
sustainability of CSP’s cloud business [2]. The goal of this study
is to develop a comprehensive process framework of value-based
price modeling that enables CSP to gain more cloud B2B market
share for its profit maximization. Many previous studies can be
considered as either cost-based or cost-plus models [3], which
they were dependent on an assumption of a uniform market and
paid less attention to the segmented market that carries het-
erogeneous values of customers. Furthermore, their processes of
modeling mainly explained how to leverage two or three existing
models (e.g., on-demand and spot instance) for CSP to maximize
its revenue, which was subjective to a cloud capacity constraint
that is equivalent to a cost. Subsequently, those works led to the
issue of the internal rationality only.

The term of ‘‘Rational’’ means a decision is made according
to reason or logic. In economics, people are assumed to be ra-
tional because they will systematically and purposefully do the
best they can do achieve their purposes, given the available
choices [4]. ‘‘Internal rationality’’ implies that a decision maker
focuses on internal justification; for instance, a cloud price is de-
termined by cost. In contrast, ‘‘external rationality’’ suggests that
a decision should be made by an explanation of external factors,
which a price is dependent on customer willingness to pay. In
economics, it is essential that the pricing model is built upon the
assumption that the individual is rational because people can be
irrational.

The questions of how to create a cloud price model itself
based on the business customers’ value proposition and how to
target the segmented market, especially, business to business
(B2B) market have remained either unanswered or incomplete.
To overcome this gap, we develop cloud price models that include
both external and internal rationalities. For the external ratio-
nality, we examine two essential external factors, namely, cloud
customers’ utility values and B2B market segments. For the inter-
nal rationality, we take into account of CSP’s cloud infrastructure
cost. Based on our result of price modeling, we then use a genetic
algorithm (GA) to identify the optimal price point of each price
model for CSP to maximize its profit. One of the useful properties
of GA is that it can solve a complex profit equation for intertwined
variables without knowing the details of sub-functions. It is also
convenient to upgrade the optimal price point of each model so
that the process of price modeling can cope with the decision
variation of cloud business strategy.

To demonstrate the process of value-based cloud price mod-
eling, we exhibit and analyze different models, namely cost-plus,
on-demand, bulk-selling, reserved (two-part tariff), and reserved
+ bulk for profit margin comparison. The cost-plus pricing models
are often prevalent [2] because ‘‘they carry an aura of financial
prudence. . . to yield a fair return on overall costs (or resources),
fully and fairly allocated’’. However, these models fail to cap-
ture heterogeneous values of customers. In contrast, four value-
based models can reflect the value proposition of both cloud
customers and CSPs. Those models can be considered as ‘‘value
co-creation’’ [5,6] because CSPs are seeking a partnership with
their cloud customers in the cloud market value chain. We show
these models allow CSPs not only to satisfy customers’ needs
but also to achieve a better profit margin in comparison with
the cost-based model. Overall, we provide a process solution
that has a quantitative measurement under a single currency
(or business revenue contribution) can capture different cloud
customer service metrics (e.g., increase sales, customer retention,
investment efficiency, maintain a specified SLA, reduce checkout
queueing time, etc.). To better illustrate the entire process of
modeling, we use the following scenario to explain the details.

1.1. Background

Assume a group of decision-makers of a hosting firm decide
to expand its hosting business into the cloud B2B market. It
implies that the firm wants to become a new CSP to compete
with other existing CSPs (either global or local CSPs). If the initial
investment budget (both capital and operation expenditure or
Capex and Opex) and business goals (targeted revenue, profit, and
market) have been approximately identified, the decision makers
want to know how to achieve the business goals. There are two
fundamental questions must be clarified: ‘‘How does the firm
form the right pricing strategy for the identified business goal?’’
and ‘‘how does it decide the appreciated cloud price models
along with optimal price points, sales volumes, and unit cost to
achieve the maximum profit?’’ These questions will help the CSP
to divert its limited resources (investment budget and technology
expertise) to serve its targeted customers better so that it can
maintain its cloud business profitability and sustainability. There
are many possible pricing strategies to reach the business goal,
namely cost-based, market-based, and value-based pricing. As
Hinterhuber [7] indicated, both cost-based (37%) and market-
based pricing (44%) are much popular than value-based pricing
(17%). Nagle [2] observed that historically, cost-based pricing is
the most common pricing strategy in most industries because
‘‘in theory, it is a simple guide to profitability; in practice, it is
a blueprint for mediocre financial performance’’. Unfortunately,
the issue of the cost-based pricing strategy is when there is strong
market demand, the average unit cost will decline, and the price
reduction should follow because the profit margin is determined
by the unit cost (e.g., 30%–100%). Conversely, when the market
demand becomes weak, the average unit cost will go up, and the
price should be raised. It contradicts a sensible pricing strategy in
term of market response.

The alternative way of cost-based pricing is either market-
based (or competition-based) or value-based (customer-driven)
pricing. Market-based pricing is to set cloud service price based
on the current competition condition or equilibrium of supply
and demand. However, competition-based pricing could mislead
CSPs to see market-based pricing as a zero-sum game, which
what the customers’ gain is the CSP’s loss [8]. They might also
believe they do not influence price because market-based pricing
is a competition behavior of the market. In contrast, value-based
pricing can offer customer needs and create real value to satisfy
customers because it is determined by customers’ utility values.

Nonetheless, the definition of value-based pricing can be sub-
ject to a wide range of interpretations. It is dependent on the
context of the content. The term is often defined as a pricing pro-
cess for an individual’s preference (ordinal utility [9]) that aims
to the B2C market. However, this paper of value-based pricing fo-
cuses on the marginal value (cardinal utility) that aims to the B2B
market. It implies the process is to capture a proportional of value
that CSP might impact on the targeted cloud customers for their
business [8]. In other words, a CSP is to develop and deliver the
cloud service values for its cloud customers to achieve business
success and then seek a reward for its distributed services.

In general, the B2B market emphasizes the entire value chain
and partnership development. The purchasing decision is not
made by single or few individuals, but by more than dozens
of stakeholders for the cloud service values that CSP can of-
fer. Therefore, value-based pricing becomes one of the effective
pricing strategies for the cloud B2B market. The cloud services
can influence the customer’s business in term of increasing their
profit margin, higher business revenue and lower the operation
cost.

Overall, the framework of value-based pricing strategy in-
cludes (1) identifying target customers and workload patterns
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that are related to each cloud market segment, (2) quantifying
cloud customer utility functions that are associated with service
values and cloud service metrics, (3) establishing various cloud
pricing models based on the specified customer’s utility functions,
(4) identifying the optimal price points for CSP to achieve the to-
tal maximization profit from all market segments. Fig. 1 presents
this processing framework of price modeling of all elements.

Due to the limited space, it is impossible to include all four
elements of a value-based pricing strategy into a single paper.
This study will only focus on developing cloud pricing models
(element 3) and identifying the optimal price points (element
4). The other elements of the value-based strategy have been
presented in separated papers, and one of them has been pub-
lished [10]. However, we will lay out enough details of cloud
market segmentation (element 1) and customer utility functions
(element 2) [11].

1.2. Cloud market segmentation

The purpose of cloud market segmentation is to gather cloud
customers’ usage patterns so that a CSP can work out a right
pricing strategy to serve its targeted customers well while it
can achieve its maximization profit within its budget constraints.
In fact, Yankelovich [12] specified the detail criteria of market
segmentation: (1) align with the company’s strategy, (2) specify
where the revenue and profit come from, (3) articulate customer’s
business values, (4) focus on actual business behaviors, (5) make
sense to the firm’s executive team and the board and (6) to be
flexible to accommodate or anticipate market changes quickly.
According to these market segmentation criteria, we develop a
novel solution [10] that allows CSP to identify the cloud B2B
market segment quickly. The solution is a combination of hier-
archical clustering (HC) with time-series (TS) methods according
to two datasets, which one is from Google public dataset [13]
and other is extracted from a local hosting firm for its hosting
business. From Google’s dataset, we can develop six potential
cloud market segments that are determined by the number of
parameters of usage patterns, such as job priority, cores quantity,
memory size, and AMD’s virtualization workload guidelines [14].
This number of cloud market segments is within the range of
McDonald’s suggestion [15], which the suggested number of the
market segment is between 5 and 10.

The results of cloud market segmentation are shown as in
both Table 1 and Fig. 2. The details discussion of these market
segments associated with utility function has been presented our
previous publications [10,11]. Once the cloud market segments
have been quantified, the next issue is how to develop the cloud
customers’ utility functions for these cloud market segments.

1.3. Modeling cloud customers utility functions

The goal of modeling cloud customers’ utility function is to
quantify the cloud customers’ experiences and preferences (util-
ity values) that are subject to the cloud resources provision.
Practically, these subjective experiences concern the running ap-
plications for cloud customers to generate business revenue or
profit, which can be quantified by the service metrics [19].

The meaning of utility is quite ambiguous because it consists
of different connotations. Historically, the implication of utility
was derived from utilitarianism. It means a subjective experience
and satisfaction. It is known as the utilitarian tradition. Later,
this term has been extended to the contractarian tradition, which
emphasized social welfare [20]. As a result, the contemporary
meaning of utility has three connotations:

(1) The economic utility refers to subjective satisfaction and
happiness. ‘‘It is an alternative way to describe prefer-
ence and optimization’’ [4] The utility value in this context
is measured by different preferences under information
uncertainty in term of risks and wealth.

(2) Another implication of utility is an essential infrastructure
service for the public. Sometimes, it is also called as ‘‘public
utility’’, such as water, electricity, and telephone service
that are supported by some incumbent providers. It is
associated with the term of social welfare.

(3) ‘‘Utility’’ also refers to the utilization rate. It is measured
by a percentage value between 0 and 1. For example, the
utility of a network means its utilization rate. It is a concept
of efficiency. It is different from the economic connotation
of utility that is measured by preferences.

However, there are many research works that assume both
economic utility and utilization rate are the same. The utilization
rate can be included in a cloud service metric, but it is not the
same as the utility value in an economic sense. Economically,
a business customer’s utility represents the amount of business
revenue or profit that is contributed by the number of VMs
(e.g., wealth). For instance, the utility of a mission-critical appli-
cation will be totally different with the utility of backend type
of workloads, such as log data processing or MapReduce [19]
because the end users will pay a different price for the cloud
services. The question is, how we can use a single currency to
reflect various utility values and align with CSP’s profitability?
To solve this issue is to unify all customers’ utility values and
CSP’s profit into a measurement of cloud customers’ business
revenue or profit. This is also known as value co-creation. The
benefits of value co-creation are that CSPs can reduce investment
risk and maintain cloud customer loyalty [21] and uphold CSP’s
profitability and business sustainability. The modeling process
of quantifying customers’ utilities is to establish a relationship
between the customer’s business revenue or profit contribution
(a dependent variable) and the number of VMs (independent
variable) to be provisioned.

Based on different characteristics [22] of the cloud business
applications, we organize utility functions into three categories:

• Utility functions (Segment 4 and 5) are defined by High
Availability (HA) characteristics [23–25].

• Utility functions (Segment 1 and 3) are determined by re-
sponse time characteristics [26].

• Utility functions (Segment 2 and 6) are identified by risk
characteristics (risk-averse, risk-seeking, and risk-neutral
[19]).

The process of how to quantify these utility functions is pre-
sented in the paper [11]. Table 2 highlights the result of six utility
functions. (Details assumptions of these functions are presented
in Section 3.2.1.) Now, the subsequent questions are how we can
build various price models for a CSP to capture more cloud market
share and how to identify the optimal price point of each model
for profit maximization? These problems are what we will focus
on in this research.

1.4. Problem definition and solution

By microeconomics [27], we can formalize the CSP’s profit
problem into the following equations. Eqs. (1) and (3) mean the
total business profit is dependent on a sales price, an average
unit cost (or a marginal cost), and sales quantity (e.g., market
demand). Intricately, the quantity is a function of a price, and the
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Fig. 1. The elements of value-based pricing strategy.

Table 1
Cloud customers utility functions and market segments.1

Segment 1 2 3 4 5 6 Total

Average job
prioritya

1 0 2 0 3 3

Average number
of cores

2 23 1 1 3 13

Average number
of memory

7 6 6 3 86 102

Percentage 30.1% 23.0% 10.0% 26.3% 9.1% 1.4% 100%

Predicted sales
volb

269 205 90 235 81 13 893

Estimated possible
workloadc

Mainly Static Backendd Static &
Dynamic

HA HA Dynamic Content

Example of Apps Virtualized
Desktop
Infrastructure,
Email Server

MapReduce, log
analysis File &
Print

Web Hosting
Server & Online
checkout

Disaster
Recovery

Database
Backup &
Terminal
Server, SLA

Dynamic Content
Delivery, Terminal
Workload

aIn this case, ‘‘job priority’’ carriers more weight for the decision of cloud workload pattern [16].
bSales Volume is estimated by time series (TS) predication without consideration of probability, which will be done in separated research work.
cThe possible workload estimation is based on the recommendation of AMD’s paper and cloud design patterns [17] [16] [18] [15].
dBackend type of workload patterns might also include business intelligent (BI) or log data analysis [16].

price is an inverse function of the quantity. Mathematically, we
can present this interdependent relationship in Eq. (2)

π [p] = R [p] − C [Q (p)] (1)

C [Q (p)] = cu [Q (p)] ∗ Q (p) ,

R [p] = p ∗ Q (p) , p = Q−1 (p)
(2)

π [p] = Q (p) ∗ (p − cu [Q (p)]) = pQ (p) − C [Q (p)] (3)

where π [p] is a cloud business profit, R [p] is a cloud revenue,
C [Q (p)] is the total cost, p is a unit price and cu [Q (p)] is the
average unit (or marginal cost) which is also a function of the
total sales quantity Q (p).

The issue is how we can achieve the maximum profit by
identifying the optimal price point Eq. (4). While the equation

1 HA = High Availability, DR= Disaster Recovery, VDI = Virtual Desktop
Infrastructure

appears evident and straightforward, it is difficult to find a clear
solution because of both functions Q (p) and p = Q−1 (p) are
generally unknown

p∗
= argmax

p
π [p] (4)

The primary challenge is that the relationship of p = Q−1(p),
cu [Q (p)], and Q (p) is intertwined. Moreover, these equations
will become progressively more complex if various pricing mod-
els are introduced.

Previous works solve the problem by excluding the cost com-
ponent from a profit Eq. (1) [28] or by making some restricted
assumptions [29] [30], or by assuming a uniform market that
is derived from α-fair utility [31]. Others assume a price is a
simple linear equation based on the AWS’ historical data within
a coefficient band [32]. Still, others intend to offer a solution
by mixing with existing on-demand, reserved and spot instances
from a CSP’s perspective [29]. Although their works have made
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Fig. 2. The result of cloud market segmentation.

Table 2
Cloud customers utility functions and market segments.
Business
application
workloads

Market
segment ‘‘i’’.

Cloud customers’ utility
FunctionsUi (q)a

Virtual Desktop
Infrastructure
(VDI)

1 U1 (q) = K1 (qm + rq) , r < 0

Backend Data
Processing, Big
Data

2 U2 (q) = K2

{
(1−e−αq)

α
, α ̸= 0, α < 0

q, α = 0

Web Hosting or
Online Checkout

3 U3 (q) = K3q−c

Disaster Recovery
or HA

4 U4 (q) =

{
θK5 1 ≤ q ≤ k
0 k ≤ q ≤ qm

SLA Backup, High
Availability (HA)

5 U5 (q) =

{
K5, 1 ≤ q ≤ k
0, k < q ≤ qm

Content Delivery 6 U2 (q) = K6

{
q1−α

1−α
, α ̸= 1

ln (q) , α = 1

aUi(q) is a utility function in each cloud market segment. K is a scaling factor
that is determined by cloud customers’ business (explain later). α is the degree
of risk preference for a performance, q is the quantity of Virtual Machine(VM),
and qm is the maximum number of VM that cloud customers will purchase. This
is a arbitrary number. It can be 10 or 20. It is just the matter of a scale.

excellent progress in the context of cloud price modeling for
the B2C market, many critical aspects of modeling remain unan-
swered. This study provides various solutions to resolve these
issues. These solutions encapsulate the comprehensive process
framework of value-based pricing strategy.

1.5. Contributions

By providing the various solutions, this work has made the
number of contributions:

• To the best of our knowledge, it is the first time to create
various cloud price models based on market segmentation

theory and the number of utility functions that are defined
by cloud customer business revenue or profit contribution.

• This work has clearly illustrated how to establish four value-
based price models according to the defined business strat-
egy

• By leveraging the actual retail pricing experiences, this study
develops bulk-selling and reserved models for CSP to have
more pricing options to achieve a higher profit margin.

• This work also illustrates the relationship between bulk-
selling and bundle services. By developing various cloud
pricing models, CSPs can spontaneously launch more pric-
ing models to capture more profit across various market
segments.

• We demonstrate how to apply GA to identify the optimal
price point for each price model.

• The price models are dependent on both internal (CSP’s
cloud infrastructure costs) and external (cloud market seg-
ments and customer utilities) rationality.

• This paper presents novel and practical solutions so that
many practitioners can plug in their datasets and build their
own price models based on the defined company’s business
strategy.

• Most importantly, this study shows how to calculate the
total revenue and profit based on different pricing models
that are offered to various customers spontaneously.

1.6. Paper organization

The rest of the paper is organized as follows: Section 2 pro-
vides a brief overview of related works in cloud pricing. Section 3
formalizes four value-based pricing models according to various
assumptions with different constraints. Section 4 presents concise
information about genetic algorithms (GA) and how to deter-
mine the GA parameters for our experiments. Section 5 shows
the experimental results. Section 6 offers a detailed analysis of
cloud pricing and optimization. Section 7 concludes the paper and
proposes future research directions.

2. Related work

In light of the value theory [33], we can approximately classify
most of cloud price models into three basic categories, namely
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value-based, market-based, and cost-based pricing. The value-
based pricing is often considered as a subjective view of the cloud
pricing from a demand side because it concerns the measurement
of customers’ subjective experience and utility preferences. The
cost-based pricing is regarded as an objective view of cloud pric-
ing from a supply side because it is built on the physical quantity
of a unit cost. The market-based pricing is an interactive view of
both subjective and objective for the equilibrium of supply and
demand at the marketplace. According to this classification, we
can probably classify most of the literature on the topic of cloud
pricing models as either market-based or cost-based models [34].

For example, Macias et al. [35] used a genetic algorithm
method determining a cloud price. Their model can be considered
as market-based pricing. The study aims to offer a solution to a
competitive price for a negotiation of the services market. How-
ever, they recognized that their work has some limitations. They
believe ‘‘it is difficult to establish a profitable pricing function’’.
We show how to overcome this limitation and bridge this gap in
Section 3. Although Macias et al. [35] made some progress in term
of modeling the cloud utility function for SLA metrics, one of the
critical issues has remained unsolved, which is how to include the
demand side’s utilities for CSPs to generate various cloud pricing
models and to achieve a partnership with cloud customers [36]
in a cloud market value chain.

Kilcioglu et al. [37] present a calibrated benchmark model for
cloud pricing based on empirical data. Their model can also be
categorized as one of the market-based pricing models. Kilcioglu
et al. [37] explained the market trends of the cloud price and
higher profit margin of AWS based on the quality competition
assumptions under both monopoly and duopoly market environ-
ment. The paper showed that the utility function of the cloud
customer consists of three elements, subjective values, delay
sensitivity, and service quality.

It was the first time that the demand side’s utility function had
been defined as a function of both subjective values and objective
costs [37]. The paper made important contributions to the theo-
retical modeling of price-quality competition in both monopoly
and duopoly competition market. Nevertheless, many problems
are still unanswered, such as the determination of subjective
values of utility for the cloud B2B market.

Aazam et al. [30] established a resource-based price model by
cloud customer’s historical pricing record for digital media stream
workload across an inter-cloud environment (via cloud brokers).
Although the authors made a great effort to build a model equa-
tion for inter-cloud pricing, many critical values of the equations
are restricted to a particular case, e.g., a data stream type of work-
load. Nonetheless, the paper provided a framework of modeling
and analyzing AWS on-demand and reserved instance pricing
based on historical observation.

Yeo et al. [38] argued that automatic metered pricing model
for a utility computing service (computing service as a commod-
ity) could achieve a better revenue result in comparison with
fixed pricing, fixed-time, and Libra [39] plus dollars $ [40] (a
pricing model based on the users’ requirements). The paper pre-
sented a compelling pricing model for self-justification, but, more
experiments are required, as the authors indicated. Xu et al. [31]
presented a similar idea and developed various pricing models
(such as the 1st order discrimination, resource throttling, energy
(or cost) saving and SLA charge) to maximize CSP’s revenue that
is subjective to CSPs cloud infrastructure capacity and customers’
surplus value. The authors argued that the usage price depends
on the utility level distribution and the elasticity parameters α on
the base of their theoretical proof for Theorem 1 (see Eq. (5) by
leveraging KKT condition [41]). Although their utility connotation
was referred to as economic utility, the alpha (α) was derived

from the α-fair network utility rather than a customer’s prefer-
ence. They concluded that pricing discrimination had no effect on
CSP’s revenue maximization.

pv =
λ

1 − α
(5)

This conclusion contradicts Claycamp and Massy’s [1] the the-
ory of market segmentation and McDonald’s the practical solution
of market segmentation [15]. There are some gaps in term of Xu’s
work.

(1) The economic sense of isoelastic utility function has differ-
ent meanings of α-fair network utility because the former
one is to measure a subjective experience and the latter
one means the efficiency of utilization rate.

(2) The optimal price: pv is dependent on the variable of La-
grange multiplier λ, which is not defined.

(3) As a result, the α-fair parameter is not inversely equal to
price elasticity of demand of an isoelastic utility function.

Ed =
∂Q (·) /Q (·)

∂p/p
(6)

where Q (·) is the quantity of the demand good. The α-fair utility
means a priority of time scheduling while the α of isoelastic
utility means the degree of risk. As Xu et al. [31] indicated their
work was an extension of Hande et al. [42] study of pricing access
networks with capacity constraints for revenue maximization.

Before Xu’s paper, Joe-Wong and Sen [43] had also proposed a
similar solution to a cloud pricing strategy that is subjective to the
cloud capacity. The root of their pricing strategy was also derived
from the access networks. The purpose of their research work was
to develop an analytic framework to balance the fairness (welfare
concept) of resource priority and CSP’s revenue maximization by
various pricing models. Although there were some differences
between them, (e.g., Xu’s work included a probability of utility
level distribution, and Joe-Wong discussed fairness) both studies
assumed there was a uniform market and corresponded to a α-
fair utility function. All studies relied on the Lagrange multiplier
or Karush–Kuhn–Tucker (KKT) conditions to identify the optimal
price point, which is subjective to the specified limited capac-
ity. Ultimately, they used the analytic tool to prove there is an
optimal price point.

Recently, Shahrad et al. [44] proposed an incentive pricing
solution by balancing limited cloud capacity and demand peak
time. Shahrad’s core idea is to leverage the cloud price as an
incentive to regulate the usage behavior of cloud business cus-
tomers, which means they would allocate cloud resources by
themselves according to CSP’s price variation. It is a self-regulate
idea to eliminate its own demand during a peak time and fill its
workloads during a valley time. The customers’ utility function is
the same as α-fair one.

All these studies assumed one type of utility function that is
α-fair network utility for cloud customers. All papers assumed
that economic utility and the utilization rate of a network are
equivalent. In order to achieve maximum profit, the objective
function has to be differentiable. In contrast to the α-fair network
utility function, Chen et al. [45] proposed a utility function that is
driven by the cloud customer’s satisfaction in term of price and
response time shown as follows:

U (p, t) = U0 − αp − βt (7)

where U0 is the maximum utility value and both α and β and
constant coefficients. Price p and response time t are two in-
dependent variables to reflect different levels of utility value or
customer satisfaction. If both p and t is equal to zero, it means the
customer has maximum utility value. This is a linear utility func-
tion. Actually, the response time can be represented in price (or
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a cost) p because if CSP provision more cloud resources, e.g., VMs
for workload process, the response time t can be reduced. In
addition to this issue, the paper did not give the optimal price
point between CSP’s profit margin and cloud customers’ surplus
value (customer satisfaction).

In comparison with building a pricing model from scratch,
the works [28,29,32,46] focused on current cloud pricing models
offered by different CSPs for profit maximization. Xu et al. [29]
combined both reserved and spot instance prices that allow a
CSP to maximize its revenue and profit through a dynamic cloud
pricing model. The work was derived from empirical observa-
tion of the historical price of Amazon Web Services (AWS). The
paper made contributions to an alternative pricing model for
a spot pricing scheme. Following the similar line of reasoning,
Alzhouri F. and Agarwal A. [46] constructed a theoretical or dy-
namic pricing scheme for CSPs to maximize their revenue via a
solution of dynamic programming approach. The potential issue
of their revenue maximization without consideration of average
unit cost or marginal cost would become economically unsus-
tainable. Toosi et al. [28] included all three types of pricing
models, namely on-demand, upfront reserved and a spot for CSP’s
profit maximization but the unit cost of cloud resource remains
untouched [47]. Brynjolfsson et al. [48] argued that this kind of
cloud pricing could be ‘‘overly simplistic . . . blinding us to the real
opportunities and challenges of cloud computing’’.

On the other hand, Agmon Ben-Yehuda et al. [32] suggested
the price of AWS spot instance is not driven by some market
mechanism or an auction approach rather than it is randomly
generated from a close price range that has a dynamic hidden
reserved price mechanism. This indicates that the price mecha-
nism of AWS spot instance (2 min notification for termination)
is similar to Google’s preemptible VM instance (80% discount
but terminated after 24 h execution time with 30 s notifica-
tion), and Azure low-priority VM or eviction instance (with 60%
(for Windows)-80% (other OS) discount, excluding B-Series VMs,
30 s notification). The problem with these instances (or VMs)
is that both service availability and capacity cannot be guaran-
teed. Moreover, many new service features are excluded. Perhaps,
MOZ’s [49] business experiences2 on 26-Sep-2011 provided a
good lesson for many cloud business customers. The incident
suggests that the spot instance is not designed for a mission-
critical cloud application. Overall, we can summarize the main
contributions, advantages, and potential gaps in these works in
Table 3.

As Kash, I A. and Key P. B. suggested [50], the spot instance
price model has been attracted much attention in the academic
world for cost saving. Despite that, ‘‘the right answer remains
unclear’’ [50]. One of the reasons is that many price schemes are
restricted to a particular case or application. For example, Jain
et al. [51] suggested a value-based price model by leveraging the
spot instance discount, but the model is only designed for batch
workloads. In other words, different models could have different
purposes with different functions. To visualize all pricing models
with different purposes and functions, we can use Table 4 to
highlight their differences.

Although many researchers in this field have made excellent
contributions to cloud economics, there are still many questions
remain unanswered: such as How to generate more price models
for various cloud applications that can capture more cloud market
share? How to practically identify the optimal price point for
each model? How to translate multiple dimension [50] of cloud
service metrics (utility values) into a single currency between
cloud customers and CSPs? How to address CSP’s concerns of

2 MOZ reserved bid for AWS spot instance was $2/per instance for more than
3 years

cloud B2B market? How to create a value co-creation solution for
both cloud customers and CSP? How to determine the maximum
profit with multiple pricing models? This paper, together with
other our previous publications [10,11], provides a processing
framework of a total solution for these questions.

3. Cloud price modeling and models assumptions

3.1. Market assumptions

According to the theory of the B2B market [8], the cloud
B2B market is a relational business market because it empha-
sizes building a mutual value-creation relationship or partner-
ship with business customers. It requires long-term relationship
development. In contrast, business to consumer (B2C) market
mainly is focusing on the final transaction between a firm and
an end-user [8]. From this perspective, we will first consider
the cloud price models based on the assumption of a monopoly
market [27] because the B2B market is much challenging for other
market competitors to access to the existing market [52]. Fur-
thermore, many innovative characteristics of cloud services often
do have the existing market (However, the hedonic model [53]
provides a possible solution to establish a cloud price model for
the innovative cloud service characteristics). This premise is not
prohibitive.

In addition to the monopoly assumption, we also assume the
cloud market is not a uniform market rather than the segmented
market because cloud customers have heterogeneous cloud ap-
plications. This assumption allows CSP to capture more cloud
market share. Cloud market segmentation is to group person-
alized prices for heterogeneous demands so that the CSP can
achieve the best profit margin within its resource capacity [1].
One of the typical examples of market segmentation in the service
industry is the airline ticket price. The airline companies often
classify their market into three or four segments, which is the
1st class, business class, economy, and cheap flights with different
airfare prices and service conditions. Similarly, the cloud market
can be grouped into different segments based on the different
characteristics of cloud services.

3.2. Assumptions of quantifying VM resources

Following the segmentation result and the virtual server work-
load guidelines [14,18], we can approximately estimate the work-
load pattern of each cloud market segment, such as web hosting,
high availability (HA), backend data process, disaster recovery,
content delivery, etc. [54] as shown in Fig. 3. The VM quantity
for one type of VM is represented by q, such as Amazon Web
Service’s instance of m4 extra-large or Google’s ni-highmem-16.
This quantity may vary from customer to customer. It is depen-
dent on a type of VM instance and cloud business application. By
consideration of all these factors, we set this maximum number
is equal to 12 (qm = 12) because we mainly focus on the small
and medium enterprise (SME) customers so that this maximum
quantity is justifiable for a typical SME’s application. This number
can be either increased or reduced. It is just a matter of a scale.

3.2.1. Pricing models assumptions
3.2.1.1. Cost assumptions. Along with the cloud market assump-
tions, we also assume the initial investment budget or Capital
expenditure (Capex) for one type of VM. The Capex and Opera-
tional expenditure (Opex) ratio are 1:4. This ratio is based on local
empirical data. The Capex is estimated by the latest average price
of server hardware that is offered by major vendors, such as HP
(HP Enterprise DL380, 2RU), Dell (PowerEdge R730), IBM (8203-
E4A5634), and Cisco server (UCS M5). We also include some cloud
data center installation costs [17], which are shown in Table 5.
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Table 3
Summary of some previous works.
Category of pricing
models

Main contribution Advantages Potential gaps

Toosi et al.’s Heuristic
Algorithm of pricing
model [28] (2014)

It combined three different
pricing models for profit
maximization for CSP profit
maximization

Consider all available
pricing models at
that time

Excluded cost
component.

Agmon Ben-Yehuda
et al. Statistical
regression (2013)

It provided a rough
estimation of the AWS
pricing model for spot
instance

Proposed alternative
solution for the
pricing model

Observation of
historical records.
Lack of rationality

Hande et al. [42]
α-fair utility model
(2010)

It introduced one of the
utility functions for the
pricing model

Highlight price
elasticity and utility
function

Ambiguity definition
of Utility and pricing
Elasticity

Xu, Hong, and
Baochun Li [31] α-fair
utility model (2013)

It introduced the probability
density function for cloud
customer demands

Show KKT Proof Contradict to Market
segmentation theory

Joe-Wong et al. α-fair
utility model [43]
(2012)

It offered a mathematics
framework for cloud pricing

Introduced multiple
pricing models for
cloud pricing

The only proof of the
optimal price without
consideration of
market

Shahrad et al. [44],
Cobb–Douglas →

α-fair utility model
(2017)

It proposed a novel idea of
increasing cloud data center
capacity utilization rate
while to maximize CSP’
profit

Show Euler
homogeneous proof

Utility function has to
be differentiable

Chen et al.
Customers’
Satisfaction linear
Utility model [45]
(2011)

It introduced a linear utility
function for cloud pricing

It included both price
and SLA level into
the utility function

Not clear in term of
the optimal solution
for CSP’s profit
maximization

Table 4
Different pricing models comparison.
Purposes with
various functions
of Pricing model
Comparison

Model
explain

Model
creation

Differentiable
object function

Non-
Differentiable

Market
segmentation

Max. Rev. Including cost
element

Profit
optimization

Optimizing
algorithm

Optimal
price point

Macias et al. [35] √ √ √ √ √

Kilcoglu et al. [37] √ √ √ √ √ √ √ √

Aazam et al. [30] √ √

Yeo CS. et al. [38] √ √ √ √ √ √

Xu et al. [31] √ √ √ √

Hande et al. [42] √ √ √ √ √ √

Joe-Wong et al. [43] √ √ √ √ √ √ √

Shahrad et al. [44] √ √ √ √ √ √ √ √

Chen et al. [45] √ √ √ √ √ √

Toosi et al. [28]
Xu et al. [29]

√ √ √

Alzhouri et al. [46] √ √ √ √ √

Ben-Yeuda et al. [32] √ √ √ √

Kash et al. [50] √ √ √

Jain N [51] √ √ √

This model √ √ √ √ √ √ √ √ √ √

Table 5
Cloud infrastructure cost assumptions.
Capex/per
hour

Opex /per
hour

Capex & Opex
ratio

Number of
physical servers

Configuration Number of
VMs capacity

$325 $1,300 1:4 400–600 8 or16 cores/per
server

9,000–12,000

Note:
• Assumptions of investment Budget or Capex C = $3 million.
• The number of physical servers ≈400–600.
• The configuration per server is either 8–16 cores/ per server.

3.2.1.2. Utility function assumptions. From Table 1, we know the
cloud market segment and predicted sales quantity, but we do
not know the cloud customer utility function of each market
segment. To optimize the cloud pricing models, we also need to
define the cloud customer utility function for each cloud market
segment. According to Krugman and Wells [55], the different
individual would have different utility functions because different
people would have different tastes and preferences. The essence
of a utility function is to describe how people consume various

quantities of goods in term of their subjective experiences and
tastes by a less or more rational way.

If we assume CSPs just target the SME customers and focus
on building mutual value generation; the modeling process is to
define how their cloud resource (VM) can create SME’s business
profits. The effective modeling is that CSP should translate various
cloud service metrics (Response time, SLA, end users retention,
and leverage investment) into a single currency (business profit),
which is also in line with CSP’s business value proposition. As a
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Fig. 3. A typical architecture of various cloud applications.

result, the cloud customer utility function is defined by the busi-
ness customers’ profit gain (surplus value) for cloud resources (or
VM quantity) provisioning. We can use the following equations to
describe their relation:

Bi = Ki

⎛⎝ qm∑
q=1

ui [q]

⎞⎠ , i = 1 · · · S (8)

Ki = Bi/

⎛⎝ qm∑
q=1

ui [q]

⎞⎠ , i = 1 · · · S (9)

where Bi is a yearly data. It represents customer business profit.
If we check the Australian Bureau of Statistics (ABS) data [56]
for small business, we can select a specific profit range for the
targeted SME. If we just focus on the average net profit is ap-
proximately between $41,000 and $100,000 SME market, we can
identify the values of Bi across all segments (Table 6). Ui [q] is
a customer’s utility function for ‘‘i’’ market segment. ‘‘q’’ is the
quantity that the customer will provision. Ki is the scaling coeffi-
cient that reflects the utility level that is associated with a cloud
customer’s business profit. (Further details will be illustrated in
Fig. 4.)

3.2.1.3. Risk assessments. Risk assessments refer to a utility func-
tion is defined by cloud customers’ preference for different levels
of satisfaction for their business profit gain in term of their
attitude towards risk of provisioning the various amount of VM
resource. For example, according to the cloud customers’ us-
age pattern, we can understand that the 6th market segment
is for the cloud customers to deploy the web contents. It is a
network-oriented utility function. According to [4,20,43,55,57],
the iso-elastic utility function can describe the customers’ utility
in term of the cloud resources requirement (Eqs. (10) and (11)):

U6 [q] = K6u6 [q] , u6 [q] =
q1−α

1 − α
α ̸= 1 (10)

K6 = B6/

⎛⎝ qm∑
q=1

ui [q]

⎞⎠ = B6/

⎛⎝ qm∑
q=1

q1−α

1 − α

⎞⎠ (11)

where ‘‘q’’ is the number of VMs, and α is the constant coefficient.
The coefficient α is also to measure the degree of relative risk
aversion. In this case, we assume that cloud customers’ utility
value is dependent on the measurement of constant relative risk
aversion (CRRA) [57] for content delivery applications workload.
Based on a similar line of reasoning, we can also create the
customers’ utility function of the 2nd market segment as an
exponential function [9].

U2 (q) = K2

(
1 − e−αq

)
α

, α ̸= 0 (12)

We assume that the customers of this segment become risk-
taking because the application (e.g., MapReduce) workload can be
interrupted. Reliability and capacity guarantee of a cloud resource
is not a significant issue. Cost saving becomes the main priority.
Therefore, the coefficient value α is negative.

3.2.1.4. High availability. The high availability (HA) business ap-
plications require the mission-critical cloud infrastructure. If we
assume the downtime should be less than 5 min/per annum, then
the service level agreement (SLA) must be higher than five-9s (or
99.999%). Based on Markov Chain analysis [58], we can quantify
the number of VMs required to guarantee SLA delivery. If the VM
quantity is more than this specified number, the utility value will
be diminished to zero. Moreover, all VMs have the same utility
value because these VMs bundled together can guarantee SLA
delivery. Consequently, we can define the utility function for the
5th segment as follows:

U5 (q) =

{
K5, 1 ≤ q ≤ k
0, k < q ≤ qm

(13)

where k is the specified quantity of VM to guarantee cloud ap-
plications’ SLA. qm is the largest quantity that customers will
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Table 6
Cloud customer surplus values (Profit contribution) in six market segments when p∗

= $1.
Customer’s
profit or
surplus Bi

$79,000 $43,000 $41,000 $79,000 $79,000 $100,000 Total

Utility
Functions U i(q)

U1(q) U2(q) U3(q) U4(q) U5(q) U6(q)

q = 1 $1.50 $0.01 $1.50 $0.75 $1.50 $0.29
q = 2 $1.36 $0.03 $0.75 $0.75 $1.50 $0.45
q = 3 $1.23 $0.05 $0.50 $0.75 $1.50 $0.60
q = 4 $1.09 $0.12 $0.38 $0.75 $1.50 $0.72
q = 5 $0.95 $0.18 $0.30 $0.75 $1.50 $0.84
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

q = 11 $0.14 $1.0.7 $0.14 $0.75 $0.00 $1.42
qm = 12 $0.00 $1.50 $0.13 $0.75 $0.00 $1.50

Customers
market
demanda Di

269 205 90 235 81 13 893

Cloud workload
patterns

Virtualized
Desktop
Infrastructure,
Email Server

MapReduce, log
analysis File &
Print

Web Hosting
Server & Online
checkout

Disaster
Recovery

Database
Backup &
Terminal
Server, SLA

Dynamic Content
Delivery, Terminal
Workload

aThe cloud market demand is derived from a hosting dataset based on time series [52]. These are addressable market.

provision [59]. Similarly, we can also build a similar utility func-
tion for the 4th market segment. The difference between 4th and
5th segments is the customers of the 4th segment might have
its own existing cloud infrastructure. They will only provision a
certain amount of cloud capacity if the price is below a specified
threshold level θ in comparison with their own infrastructure
costs.

U4 (q) = θK4, 1 < q ≤ qm (14)

3.2.1.5. Queueing time. In addition to the mission-critical work-
load applications, the utility function for the e-Commerce can
also be modeled by a Markov Chain process. The basic idea of
modeling the utility function for the 3rd segment is to reduce
queueing time [60–62]. The following equation can define this
type of utility function.

U3 (q) = K3q−c, (15)

where c is a constant value, we set the ‘‘c ’’ is equal to 1 in this
case because of the workload pattern (e.g., purchasing checkout).
Alternatively, we can also use a linear function as a solution to
describe the customer utility function for the 1st market seg-
ment of virtual desktop infrastructure (VDI). There are many VDI
performance metrics of a hosting environment regarding users’
experiences, such as the peak of Input/Output Per Second (IOPS),
storage capacity, response time, Read/Write ratio, future growth,
etc. If we assume these metrics [63] have been prefixed during
the Proof of Concept (PoC) period before VDI rollout, the addi-
tional VM will only add a marginal cost to the cloud customers.
So, we can use a linear model [45,64,65] to model the cloud
customers’ utility values.

U1 [q] = K1 (rq + qm) , r < 0 (16)

where ‘‘r ’’ is a constant, but it is negative, which reflects the
diminishing return due to marginal cost increases.

3.3. Finding optimal price point for profit maximization

Once we have defined all utility functions for all market seg-
ments, we can create different price models for CSPs to maximize
its profits. From an example in Fig. 4, we can illustrate a process
of identifying the optimal price point of price model for CSP to
maximize its profit.

Suppose a CSP offers $1/per VM as its optimal price point (this
price point is randomly selected. This one dollar could be the
optimal price point for the CSP’s profit maximization, but we do
not know yet at this stage), we can calculate the cloud customer
surplus values and a quantity of VM sales in each segment and the
total market demand. According to the defined utility function of
the 1st segment, the cloud customers will provision 4 VM, but
not 5 VMs because 5 VMs would cost $5 and the net surplus
utility value of 5 VMs is only $1.138, which is less than $1.183
for 4VM. In other words, if each customer of the 1st market
segment buys 4 VMs and the total number of cloud demand is
269, then the total sales volume of VM is 1076. Likewise, the
customer of the 2nd market will not purchase any VM, but the
3rd segment will provision 1 VM. If we sum up all the VMs of
all market segments, we can find the total volume of VM sales
Q . As a result, we can calculate all the variables, including unit
cost, profit margin, and total sales revenue. However, if this price
point is not optimal, how can we find the optimal price point for
the CSP to maximize its profit across all market segments? Before
answering this question, let us think about ‘‘are there different
pricing models to achieve a better profit margin?’’ This question
takes us to the topic of building various cloud pricing models in
comparison with cost-based pricing.

3.4. Markup pricing model

As Hinterhuber indicated [7], the cost-based pricing is still
prevalent in most industries, which is over 37% of firms adopt it.
If we assume the markup price is 100% of the average unit cost,
the expected profit margin would be 100% Eq. (17). The process
of determining a price is very straightforward. On the flip side,
this pricing model could be either overshot or undershot due to
the pricing without external rationality [27,66].

p [Q ] = mc [Q (·)] +
Q (·)

|∂Q (·) /∂p|
(17)

where p [Q (·)] is the price, mc [Q (·)] is the marginal cost, Q (·)

is the total demand quantity, Q (·) /|∂Q (·) /∂p| is the markup
price or profit margin. The price point is arbitrarily determined by
the internal rationality or cost and a CSP’s desired profit margin:
Q (·) /|∂Q (·) /∂p| = 100%.
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Fig. 4. Overview of optimizing price when CSP offers p∗=$1.

3.5. On-demand pricing model

Alternatively, we can create an ‘‘on-demand’’ price model [67]
that is determined by both external and internal rationalities.
Many leading CSPs offer this price model. It is also known as
Pay as You Go (PAYG). Usually, CSPs would charge at an hourly
unit-based price. While both Google Cloud Platform (GCP) and
Microsoft Azure use a sub-hour rate. Azure is 1/60th hour or per
minute base, and GCP is a 1/6th hour or per 10 min base [68].
The sub-hour price should give cloud customers more flexibil-
ity and scalability to run various types of cloud workloads for
‘‘on-demand’’. Our model adopts the hourly base unit. From the
example of both Fig. 4 and utility functions are shown in Table 4,
the following Eq. (18) can be generated to calculate the cloud
customer surplus values (external rationality).

qi [p] = arg max
q

⎡⎣⎛⎝ qm∑
j=1

Ui [j]

⎞⎠ − pq ≥ 0

⎤⎦
Q (p) =

S∑
i=1

qi [p]Di [p] , i = 1, · · · , S

(18)

where S is the number of market segments, which is equal to 6
in this case. The qi is the number of VM to be provisioned by the
customers in the market segment ‘‘i’’. This quantity is decided by
the customers’ the maximum surplus value that is greater than
zero for a given price p, which is offered by a CSP. qi is a function
of a pricep.

π [p] = pQ (p) − C [Q (p)] , cu [Q (p)] ≤ p ≤ M,

cu [Q (p)]Q (p) = C [Q (p)] ,
(19)

p∗
= argmax

p
π [p] (20)

where Q (p) is the summation of qi [p] of VMs multiplied by the
estimated market demand Di [p] of each market segment. M is

the normalized maximum utility value in Table 4. We generalize
this value across all the segments ($1.5). C [Q (p)] is the total cost
based on the cost assumption of Table 3 (internal rationality). In
summary, Eq. (18) is to determine the quantity qi [p] of VM in
each market segment when customer surplus value is maximum.
Q (p) is the total VM sales for all market segments. Eq. (19) is the
same as Eq. (3) in Section 1, with some specified unit cost (Refer
to Table 5). Eq. (20) is to identify the optimal price for the profit
maximization, which is the same as Eq. (4).

According to customer surplus values, some customers will
provision a certain number of VMs, and others might not buy any
for a given price per VM. It is dependent on the type of utility
function Ui [j] or customers’ utility (external rationality) and CSP’s
offering price p and cu [Q (p)] per VM (internal rationality), which
has been illustrated in Section 3.3. The question is ‘‘would it be
possible to generate different type of pricing model so that the
customers of both the 1st and the 2nd market segments will
make a purchasing decision?’’ For example, if a CSP can offer a
particular percentage discount on VM price but customers have
to purchase VMs in a bulk size? This question leads to creating
the bulk-selling pricing model.

3.6. Bulk-selling and service bundle pricing model

In comparison with on-demand, CSP can generate a bulk-
selling or services-bundle pricing model. The goal of the bulk-
selling is to encourage cloud customers to buy more for a better
pricing deal. There are many examples of the bulk-selling price
model, such as one of the retail giants, Costco Wholesale. The
telco industry often uses service-bundle for different market seg-
ments. Service-bundling means bundling different types of ser-
vices into one package and bulk-selling is to group different sizes
of the same product or service into one package. Two models are
closely related.

For example, one large and one extra-large size instances can
be formed as one package, which is equivalent to 12 small VMs
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for bulk-selling (see Fig. 5). According to [37] observations, the
AWS price of the current size of the VM is equal to 2 power of
‘‘k’’ minus 1 and multiply by the price of the smallest or baseline
VM size (where k = 1, 2, · · ·, the current size of VM). This pricing
mechanism can be written as pk = 2k−1p0 and p0 is the price of
the smallest VM size, pk is the current size of VM. Such prices
scheme is adopted by many CSPs for their majority types of VMs.
The distinct advantage of adopting this pricing scheme is that
the CSP can increase capacity flexibility by building a large VM
resource pool with finer granularity and minimize a footprint
of cloud infrastructure in a cloud data center. This means re-
ducing the investment budget, increasing sales, and meeting the
fluctuation demand for cloud resources.

Both bulk and bundle type of pricing scheme can be tailed for a
particular business application, such as mission-critical workload,
virtual data center, and Disaster Recovery, which the CSP will only
sell for a fixed number of VMs in bulk. The cloud customers will
decide whether to buy or not, based on their maximum utility
(surplus) values. This bulk-selling model is built from equations
from 21 to 26. If we assume the bulk-selling size to be ‘‘b’’, we can
use ‘‘mod’’ function ‘‘B’’ to test whether any requested quantity
matches the bulk-selling size or not. If it does not, then we can
artificially set the customer surplus value to a negative value (for
example, −200), which is to reject the customer’s purchasing
request Eq. (21). Otherwise, the customer’s surplus value will be
calculated Eq. (22), but it should be greater than zero Eq. (23).

IF B = q − b
⌊ q

b

⌋
> 0 → CSi = −200,

∀b ∈ q = {1, 2, · · · , qm}
(21)

Otherwise,

CSi [p, q (b)] =

⎛⎝⎛⎝ q∑
j=1

Ui [j]

⎞⎠ − pq (b)

⎞⎠ ≥ 0,

q (b) = nb, n = 1, 2, · · ·

(22)

Then, comparing all surplus values in the market segment i
and find the maximum value. Based on this maximum surplus
value, the VM quantity qi can be identified in the market segment
i

qi [p, b] = argmax
q

CSi [p, q(b)] (23)

Multiple market demand Diwith qiin the market segment i
Eq. (24) and sum up all quantities of market segments, then we
can optimize both price p and b to find the maximize profit value
(Eqs. (25) and (26))

Q (p, b) =

S∑
i=1

qi [p, b]Di [p] (24)

π [p, b] = pQ (p, b) − C [Q (p)] , cu [Q (p, b)] ≤ p ≤ M,

C [Q (p)] = cu [Q (p, b)]Q (p, b)
(25)[

p∗, b∗
]

= argmax
p, b

π [p, b] (26)

For example, if a CSP offer the bulk size b is 4 and the VM
price is $0.5, the surplus values are set to negative (CSi = −200)
for all quantities of q that is not divisible by a package size
(b = 4). Otherwise, the customer surplus value will be calculated.
The maximum surplus value of the 1st market segment is 2.584,
which is corresponding to the VM quantity of 4. There are other
VM quantities (8, and 12) can be divisible by the package size,
but the surplus value is either 2.184 or 0.00246. In comparison,
purchasing 4 VMs has the maximum surplus values for cloud
customers. Base on the same principle, the total sales volume for

all segments can be found, which is equal to Q (p, b) = 6136
Eq. (24). From Eqs. (25) and (26), the optimal price point p∗ and
package size b∗ can be found (More details will be covered in
Section 4).

The bulk-selling pricing model is just one of the retail pricing
strategies. Is it possible to introduce an upfront fee for further VM
price reduction? The question leads to ‘‘two-part tariff’’ pricing
model, which is also known as the reserved pricing model.

3.7. Reserved pricing model

Reserved (or two-part tariff) pricing model can be considered
a price mixing strategy. It consists of two parts of pricing. This
model is widely adopted by many service industries, such as
retail, entertainment, airline, and telco. The purpose of this model
is to give CSPs more flexibility to target various market segments.
We can define the model in equations from 27 to 32.

CS i [q, p, F ] =

⎛⎝ q∑
j=1

Ui [j]

⎞⎠ − qp − F , 0 < F ≤ Fm (27)

qi (p, F) = arg max
q

(CSi [q, p, F ] ≥ 0) (28)

IF CSi [q, p, F ] > 0, cqi [p, F ] = 1,

ELSE cqi [p, F ] = 0
(29)

Q (p, F) =

S∑
i=1

qi (p, F)Di [p] ,

C [Q (p)] = cu [Q (p, F)]Q (p, F)

(30)

π [p, F ] = pQ (p, F) − C [Q (p)]

+F
S∑

i=1

cqi [p, F ]Di [p]

cu [Q (p, b)] ≤ p ≤ M,

(31)

[
p∗, F∗

]
= argmax

p, F
π [p, F ] (32)

where p∗, F∗ are the optimal price for usage charge and optimal
reserved fee respectively and Fm is the maximum fee can be
estimated. In this case, we set to $100. cqi [p, F ], it represents the
reserved account for a particular customer in the market segment
‘‘i’’. If the customers’ surplus value is less than and equal to zero,
it means customers will not pay upfront fee F (cqi [p, F ] = 0).

In comparison with bulk-selling, reserved pricing also has two
variables. It means that the cloud customers have to pay the
upfront reserved fee, and then they can provision VMs. In return,
CSPs offer a significant discount of the usage charge to encourage
cloud customers to consume more. The benefit of this model can
boost sales and increase profit. If a CSP would like to increase the
profit further, the next logical step is to combine both bulk-selling
and reserved together.

3.8. Reserved plus bulk-selling

This model is to leverage both bulk-selling and two-part tariff
models advantages. However, the benefits of the two models do
not have an additive effect. The net profit increase is not bulk-
selling plus reserved. Very often, the profit margin increment is
small or declining because the cloud customer surplus value may
approach its upbound limit when we model them separately. We
can use the following equations from 33 to 39 to represent this
model.
IF B = q − b

⌊ q
b

⌋
> 0 → CSi = −200,

∀b ∈ q = {1, 2, · · · , qm} , q (b) = nb, n = 1, 2, · · ·
(33)
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Fig. 5. Cloud service bundle Vs. bulk-selling pricing model.

Otherwise,

CSi [p, q(b), F ] =

⎛⎝⎛⎝ q∑
j=1

Ui [j]

⎞⎠ − pq(b) − F

⎞⎠ ,

0 < F ≤ Fm

(34)

qi [p, b, F ] = arg max
q

(CSi [p, q(b), F ] ≥ 0) (35)

Q (·) = Q (p, b, F) =

S∑
i=1

qi (p, b, F)Di [p] (36)

IF CSi [p, q (b) , F ] > 0

cqi [p, b, F ] = 1, ELSE cqi [p, b, F ] = 0
(37)

π [p, b, F ] = pQ (p) − C [Q (p)] + F
S∑

i=1

cqi [p, b, F ]Di [p]

cu (Q (p)) ≤ p ≤ M, C [Q (p)] = cu (Q (p))Q (p)

(38)

[
p∗, b∗, F∗

]
= argmax

p,b,F
π [p, b, F ] (39)

The goal of this model is to maximize the profit with bulk-
selling to encourage the customers to buy more VMs and with a
reserved fee to motivate the cloud customers to consume more
for less unit cost per VM. In comparison with other models, this
model has three variables to be optimized. Now, the question is
how to optimize pricing variables for profit maximization, which
the question has been left unanswered in Section 3.3.

4. Genetic algorithm and experiment implementation

4.1. Proposed methods

There are many possible optimization methodologies or tech-
niques that we could apply for the optimizing problem, such
as gradient descent, Genetic Algorithm (GA), and simulated an-
nealing. Gradient descent cannot be applied because the profit
equation is noncontiguous. Simulated Annealing could be one of
the possible methods for our problem because it usually is better
than greedy algorithms, but the technique can be slow, especially
if the cost function is expensive to compute. Subsequently, we can
adopt GA to solve our problem, and we can solve the problem
quickly (30 second/per each iteration if an objective function has
no further improvement).

4.2. Genetic Algorithm (GA)

The useful properties of GA are (1) It does not require spec-
ifying sub-functions explicitly, (2) The objective function can be
either differentiable or non-differentiable, (3) It takes less compu-
tational memory, (4) It can optimize multiple variables in parallel,
and 5.) Some local optimal solution could bring some insights as
for potential price options to form an alternative pricing strategy.
The basic idea of evolution computation strategy is ‘‘trial and
error’’ is shown in Figs. 6 and 7. The principle of this method
is based on the underlying microevolution of both mutation and
natural selection [3], which is to mimic the biological process that
is searching for an optimal solution in a problem domain.

Based on Eqs. (3) and (4), our goal is to find the maximum
value of the profit ‘‘π ’’ by searching for the optimal price point
‘‘p’’. We know that price, cost, and sales quantity are interde-
pendent. It is challenging to define a precise sub-function for
the solution. However, we can set up price p as ‘‘genes’’ and let
a set of price, quantity, and unit cost to be a chromosome (a
set of parameters for the solution). A string of chromosomes is
known as the genome. The entire combination of prices (genes)
is known genotype, and the corresponding profits are referred to
phenotype, as shown in Fig. 6. Note that the optimal variables can
be extended to bulk-selling size ‘‘b’’ or upfront fee ‘‘F ’’. In Figs. 6
and 7, we only show both optimal price and bulk size.

In the following example of the on-demand pricing model, we
set the price value in the range [0, $1.5] because no customers
will expect to provision the VM more than the maximum amount
of their utility value. If we first trial the initial price value or a
gene as p =$0.265, we should have the profit π [p]= $86, unit
cost cu[Q [0.265]] = 0.255, and the total sales quantity Q =9,062.
Clearly, it is not an optimal price. So, we let GA compute Eq. (4).

For each of 100 population size (A ‘‘standard GA’’ parameter of
the population size can be set up between 100 and 200 [69]), we
will keep the best 7.5% of prices p or genes and discard 92.5% in
term of better profit values because we set up the mutation rate
is 7.5% in our experiment process. After ‘‘y’’ times of this iteration,
we find the maximum value of profit based on the performance
of the convergence resolution or stopping condition for GA is
either rcon = 0.01% Eq. (40) or time out = 30 s (roughly between
280–350 GA iterations) (Fig. 7).

rcon =

⏐⏐⏐⏐π [pm+1] − π [pm]

π [pm]

⏐⏐⏐⏐ < 0.01%, m = 1, · · · ,N (40)

where π [pm] is profit estimated at iteration m with price pm.
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Fig. 6. Details of GA calculation for maximum profit π for on-demand price mode.

Fig. 7. Performance function and criteria of the GA solution.

4.3. Experiment implementation and pseudocode

A Pseudocode is presented to articulate this genetic algorithm
process as Algorithm 1. To carry out this iterative process, we can
adopt different software applications to implement our experi-
ments, such as Matlab, R and even Microsoft Excel Solver. R has
two convenient packages: GA and Genalg, which can quickly run
our experiments. The input data of our experiments are sourced
from Table 6 as initialized parameters. The outputs are the op-
timal values of four pricing models for on-demand, bulk-selling,
reserved, and bulk + reserved.

5. Experiments results

5.1. On-demand pricing model results

Table 7 shows the final results for all pricing models that
are including on-demand, which CSPs should charge $0.749 per
VM instance/hour for the maximum profit of $2,463. The average
unit cost is about $0.281. In comparison with cost-based pricing,
the on-demand pricing can boost a 66% profit margin if we take
account of the external rationality. Although the profit margin
(100%) of the cost-based pricing looks very attractive, it is not
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optimal. The result of this comparison means the cost-based
pricing is significantly underestimated the unit price of cloud
customers’ willingness to pay in this case.

In Fig. 8, we show how the profit is evolving in term of
offering prices. There are a few local-optimal prices, such as $0.40,
$1.225 $1.350. To overcome these local-optimal values, we can try
different initial values of prices or change the parameters of GA.
As we indicated in Section 3.5, the on-demand pricing model is
just one of the price models for various market segments. Other
models, such as reserved or bulk-selling, are possible for CSPs to
gain a higher profit.

5.2. Bulk-selling model results

The bulk-selling price model needs to optimize two variables.
One is a VM price, and the other is a bulk-selling size. Based on
the equations from 21 to 26, the cloud customers will only make
a purchase decision when their surplus values are higher than
their cost (CSP’s offering price). Our experiment results show that
the package size is 12 and the optimal price is just slightly below
the on-demand price or $0.745 for CSP to achieve the maximum
profit margin of 175%. This price will not attract customers to buy
in bulk. Subsequently, CSP can give about 7% discount off the on-
demand price, which is to set the selling price at $0.70 and reduce
the package size from 12 to 4. Even so, the CSP can still achieve
a 157% profit margin. If we keep the package size is 4 and give a
7% discount off the on-demand pricing, we can plot out the profit
evolution along with the price changing, as shown in Fig. 9.

If we keep the 7% discount price unchanged and make the
variation of the bulk-size from 1 to 12, we can find bulk-size-4
is the local optimal and bulk-size -12 is the global-optimal value.

These optimal price points provide more price options (as shown
in Fig. 10) for CSP to form a better pricing strategy based on its
own business environment.

Intuitively, the downside of the bulk-selling is that some cloud
customers do not want to scarify their flexibility of Pay as You Go
(PAYG) and look for a competitive price because their business
might not require a bulk-size of VMs. As a result, customers might
switch to other cloud competitors. Adopting one price model
could cause a CSP to lose some market share when the CSP insists
on some pricing models, such as bulk-selling model. If a CSP
would like to keep both higher profit margin and market share,
what is an alternative?

5.3. Reserved price model results

The possible solution is a reserved pricing model. Our exper-
iment result shows that the reserved price model can achieve a
profit margin of 203%. The main profit contribution is due to the
reserved fee, which is $5.701 per account or $3,410. The VM price
is $0.273, which is very close to the unit cost, which $0.272. If
we keep the reserve fees the same ($5.701) and changing the VM
price, we can see the cloud price evolution (See Fig. 11).

Again, if the VM price is kept the same (at $0.273 per VM) and
the reserved fee is changed, there will be two local-optimal prices
at $1.50 and $7.35 shown in Fig. 12.

5.4. Bulk plus reserved results

If CSPs would like to increase profit further, they can combine
both bulk-selling and reserved models. In comparison with a pure
reserved model, ‘‘bulk + reserved’’ can grow only about 2% profit.
This model offers different alternatives for CSPs to form a pricing
strategy to meet various requirements in different market seg-
ments, which a CSP can increase the usage charge and decrease
the reserved fee or vise verse. The plot of profit, sales’ volume
and unit cost along with VM price change can be considered as
a combined effect of bulk-selling plus reserved as observed in
Fig. 13.

Following a similar principle, we can also plot the fee change
while the unit price ($0.6597) and bulk size (12) are kept the
same. The result is shown in Fig. 14. As we should see, the shapes
of the two plots are very similar except the sales volume.

Overall, our experimental results show that the on-demand
pricing model can significantly increase CSPs profit margin in
comparison with the cost-based pricing. The bulk-selling price
model is aiming to encourage customers to buy more for less us-
age charge. The reserved pricing model is to decrease more usage
charge with the upfront reserved fee. This flexible option can help
CSP to maintain a healthy profit margin while the usage price is
kept very competitive. The ‘‘bulk + reserved’’ model is to provide
different options of cloud pricing strategies to maximize the CSP’s
profit while they can target various cloud market segments.

6. Analysis and discussion

This study demonstrates a comprehensive framework of how
to formulate four value-based cloud pricing models from a cus-
tomer’s value co-creation perspective. In contrast to previous
works that assumed a uniform market with only one utility func-
tion, this solution of cloud pricing is much realistic and practical
because market segmentation practice has been widely applied
to many service industries. Cloud industry is not exceptional.
AWS has adopted up to seven different types of pricing models
(spot, on-demand, reserve, bare-metal, dedicated host, and Code
on Demand) for different market segments. Based on multiple
market segments, we can leverage the GA to find the optimal
pricing solution for each model.
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Table 7
The result of on-demand pricing model.
Pricing
models

Type of
pricing
models

Optimal
price: p

Optimal Bulk
Size

Reserved Fee
F

Unit Cost:
cu

Total Cost C Total Sales
Quantity: q

Total Revenue:
R

Maximum
Profit: π

Profit
Margin

Markup Cost-based $0.557 NA NA $0.278 $1,538 5,525 $3,076 $1,538 100%
On-demand Value-based $0.749 NA NA $0.281 $1,479 5,256 $3,942 $2,463 166%
Bulk-Selling Value-Based $0.700 4 NA $0.273 $1,672 6,136 $4,295 $2,623 157%
Reserved Fee Value-based $0.273 0 $5.701 $0.272 $1,676 6,152 $5,085 $3,410 203%
Bulk+Reserved Value-based $0.660 12 $1.084 $0.265 $1,901 7,166 $5,382 $3,481 183%

Note: Bulk-selling price is based on 4 VMs per package of bulk.

Fig. 8. On-demand price model of price change for optimizing profit, sales volume. and unit cost.

Fig. 9. Bulk-selling price models of price change for optimized profit, revenue, sales vol., and unit cost (BulkSize@4).

6.1. GA performance evaluation

In comparison with other optimal solutions, the GA process
requires less computing memory and power and does not need
to specify sub-functions. The object function does not have to
be differentiable. It can be either continuous or discrete. Many
software packages can implement the GA process. Even MS Excel
Solver can implement it, which is very handy for many practition-
ers to generate pricing options and form a better and competitive
pricing strategy. The GA process can also be updated quickly if the
cloud market environment has been changed.

To evaluate the performance of the GA process for the optimal
pricing value, we tune one of the GA’s parameters: mutation rate
into different values and to see which we can achieve a better
performance result quickly. According to [70,71], we applied the
mutation rates between 0.001 and 0.5. Our result shows when
the mutation rate is equal to 0.075, the profit margin of reserved
pricing models can be quickly converged to the maximum value
(as shown in Fig. 15) within the specified timeframe of 30 s with
100 population size and converged rate of 0.01%.
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Fig. 10. Bulk-selling package size evolution.

Fig. 11. Reserved pricing model of price change for optimized profit, sales vol., and unit cost @ F = $5.701.

Fig. 12. Optimal reserved fee change for optimized profit, revenue, sales volume, and unit cost (Price@$0.273).
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Fig. 13. VM price change of reserved + bulk for optimized profit, sales volume, unit cost, (F @$1.084 bulk size@12)

Fig. 14. Fee change o bulk + reserved for optimized profit, sales volume, and unit cost (Price @$0.6597, bulk size @12)

Fig. 15. GA performance evaluation for different mutation rate.

6.2. Comparison with created pricing models

From our experiment results, we illustrated that cost-based
pricing has the lowest profit gain ($1625). As Nagle et al. [2]
indicated, although the model carries a financial legitimacy, it
only provides ‘‘mediocre financial performance’’. Although a 100%

profit margin seems to be very attractive, it is ‘‘mediocre’’. The
critical issue of cost-based pricing is that it excludes external
rationality

On the other hand, on-demand can achieve a higher profit
margin and higher sales volume in comparing with cost-based
pricing. However, the on-demand model might work well with
one business application (or one market segment), but not fit with
others. To solve this issue, we have created both bulk-selling and
reserved pricing models for different cloud applications. One of
the advantages of bulk-selling and reserved models is that they
can provide business certainty for cloud resource capacity. The
downside is that cloud customers could lose some flexibility. If
we compare all four cloud pricing models, the reserved + bulk
selling pricing model can achieve the highest profit gain ($3481)
for CSP, as shown in Fig. 16.

In order to gain a higher profit margin, bulk-selling price
model is one of the good pricing strategies, which we have ob-
served in the cloud pricing practice. In fact, bulk-selling is equiv-
alent to AWS, Azure, IBM Cloud, and Google Cloud Platform’s
reserved instance (without an upfront fee). The only difference
is time. With bulk-selling, cloud customers have to provision all
resources at the same time. In contrast, AWS, Azure, IBM cloud,
or GCP’s reserved instances can be consumed from one or three
years. The longer time of cloud resource reservation, the cheaper
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Fig. 16. Comparison of different pricing models.

unit price is. The reservation time is equivalent to a bulk-size.
If we put time and cloud assets depreciation factors aside, the
currently reserved instances offered by major CSPs are similar
to the bulk-selling or bundle pricing model. As we showed in
our experiments, the bulk-selling price model can improve CSP’s
profit by 6% even with even a 7% price discount in comparison
with the on-demand price. (See Table 7 and Fig. 16.) That is why
many CSPs encourage cloud customers to adopt bulk-selling with
a discount price.

If CSPs would like to make further improvement of their profit
margin, they can introduce the upfront reserved fee (two-part
tariff) and reduce the usage charge of VM unit price in return.
With the upfront reserved fee, the CSPs can reduce VM usage
charge as low as the production cost and still maintain a healthy
profit margin, which is around 203%. Comparing with the ‘‘on-
demand’’ model, the usage charge (or unit price of VM) drops
nearly 64%. Now, the upfront reserved fee becomes the major
profit contributor to CSP’s profit. If the cloud customers are not
willing to pay a higher upfront reserved fee, CSPs can adopt the
mixing model of bulk + reserved fee. The above simulation result
shows that by a combination of the bulk and upfront reserved fee,
CSPs can lift profit growth and reduce the upfront fee by 81% (in
comparison with pure reserved model) and decrease VM price by
12% (in comparison with on-demand).

On the sales volume of VM across all segments, we can find
customers of segment 2 would not purchase any number of VM
for proposed price models, as shown in Table 8. This is be-
cause their utility function is risk-taking. The shape of the utility
function is concave. None of the above-proposed pricing models
would capture customers’ surplus values in segment 2 unless a
CSP can offer a substantial discount, such as 50%–55% price re-
duction of the on-demand, which is similar as spot, preemptible,
and low priority pricing model.

Having a considerable price discount for one market segment
alone and scarifying other markets’ values is not a good pricing
strategy because the cloud business profit will decline signifi-
cantly. For example, if the price is dropped by 40% across all
market segments, the profit margin will be reduced by about 58%.
Selling cloud service with a substantial discount price is not a
sustainable business practice for CSPs.

However, what we have observed is that many leading CSPs
do offer a discount price, such as spot instance, preemptible and
low-priority, for risk-taking customers. The reason that CSPs can
offer a massive discount without cannibalizing the profits from

other pricing models is that the cloud service with a discount
price has many restricted conditions, such as preemptible, time
limit, limited availability zone, legacy infrastructure, etc.

From a marketing perspective, the spot or preemptible in-
stance is more like ‘‘Razor-and-Blades’’ pricing strategy [72],
which is to use a lower price to simulate customer’s demand.
Practically, it is not a good idea for business customers to rely
on spot or preemptible instances (VMs) alone for their mission-
critical application, although the price of spot instance is very
competitive.

Table 8 shows that the customers in segment 5 will purchase
more than what they need if a CSP offers bulk-selling price
models only. However, if all prices models are offered to various
customers spontaneously in a cloud market, the customers of
segment 1 will provision VMs according to bulk-selling price
model because it has the highest surplus value and the lowest
cost, which we assume the lowest unit price as the purchasing
decision criteria. Customers of segment 2 will purchase noth-
ing. Customers of segment 3 will select the on-demand model.
Customers of segment 4 will also choose bulk-selling. Customers
of segment 5 will be the same as segment 3. Customers of
segment 6 will prefer bulk-selling pricing model. The sum of
six market segments for all value-based price models is also 40.
The average profit margin is over 161%, and the total cost for
CSP is just slightly increasing by 0.72% in comparison with cost-
based pricing. (Note: if a discount rate of bulk-selling is changed,
the customers of the 6th market segment will favor of reserved
pricing model)

These value-based price models provide a wide range of pric-
ing options for CSP to achieve the maximum profit by capturing
more customers’ surplus values from various market segments.
Based on the market segmentation theory [1], the ideal strategy
for CSPs is to have personalized pricing because of the better
the information about the customers, the fine partition of the
customers into a group and the larger the possibilities for CSP to
extract customer surplus’’. Theoretically speaking, the ideal solu-
tion is that one price is dedicated to one customer, which is also
known as the 1st order price discrimination. However, it would
be impossible for CSP to implement personalized pricing strategy
because it requires a lot of managerial and sales’ resources. The
alternative solution is ‘‘market segmentation’’. Naturally, different
market segments will lead to different utility values. It results in
various price models with multiple optimal price points to meet
different preferences. Table 9 provides summary information of
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Table 8
Sales volume of VM for each model.

Table 9
Summary of all pricing models.
Pricing strategy Pricing models Application scenarios Advantages Disadvantages

Cost-Based Cost-Based
Pricing

Enterprise internal cost
modeling

Recover the cost
bottom line

Arbitrary

Value-Based

On-Demand Application develop,
solution architecture

Flexible High Cost

Bulk-Selling Long-term Web hosting
required large server
cluster, Deliver SLA App.

Having a certain %
price discount

Have to buy in
a bulk size

Reserved Having cloud resource
certainty

Relative lower cost Lack of
flexibility

Bulk +
Reserved

Large server clustering &
resource certainty

Min. cost Lowest
flexibility

Table 10
Profit, Revenue and Optimal Price Comparison with Other Works.
Sources Six segments Uniform

market [43]
[44] [31]

Uniform
market [28]

Uniform
market [46]

Uniform
market [45]

Uniform market
[30]

Utility Six utility
functions

Iso-Elastic
utility, α<1

Iso-Elastic
utility, α = 1

Iso-Elastic
utility, α>1

Linear by
diminish return

Exponential utility

Equivalent
utility function

Ui(q), i = 1 · · · 6 U (q) = K q1−α

1−α
U (q) = K U (q) = K q1−α

1−α
U (q) = U0 −αp U (q) = K (1−e−αq)

Optimal cost $0.28 $0.399 $0.336 $0.604 $0.376 $0.259
Optimal price $0.749 $0.957 $0.750 $1.499 $0.954 $0.415
Max. Profit $2,463 $1,008 $1,044 $757 $1,202 $1303
Max. revenue $3,942 $1730 $1,936 $1,267 $1,983 $3,460
Profit loss 0% 59% 58% 69% 51% 47%
Revenue loss 0% 56% 51% 68% 50% 12%
Sales vol. 5,256 1,808 2,581 845 2,077 5,884

all models that we have proposed in this work in term of different
application scenarios, advantages, and disadvantages.

6.3. Comparison with other works

To the best of knowledge, there has been no research work to
propose multiple market segments for Cloudonomics. Although
some previous works [31] claimed that the uniform price would
not suffer any revenue loss in comparison with the 1st order price
discrimination, we illustrated this claim was contradicting to the
theory of market segmentation [1,15]. Based on our experiment
result, we have demonstrated that if we assume there is uniform
market defined by either iso-elasticity or linear or exponential
utility function, the profit loss will be from 47% up to 69% and
the revenue loss will be from 12% up to 68% shown in Table 10.

In summary, our value-based price modeling, together with
the comprehensive pricing framework, is better than the cur-
rent state of the art of cloud price modeling, which has been
highlighted in Table 4.

7. Conclusions and future work

This study has developed an overall framework of the pricing
process that is how to generate various price models and how to
find these optimal price points of each model for CSP to maximize
the profit. These are two elements of pricing strategy (Shown
in Fig. 1) that have been demystified in our research work. The
significance of this study is that it presents a comprehensive and
practical process for value-based pricing.

We demonstrate how to establish four types of practices price
models, which are known as on-demand, bulk-selling, reserved,
and bulk-selling + reserved pricing models. While the modeling
process appears to maximize CSP’s profit, it is actually a value
co-creation because the modeling process is to generate a part-
nership with cloud business customers. This modeling process
becomes a practical tool for any CSP to construct their cloud price
models based on the defined business strategy, cloud market
environment, and their expertise.

We show how to use the GA to find the optimal price points by
maximizing CSP’s profit. Our experiment results demonstrate that
the reserved pricing model can achieve the best profit margin,
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which is about 203% while the bulk-selling is the most favorite
model if a 7% discount rate of the on-demand is applied. It implies
that the single pricing model with an assumption of a uniform
market does not necessarily mean it can achieve the maximum
profit for CSPs. Our simulation results reiterate the importance of
cloud market segmentation.

The results also illustrate that our proposed models could
not capture the customers who have risk-taking utility, which
often belongs to a niche market segment. The only discount
price model can satisfy the customers who are willing to take
a high risk for cloud resource uncertainty. If a CSP wants to
capture the surplus value of this niche market, the CSP should
carefully design a particular price model not only to target the
niche market segment but also isolate it and avoid the discount
pricing model to cannibalize the higher profit margin from other
cloud market segments. On the other hand, CSP should not always
select the price model that can generate the highest profit margin
only because there are many competitors in the cloud market.
Consequently, our future work will extend from a monopoly
market assumption to oligopolies or competitive cloud market
environment.
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